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I. INTRODUCTION

Tracking the development of video compression algorithms, one will come to the following two conclusions: the first one is that all the video compression algorithms (MJPEG, MJPEG2000, MPEG-1, MPEG-2, MPEG-4/H.264 (AVC) and MPEG-H/H.265 (HEVC)) have the same origin which is the JPEG algorithm proposed for image compression [START_REF] Sikora | Mpeg digital video coding standards[END_REF]. The designers used JPEG standard as a basis to encode and decode key-pictures of a video stream introducing at the same time other methods to reduce temporal and spatial redundancy. The second conclusion is related to the complexity of these algorithms which increases during the years [START_REF] Grois | Performance comparison of h.265/mpeg-hevc, vp9, and h.264/mpeg-avc encoders[END_REF]. To achieve more efficient compression algorithms and improve the bitrate, the designers proposed more complex solutions.

The increase of complexity is inefficient for a series of applications including video surveillance systems. As a result, being supported by high complexity algorithms they consume a lot of power. To our point of view, the basic drawback of the conventional architecture stems from the fact that videos are dynamic signals which are processed by methods proposed for static images (DCT, DWT, scalar quantization, etc.). As a result, we believe that a video should be processed dynamically.

This paper is the first attempt of proposing a novel video encoding architecture based on the dynamic properties of the retina processing which seems to be promising for compression. This novel codec is called retina-inspired video codec and it consists of the retina-inspired transform and the retinainspired quantization. We propose to apply the retina-inspired codec to each picture of a video stream like MJPEG or MJPEG2000. Treating each picture of the video stream as a still-image which is flashed for a given time, this codec enables to progressively extract and encode different kind of details until the next picture (still-image) appears. Thus, the retina-inspired codec allows the tuning of the reconstruction quality along time. Of course, the retina-inspired codec does not reduce yet the temporal redundancy between pictures. This would be an interesting and definitely necessary extension in order to be comparable to the latest standards. We evaluate the efficiency of our video codec step-by-step comparing first of all the dynamic retina-inspired filter and then the retina-inspired quantizer to previous bio-inspired filtering and encoding methods proposed for images.

In this document, we show that the recently released dynamic filter, which is called the retina-inspired filter [START_REF] Doutsi | Retina-inspired filtering[END_REF], is more efficient than a static transform like the filter bank which is used in the Rank Order Coder (ROC) and its extensions [START_REF] Thorpe | Rank Order Coding: A new coding scheme for rapid processing in neural network[END_REF], [START_REF] Van Rullen | Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex[END_REF], [START_REF] Masmoudi | Frames for exact inversion of the rank order coder[END_REF]. It is also proven in [START_REF] Doutsi | Retina-inspired filtering for dynamic image coding[END_REF], [START_REF] Doutsi | Event-based coding of images using a bio-inspired frame[END_REF], [START_REF] Doutsi | Video analysis and synthesis based on a retinal-inspired frame[END_REF] that the retina-inspired filter is invertible according to the frame theory. Consequently, it enables a perfect reconstruction of the input signal if there is no quantization. Secondly, this paper introduces a Leaky Integrate and Fire (LIF) quantizer which reduces the spatiotemporal redundancy of the retina-inspired frame. We show that the LIF-quantizer is more efficient than other spike generation mechanisms like ROC encoder.

II. BACKGROUND IN RANK ORDER CODER (ROC)

We assume that a video V (x, t) can be modeled as

V (x, t) = N i=1 f i (x)1 [gi,gi+1] (t), (1) 
where x ∈ R 2 , t ∈ R, f i (x) stands for the i-th picture of the video, N is the total number of pictures which form the video stream and 1 [gi,gi+1] (t) is the indicator function which is equal to 1 if g i ≤ t ≤ g i+1 , and 0 otherwise. Let's call T i = g i+1 -g i the duration for which a given picture f i (x) of the video stream appears. This time T i = T is the same for every single picture of a video stream with a frame rate 1/T . Thus, the total duration of the video is N T . The ROC model proposed by Thorpe [START_REF] Thorpe | Rank Order Coding: A new coding scheme for rapid processing in neural network[END_REF], [START_REF] Van Rullen | Rate coding versus temporal order coding: What the retinal ganglion cells tell the visual cortex[END_REF] is a solution for coding each picture f i (x) independently as it is done in MJPEG or MJPEG2000. The ROC model is a bio-plausible generator and decoder of spikes. The spikes are generated by neurons. Thorpe assumed that the most informative spike which is emitted by a neuron is the first one. The first step of the ROC model is the convolution of a still-image, say f (x) which stands for one of the pictures f i (x), with a filter bank {DoG k (x)} 1≤k≤K :

A k (x) = DoG k (x) x * f (x), (2) 
where x ∈ R 2 ,

x * denotes the spatial convolution and k is the layer index. Each filter is a Difference of Gaussian (DoG):

DoG k (x) = G σ k c (x) -G σ k s (x), (3) 
where G σ k c (x), G σ k s (x) are two Gaussian filters with standard deviations σ k c and σ k s respectively. Thorpe assumed that all the layers are fed simultaneously to the neurons in order to spike.

