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Abstract—In this paper, we aim to propose a video codec
based on the novel retina-inspired filter and retina-inspired
quantizer which both perform according to the early visual
system. The recently released non-separable spatiotemporal OPL
retina-inspired filter enables to progressively extract different
kind of information from the input signal which is the sequence
of pictures of a video stream. This retina inspired transform has
been proven to be a redundant frame which ensures a perfect
reconstruction when no quantization appears. The reduction
of this redundancy is achieved by a quantization which is
inspired by the spike generation mechanism of ganglion cells.
This mechanism has been approximated by the Rank Order
Coder (ROC) and the Leaky-Integrate and Fire (LIF) models.
The ROC model encodes the rank of the spikes and it has been
proposed as a complete and very efficient codec for still-images.
However, its limitations concerning the reconstruction method
forced us to focus our attention on LIF which encodes the spike
delays. We approximate the LIF by a scalar quantizer with a
dead-zone. This is the first attempt to build a complete retina-
inspired video codec which gives promising reconstruction results
at low bitrate and high reconstruction quality.

Index Terms—Retina-inspired filter, frame, Rank Order Coder
(ROC), Leaky Integrate and Fire (LIF), video coding.

I. INTRODUCTION

Tracking the development of video compression algorithms,

one will come to the following two conclusions: the first

one is that all the video compression algorithms (MJPEG,

MJPEG2000, MPEG-1, MPEG-2, MPEG-4/H.264 (AVC) and

MPEG-H/H.265 (HEVC)) have the same origin which is the

JPEG algorithm proposed for image compression [1]. The

designers used JPEG standard as a basis to encode and decode

key-pictures of a video stream introducing at the same time

other methods to reduce temporal and spatial redundancy.

The second conclusion is related to the complexity of these

algorithms which increases during the years [2]. To achieve

more efficient compression algorithms and improve the bitrate,

the designers proposed more complex solutions.

The increase of complexity is inefficient for a series of

applications including video surveillance systems. As a result,

being supported by high complexity algorithms they consume

a lot of power. To our point of view, the basic drawback

of the conventional architecture stems from the fact that

videos are dynamic signals which are processed by methods

proposed for static images (DCT, DWT, scalar quantization,

etc.). As a result, we believe that a video should be processed

dynamically.

This paper is the first attempt of proposing a novel video

encoding architecture based on the dynamic properties of the

retina processing which seems to be promising for compres-

sion. This novel codec is called retina-inspired video codec

and it consists of the retina-inspired transform and the retina-

inspired quantization. We propose to apply the retina-inspired

codec to each picture of a video stream like MJPEG or

MJPEG2000. Treating each picture of the video stream as

a still-image which is flashed for a given time, this codec

enables to progressively extract and encode different kind of

details until the next picture (still-image) appears. Thus, the

retina-inspired codec allows the tuning of the reconstruction

quality along time. Of course, the retina-inspired codec does

not reduce yet the temporal redundancy between pictures. This

would be an interesting and definitely necessary extension in

order to be comparable to the latest standards. We evaluate

the efficiency of our video codec step-by-step comparing

first of all the dynamic retina-inspired filter and then the

retina-inspired quantizer to previous bio-inspired filtering and

encoding methods proposed for images.

In this document, we show that the recently released dy-

namic filter, which is called the retina-inspired filter [3], is

more efficient than a static transform like the filter bank which

is used in the Rank Order Coder (ROC) and its extensions [4],

[5], [6]. It is also proven in [7], [8], [9] that the retina-inspired

filter is invertible according to the frame theory. Consequently,

it enables a perfect reconstruction of the input signal if

there is no quantization. Secondly, this paper introduces a

Leaky Integrate and Fire (LIF) quantizer which reduces the

spatiotemporal redundancy of the retina-inspired frame. We

show that the LIF-quantizer is more efficient than other spike

generation mechanisms like ROC encoder.

II. BACKGROUND IN RANK ORDER CODER (ROC)

We assume that a video V (x, t) can be modeled as

V (x, t) =

N∑

i=1

fi(x)1[gi,gi+1](t), (1)

where x ∈ R
2, t ∈ R, fi(x) stands for the i-th picture of

the video, N is the total number of pictures which form the

video stream and 1[gi,gi+1](t) is the indicator function which

is equal to 1 if gi ≤ t ≤ gi+1, and 0 otherwise. Let’s call

Ti = gi+1 − gi the duration for which a given picture fi(x)
of the video stream appears. This time Ti = T is the same for



every single picture of a video stream with a frame rate 1/T .

Thus, the total duration of the video is NT .

The ROC model proposed by Thorpe [4], [5] is a solution

for coding each picture fi(x) independently as it is done in

MJPEG or MJPEG2000. The ROC model is a bio-plausible

generator and decoder of spikes. The spikes are generated

by neurons. Thorpe assumed that the most informative spike

which is emitted by a neuron is the first one. The first step of

the ROC model is the convolution of a still-image, say f(x)
which stands for one of the pictures fi(x), with a filter bank

{DoGk(x)}1≤k≤K :

Ak(x) = DoGk(x)
x
∗ f(x), (2)

where x ∈ R
2,

x
∗ denotes the spatial convolution and k is the

layer index. Each filter is a Difference of Gaussian (DoG):

DoGk(x) = Gσk
c
(x)−Gσk

s
(x), (3)

where Gσk
c
(x), Gσk

s
(x) are two Gaussian filters with standard

deviations σk
c and σk

s respectively. Thorpe assumed that all the

layers are fed simultaneously to the neurons in order to spike.

Let A(x) = (A1(x), . . . , AL(x)) be the input of the ROC

model. Each contrast intensity Ak(xr), where xr is a given

spatial location, is converted in a spike train by a specific

spiking neuron. For this purpose, the firing rate ρ(Ak(xr)) of

the spiking neuron is given by the Michaelis-Nenten function.

Thorpe uses a Poisson process to produce the spike train which

encodes Ak(xr). Each contrast intensity is associated to a

specific spike train. The arrival time of the first spike within a

spike train depends on the intensity of the coefficient Ak(xr).
Then, the contrast intensity is linked to the arrival rank of the

first spike: a stronger stimuli corresponds to a fast arrival of a

spike (low rank) and it is assigned to a high weight during the

reconstruction step. These weights were adjusted with a Look-

Up-Table (LUT), which allows to look-up for the most likely

intensity value with a given rank. This Look-Up-Table was

experimentally defined after testing several grayscale images.

Contrast A 255 245 240

Rank A 1 2 3

Contrast B 20 19 10

Rank B 1 2 3

TABLE I: Two sets of contrast intensities with the same ranks.

It is important to note that the LUT is not accurate for a

group of images with different statistical properties. Table I

shows two examples of contrast intensity triplets which are

assigned to the same rank. As a result, according to the LUT

the reconstruction will be exactly the same for both of these

examples, which is obviously wrong. This is the first limitation

of the ROC model. The second drawback is related to its

filter bank. If one considers the ROC model as a bio-inspired

model, its filter bank is a very rough approximation of the

dynamic OPL transform and, overall, the ROC filter bank is

not invertible. Masmoudi in [6] was the first one who tackled

these problems. He proposed a rectification function in order

to obtain an invertible filter bank which leads to a perfect

reconstruction. Masmoudi also created his own LUT which

was learned for each input image.

III. RETINA-INSPIRED FILTER

The retina-inspired filter φ(x, t) proposed in [8], [3] is a

non-separable spatiotemporal OPL retina-inspired filter. This

filter behaves according to the dynamic transform which hap-

pens in the OPL of the retina tissue as it has been modeled by

neuroscientists [10]. The retina-inspired filter is a DoG which

varies with respect to time due to some temporal functions

a(t) and b(t) as following:

φ(x, t) = a(t)Gσc
(x)− b(t)Gσs

(x). (4)

We propose to filter the video V (x, t) with the retina-

inspired filter. Let A(x, t) be the filtered video. We have

proven in [9] that A(x, t) = 0 if t < g1 and, otherwise,

A(x, t) =
N∑

i=1

φ(x, t − gi)
x
∗ fi(x). (5)

We also have proven in [9] that when t ∈ [gi, gi+1],

A(x, t) ≈ φ(x, t− gi)
x
∗ fi(x) = Ai(x, t), (6)

provided that the filter φ(x, t) is vanishing sufficiently fast

with respect to t. The convergence to 0 can be controlled

by choosing adequately the parameters of the retina-inspired

filter (see details in [9]). Under this assumption, we have

proven in [9] that each picture fi(x) of the input video V (x, t)
can be perfectly reconstructed from its decomposition layers

Ai(x, t) according to the frame theory [11]. Hence, when all

the neurons are able to emit a spike train which encodes each

coefficient Ai(x, t) with a high accuracy, our filter allows

a perfect reconstruction. The decoder receives a stream of

filtered subbands Ai(x, t) coded under the form of spike trains

and its goal is to reconstruct fi(x) from Ai(x, t) over the time

interval t ∈ [gi, gi+1].
For numerical purpose, we need to discretize the retina-

inspired filter in space and in time. Without any loss of

generality, let us focus on the time interval t ∈ [gi, gi+1].
Let x1, . . . , xn ∈ R