Let A(x) = (A 1 (x), . . . , A L (x)) be the input of the ROC model. Each contrast intensity A k (x r ), where x r is a given spatial location, is converted in a spike train by a specific spiking neuron. For this purpose, the firing rate ρ(A k (x r )) of the spiking neuron is given by the Michaelis-Nenten function. Thorpe uses a Poisson process to produce the spike train which encodes A k (x r ). Each contrast intensity is associated to a specific spike train. The arrival time of the first spike within a spike train depends on the intensity of the coefficient A k (x r ). Then, the contrast intensity is linked to the arrival rank of the first spike: a stronger stimuli corresponds to a fast arrival of a spike (low rank) and it is assigned to a high weight during the reconstruction step. These weights were adjusted with a Look-Up-Table (LUT), which allows to look-up for the most likely intensity value with a given rank. This Look-Up- It is important to note that the LUT is not accurate for a group of images with different statistical properties. Table I shows two examples of contrast intensity triplets which are assigned to the same rank. As a result, according to the LUT the reconstruction will be exactly the same for both of these examples, which is obviously wrong. This is the first limitation of the ROC model. The second drawback is related to its filter bank. If one considers the ROC model as a bio-inspired model, its filter bank is a very rough approximation of the dynamic OPL transform and, overall, the ROC filter bank is not invertible. Masmoudi in [START_REF] Masmoudi | Frames for exact inversion of the rank order coder[END_REF] was the first one who tackled these problems. He proposed a rectification function in order to obtain an invertible filter bank which leads to a perfect reconstruction. Masmoudi also created his own LUT which was learned for each input image.

III. RETINA-INSPIRED FILTER

The retina-inspired filter φ(x, t) proposed in [START_REF] Doutsi | Event-based coding of images using a bio-inspired frame[END_REF], [START_REF] Doutsi | Retina-inspired filtering[END_REF] is a non-separable spatiotemporal OPL retina-inspired filter. This filter behaves according to the dynamic transform which happens in the OPL of the retina tissue as it has been modeled by neuroscientists [START_REF] Wohrer | Virtual retina: A biological retina model and simulator, with constrast gain control[END_REF]. The retina-inspired filter is a DoG which varies with respect to time due to some temporal functions a(t) and b(t) as following:

φ(x, t) = a(t)G σc (x) -b(t)G σs (x). (4) 
We propose to filter the video V (x, t) with the retinainspired filter. Let A(x, t) be the filtered video. We have proven in [START_REF] Doutsi | Video analysis and synthesis based on a retinal-inspired frame[END_REF] that A(x, t) = 0 if t < g 1 and, otherwise,

A(x, t) = N i=1 φ(x, t -g i ) x * f i (x).
(

) 5 
We also have proven in [START_REF] Doutsi | Video analysis and synthesis based on a retinal-inspired frame[END_REF] that when t ∈ [g i , g i+1 ],

A(x, t) ≈ φ(x, t -g i )

x * f i (x) = A i (x, t), (6) 
provided that the filter φ(x, t) is vanishing sufficiently fast with respect to t. The convergence to 0 can be controlled by choosing adequately the parameters of the retina-inspired filter (see details in [START_REF] Doutsi | Video analysis and synthesis based on a retinal-inspired frame[END_REF]). Under this assumption, we have proven in [START_REF] Doutsi | Video analysis and synthesis based on a retinal-inspired frame[END_REF] that each picture f i (x) of the input video V (x, t) can be perfectly reconstructed from its decomposition layers A i (x, t) according to the frame theory [START_REF] Kovacevic | An introduction to frames[END_REF]. Hence, when all the neurons are able to emit a spike train which encodes each coefficient A i (x, t) with a high accuracy, our filter allows a perfect reconstruction. The decoder receives a stream of filtered subbands A i (x, t) coded under the form of spike trains and its goal is to reconstruct

f i (x) from A i (x, t) over the time interval t ∈ [g i , g i+1 ].
For numerical purpose, we need to discretize the retinainspired filter in space and in time. Without any loss of generality, let us focus on the time interval t ∈ [g i , g i+1 ]. Let x 1 , . . . , x n ∈ R 2 be some sets of spatial sampling points and t 1 , . . . , t m ∈ [g i , g i+1 ] be temporal sampling points. The continuous spatial convolution A i (x, t) is then approximated by the discrete spatial circular convolution:

A i (x k , t j ) = φ(x k , t j -g i ) ⊛ f i (x k ), ∀k, j. (7) 
Let us denote f i the sampled version of the image f i (x) and A i the sampled and vectorized version of the filtered image A i (x, t) for each retina-inspired decomposition layer 1≤ j ≤ m:

f i = (f i (x 1 ), . . . , f i (x n )) , A i = (A i,1 (x 1 ), . . . , A i,1 (x n ), . . . , A i,m (x 1 ) . . . , A i,m (x n )) ,
where M = n m is the total number of coefficients within a filtered image. The full set of the retina-inspired coefficients for a single picture i is given by A i = (A i,j ) , ∀j. IV. LIF QUANTIZER
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The quantization, studied in this section, is necessary to compress the filtered image coefficients into single quantum values. As a result, we are interested in quantizing the frame coefficients A i,j in order to compress each picture of the input video stream. As it is mentioned in section II, the LIF model shares the same assumption with the ROC model concerning how informative the first spike of a neuron is. Instead of encoding the rank, the LIF model encodes the delay of the first spike. This is more efficient because it enables to overcome the limitations of the LUT: this encoding is a one-to-one mapping providing that the input intensity exceeds a given threshold.

The LIF neuroscientific model is detailed in [START_REF] Gerstner | Spiking Neuron Models: An Introduction[END_REF]. For a frame coefficient value v (which stands for any coefficients A i,j ) the LIF computes the delay D(v) before the first spike (and between the following spikes) in absence of noise. The delay D(v) depends on the value of v as follows:

D(v) =    +∞ if v ≤ θ, h(v; θ) = -C ln 1 - θ v if v > θ, (8) 
where C is a constant related to the capacity of the neurons. The threshold θ controls the redundancy reduction of the frame. If the input value does not exceed the threshold, there is no spike. Hence, the corresponding coefficient is not transmitted. When the frame coefficient intensity v exceeds the threshold, the delay D(v) is given by the function h(v; θ) which is a continuous strictly decreasing function of v for v > θ (see Fig. 1 (a)). As a result if one knows exactly the value of the delay D(v) of the first spike, he is able to perfectly reconstruct the value v using the function h -1 (D(v), θ), which is the inverse of h(v, θ).

In the case of a video, a picture f i (x) must be reconstructed before the following picture f i+1 (x). Hence, the spikes coding the filtered picture A i must be received before a maximum delay D max . In this paper, we choose D max equal to the period between two consecutive pictures of the video stream, i.e. D max = T . According to the properties of h(v; θ), satisfying a maximum delay D max is equivalent to encode only the values A i,j whose intensity is larger than λ = h -1 (D max ; θ). A short calculation shows that

λ = λ(D max ) = θ 1 -e -Dmax C , (9) 
which involves that λ > θ (see Fig. 1 (a)). In addition, the threshold θ can be viewed as a mean to control the percentage of neurons p which participate to the reconstruction of each picture during D max . Thus, θ and λ are inversely related to the percentage (λ = 1/p) which means that the more the neurons will spike, the smaller the width of the dead-zone of the LIF quantizer.

The LIF produces a spike train whose decoding allows us to estimate the input frame. Let Q q (v) be the decoded value from the LIF. We propose to approximate the full LIF model (spike train generation and decoding) by a scalar uniform quantizer with a dead-zone of width 2 λ and step q (see Fig. 1 (b)). When the absolute value of the input intensity v is smaller than λ, there is no spike so the decoded value is 0. In this case the LIF quantizer is called perfect LIF since there is no quantization and the exact value of each intensity v > λ is possible to be reconstructed (Fig. 1 (b)). However, in terms of compression this perfect reconstruction would cause a high entropy cost since the delay must be encoded perfectly. For this reason, we quantize the delay D(v). The quantized delay D(v) will cause an approximation v of the intensity v. As a result, we assume that it is equivalent to quantize directly the intensity v. The smaller the quantization with a uniform quantizer of step q, the better the approximation v (Fig. 1 (b)). The model of the dead-zone quantizer of step q is given as following:

Q q (v) = sgn(v) max 0, |v| -λ q + 1 , (10) 
where sgn(v) is the sign of the input value. For an input coefficient A i,j , the output is the quantized value A q i,j = Q q (A i,j ). Fig. 3: (a) PSNR(dB) vs Htotal(Mbps) using the foreman video of total number of pictures 100 of the size 256x256 pixels (Pre-processing with the "Total Video Audio Converter") (q ∈ {1400, 800, 200, 50, 10, 1}) (b) PSNR(dB) vs H(bpp). (c) SSIM vs H(bpp). The % is controlled by p value and q ∈ {1400, 1200, 1000, 800, 600, 400, 200, 100, 50, 40, 30, 20, 10, 5, 4, 3, 2, 1}. video stream. Each picture of the video stream is firstly retinainspired filtered and then each retina-inspired decomposition layer is quantized by the LIF-quantizer. The de-quantized layers are used to reconstruct each picture of the video stream.