2 be some sets of spatial sampling points

and t1, . . . , tm ∈ [gi, gi+1] be temporal sampling points. The

continuous spatial convolution Ai(x, t) is then approximated

by the discrete spatial circular convolution:

Ai(xk, tj) = φ(xk, tj − gi)⊛ fi(xk), ∀k, j. (7)

Let us denote fi the sampled version of the image fi(x) and

Ai the sampled and vectorized version of the filtered image

Ai(x, t) for each retina-inspired decomposition layer 1≤ j ≤
m:

fi = (fi(x1), . . . , fi(xn)) ,
Ai = (Ai,1(x1), . . . , Ai,1(xn), . . . , Ai,m(x1) . . . , Ai,m(xn)) ,

where M = nm is the total number of coefficients within a

filtered image. The full set of the retina-inspired coefficients

for a single picture i is given by Ai = (Ai,j) , ∀j.
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Fig. 1: (a) Delay D(v) as a function of v: the quantization dead-zone [0, λ] is imposed by Dmax for different λ ∈ {λ1, λ2, λ3}
(C = 1). (b) Black curve: LIF dead-zone uniform quantizer. Red curve: perfect LIF dead-zone quantizer. (c) Video Codec

Schema.

IV. LIF QUANTIZER

The quantization, studied in this section, is necessary to

compress the filtered image coefficients into single quantum

values. As a result, we are interested in quantizing the frame

coefficients Ai,j in order to compress each picture of the input

video stream. As it is mentioned in section II, the LIF model

shares the same assumption with the ROC model concerning

how informative the first spike of a neuron is. Instead of

encoding the rank, the LIF model encodes the delay of the first

spike. This is more efficient because it enables to overcome the

limitations of the LUT: this encoding is a one-to-one mapping

providing that the input intensity exceeds a given threshold.

The LIF neuroscientific model is detailed in [12]. For a

frame coefficient value v (which stands for any coefficients

Ai,j) the LIF computes the delay D(v) before the first spike

(and between the following spikes) in absence of noise. The

delay D(v) depends on the value of v as follows:

D(v) =





+∞ if v ≤ θ,

h(v; θ) = −C ln

[
1−

θ

v

]
if v > θ,

(8)

where C is a constant related to the capacity of the neurons.

The threshold θ controls the redundancy reduction of the

frame. If the input value does not exceed the threshold,

there is no spike. Hence, the corresponding coefficient is not

transmitted. When the frame coefficient intensity v exceeds

the threshold, the delay D(v) is given by the function h(v; θ)
which is a continuous strictly decreasing function of v for

v > θ (see Fig. 1 (a)). As a result if one knows exactly the

value of the delay D(v) of the first spike, he is able to perfectly

reconstruct the value v using the function h−1(D(v), θ), which

is the inverse of h(v, θ).
In the case of a video, a picture fi(x) must be reconstructed

before the following picture fi+1(x). Hence, the spikes coding

the filtered picture Ai must be received before a maximum

delay Dmax. In this paper, we choose Dmax equal to the period

between two consecutive pictures of the video stream, i.e.

Dmax = T . According to the properties of h(v; θ), satisfying a

maximum delay Dmax is equivalent to encode only the values

Ai,j whose intensity is larger than λ = h−1(Dmax; θ). A short

calculation shows that

λ = λ(Dmax) =
θ

1− e−
Dmax

C

, (9)

which involves that λ > θ (see Fig. 1 (a)). In addition, the

threshold θ can be viewed as a mean to control the percentage

of neurons p which participate to the reconstruction of each

picture during Dmax. Thus, θ and λ are inversely related to the

percentage (λ = 1/p) which means that the more the neurons

will spike, the smaller the width of the dead-zone of the LIF

quantizer.

The LIF produces a spike train whose decoding allows us to

estimate the input frame. Let Qq(v) be the decoded value from

the LIF. We propose to approximate the full LIF model (spike

train generation and decoding) by a scalar uniform quantizer

with a dead-zone of width 2λ and step q (see Fig. 1 (b)).

When the absolute value of the input intensity v is smaller

than λ, there is no spike so the decoded value is 0. In this

case the LIF quantizer is called perfect LIF since there is no

quantization and the exact value of each intensity v > λ is

possible to be reconstructed (Fig. 1 (b)). However, in terms

of compression this perfect reconstruction would cause a high

entropy cost since the delay must be encoded perfectly. For

this reason, we quantize the delay D(v). The quantized delay

D̂(v) will cause an approximation v̂ of the intensity v. As

a result, we assume that it is equivalent to quantize directly

the intensity v. The smaller the quantization with a uniform

quantizer of step q, the better the approximation v̂ (Fig. 1 (b)).

The model of the dead-zone quantizer of step q is given as

following:

Qq(v) = sgn(v)max
(
0,

⌊
|v| − λ

q
+ 1

⌋)
, (10)

where sgn(v) is the sign of the input value. For an input coef-

ficient Ai,j , the output is the quantized value Aq
i,j = Qq(Ai,j).

Fig. 1 (c) illustrates the retina-inspired coding principle of a
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Fig. 2: These are some reconstruction results using different number of p which is the number of neurons which are allowed

to spike (from left to right θ equals 0.5%, 1%, 5%, 10% and 100%). One the top line we illustrate the ROC encoder model

as it was developed in [6]. The bottom line shows results of the LIF-quantizer using the retina-inspired filter.
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Fig. 3: (a) PSNR(dB) vs Htotal(Mbps) using the foreman video of total number of pictures 100 of the size 256x256 pixels

(Pre-processing with the “Total Video Audio Converter”) (q ∈ {1400, 800, 200, 50, 10, 1}) (b) PSNR(dB) vs H(bpp). (c) SSIM

vs H(bpp). The % is controlled by p value and q ∈ {1400, 1200, 1000, 800, 600, 400, 200, 100, 50, 40, 30, 20, 10, 5, 4, 3, 2, 1}.

video stream. Each picture of the video stream is firstly retina-

inspired filtered and then each retina-inspired decomposition

layer is quantized by the LIF-quantizer. The de-quantized

layers are used to reconstruct each picture of the video stream.

V. RECONSTRUCTION

The reconstruction is based on a classical image recon-

struction approach which minimizes the MSE between the

input images and the reconstructed ones. The reconstruction

algorithm is detailed in [9] for non-quantized values. We

exploit the same algorithm by replacing the non-quantized

values by the output of the dead-zone uniform quantizer.

Let Ṽ be the reconstructed video considered as the set of

reconstructed still-images f̃i for i = 1, . . . , N . The quality

of the reconstruction depends on the dead-zone semi-width λ
and the quantization step q. The perfect reconstruction is only

possible when q and λ (equivalent to θ when Dmax is fixed)

are small.

Fig. 2 illustrates the reconstruction results for different p
using the perfect LIF quantizer (q ≈ 0). We use a still-image to

be comparable to the results in [6]. The reconstruction results

is evaluated with the PSNR(V, Ṽ ) metric expressed in dB and

the SSIM(V, Ṽ ) for a given bitrate which is measured by the

total Shannon Entropy:

H =
1

N

N∑

i=1

Hi = −
1

N

N∑

i=1

n∑

k=1

pik log2
1

pik
, (11)

where pik is the probability the symbol k of the ith picture to be

occurred, Hi is the Shannon Entropy measured in bpp which

also corresponds to the ith picture. We consider that each input

image is of a size 512x512 pixels and it is coded in grayscale

levels from 0 to 255. Fig. 3 (b) and (c) illustrate respectively

the evolution of PSNR and SSIM values for different q and

p values using the cameraman as an input image. As it is

expected, the smaller the q, the better the reconstruction quality

which corresponds to high H . In addition, for a given q,
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Fig. 4: Progressive Reconstruction. Top line: filter bank and the quantizer proposed in [13]. Bottom line: the retina-inspired

filter with the LIF dead-zone quantizer. From left to right the coefficients which are used correspond to the first 20ms, 30ms,

40ms, 50ms and 150ms (p = 100%).

the reconstruction quality increases while the dead-zone semi-

width λ decreases because more neurons are able to spike. The

higher the number of neurons, the better the reconstruction f̃i
for each picture of the video stream. We also provide results

for a well known video in Fig. 3 (a) for different kind of

parameters. Interestingly, for low Htotal values, the PSNR is

above 30dB.

The retina-inspired codec is motivated by the dynamic

behavior of the visual system. This statement is defended

by providing results for progressive reconstruction when only

some of the decomposition layers are used for the reconstruc-

tion (Fig. 4). We managed to tune the parameters in order

to provide the reconstruction results of the same entropy like

the one proposed in [13]. One should notice both in Fig. 4

and Fig. 2 that the retina-inspired decomposition gives better

visual results concerning the objects and the background of the

image which are better structured even for very low values of

p. Although the PSNR and SSIM values are lower using the

retina-inspired frame with perfect LIF quantizer, our methods

is more efficient in terms of contrast since all the object in the

scene are better structured.

VI. CONCLUSION

This paper has introduced a novel retina-inspired codec

which filters and encodes each picture of a video stream ac-

cording to the way the visual system works. The reconstruction

results are promising comparing to other retina-inspired coding

methods while the visual quality is also higher.
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