V. RECONSTRUCTION

The reconstruction is based on a classical image reconstruction approach which minimizes the MSE between the input images and the reconstructed ones. The reconstruction algorithm is detailed in [START_REF] Doutsi | Video analysis and synthesis based on a retinal-inspired frame[END_REF] for non-quantized values. We exploit the same algorithm by replacing the non-quantized values by the output of the dead-zone uniform quantizer. Let Ṽ be the reconstructed video considered as the set of reconstructed still-images fi for i = 1, . . . , N . The quality of the reconstruction depends on the dead-zone semi-width λ and the quantization step q. The perfect reconstruction is only possible when q and λ (equivalent to θ when D max is fixed) are small. Fig. 2 illustrates the reconstruction results for different p using the perfect LIF quantizer (q ≈ 0). We use a still-image to be comparable to the results in [START_REF] Masmoudi | Frames for exact inversion of the rank order coder[END_REF]. The reconstruction results is evaluated with the PSNR(V, Ṽ ) metric expressed in dB and the SSIM(V, Ṽ ) for a given bitrate which is measured by the total Shannon Entropy:

H = 1 N N i=1 H i = - 1 N N i=1 n k=1 p i k log 2 1 p i k , (11) 
where p i k is the probability the symbol k of the i th picture to be occurred, H i is the Shannon Entropy measured in bpp which also corresponds to the i th picture. We consider that each input image is of a size 512x512 pixels and it is coded in grayscale levels from 0 to 255. Fig. 3 (b) and (c) illustrate respectively the evolution of PSNR and SSIM values for different q and p values using the cameraman as an input image. As it is expected, the smaller the q, the better the reconstruction quality which corresponds to high H. In addition, for a given q, the reconstruction quality increases while the dead-zone semiwidth λ decreases because more neurons are able to spike. The higher the number of neurons, the better the reconstruction fi for each picture of the video stream. We also provide results for a well known video in Fig. 3 (a) for different kind of parameters. Interestingly, for low Htotal values, the PSNR is above 30dB. The retina-inspired codec is motivated by the dynamic behavior of the visual system. This statement is defended by providing results for progressive reconstruction when only some of the decomposition layers are used for the reconstruction (Fig. 4). We managed to tune the parameters in order to provide the reconstruction results of the same entropy like the one proposed in [START_REF] Masmoudi | Streaming an image through the eye: The retina seen as a dithered scalable image coder[END_REF]. One should notice both in Fig. 4 and Fig. 2 that the retina-inspired decomposition gives better visual results concerning the objects and the background of the image which are better structured even for very low values of p. Although the PSNR and SSIM values are lower using the retina-inspired frame with perfect LIF quantizer, our methods is more efficient in terms of contrast since all the object in the scene are better structured.

VI. CONCLUSION

This paper has introduced a novel retina-inspired codec which filters and encodes each picture of a video stream according to the way the visual system works. The reconstruction results are promising comparing to other retina-inspired coding methods while the visual quality is also higher.
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 1 Fig. 1: (a) Delay D(v) as a function of v: the quantization dead-zone [0, λ] is imposed by D max for different λ ∈ {λ 1 , λ 2 , λ 3 } (C = 1). (b) Black curve: LIF dead-zone uniform quantizer. Red curve: perfect LIF dead-zone quantizer. (c) Video Codec Schema.
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 12 Fig.2: These are some reconstruction results using different number of p which is the number of neurons which are allowed to spike (from left to right θ equals 0.5%, 1%, 5%, 10% and 100%). One the top line we illustrate the ROC encoder model as it was developed in[START_REF] Masmoudi | Frames for exact inversion of the rank order coder[END_REF]. The bottom line shows results of the LIF-quantizer using the retina-inspired filter.

Fig. 4 :

 4 Fig. 4: Progressive Reconstruction. Top line: filter bank and the quantizer proposed in [13]. Bottom line: the retina-inspired filter with the LIF dead-zone quantizer. From left to right the coefficients which are used correspond to the first 20ms, 30ms, 40ms, 50ms and 150ms (p = 100%).

  Table was experimentally defined after testing several grayscale images.

	Contrast A	255	245	240	Contrast B	20	19	10
	Rank A	1	2	3	Rank B	1	2	3

TABLE I :

 I Two sets of contrast intensities with the same ranks.