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The Teichmüller Stack

Laurent MEERSSEMAN

Abstract This paper is a comprehensive introduction to the results of [7]. It
grew as an expanded version of a talk given at INdAM Meeting Complex and
Symplectic Geometry, held at Cortona in June 12-18, 2016. It deals with the
construction of the Teichmüller space of a smooth compact manifold M (that
is the space of isomorphism classes of complex structures on M) in arbitrary
dimension. The main problem is that, whenever we leave the world of surfaces,
the Teichmüller space is no more a complex manifold or an analytic space but
an analytic Artin stack. We explain how to construct explicitly an atlas for
this stack using ideas coming from foliation theory. Throughout the article,
we use the case of S3 × S1 as a recurrent example.

1 Introduction

Let M be a compact C∞ connected oriented manifold. Assume that M is
even-dimensional and admits complex structures. We are interested in the
Teichmüller space T (M). To define it, we start with the moduli space M(M)
of complex structures on M . We can formally define it as the set of complex
manifolds diffeomorphic to M up to biholomorphisms. In short,

M(M) = {X complex manifold | X ≃so M}/ ∼ (1)

where X ≃so M means that there exists a C∞-diffeomorphism from X to M
preserving the orientations and where X ∼ Y if they are biholomorphic.

Thanks to Newlander-Nirenberg Theorem [9], a structure of a complex
manifold on M is equivalent to an integrable complex operator J on M , that
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2 Laurent MEERSSEMAN

is a C∞ bundle operator J on the tangent bundle TM such that

J2 = −Id and [T 0,1, T 0,1] ⊂ T 0,1 (2)

for
T 0,1 = {v + iJv | v ∈ TM ⊗ C} (3)

the subbundle of the complexified tangent bundle TM ⊗ C formed by the
eigenvectors of J with eigenvalue −i. Here of course, J has been linearly
extended to the complexified tangent bundle. We may thus rewrite (1) as

M(M) = {J o.p. integrable complex operator on M}/ ∼ (4)

where o.p. means orientation preserving, i.e. the orientation induced on M
by J coincides with that of M .

Now, it is easy to check that (M,J) and (M,J ′) are biholomorphic if and
only if there exists a diffeomorphism f of M whose differential df satisfies

J ′ = (df)−1 ◦ J ◦ df (5)

In other words, denoting J · f the right hand side of (5), we see that (5)
defines an action of the diffeomorphism group Diff(M) onto I(M), the set of
o.p. integrable complex operators appearing in (4). Since our operators are
o.p., this is even in fact an action of Diff+(M), the group of diffeomorphisms
of M that preserve the orientation.

So we end with
M(M) = I(M)/Diff+(M) (6)

and we are in position to define the Teichmüller space of M as

T (M) = I(M)/Diff0(M) (7)

where Diff0(M) is the group of diffeomorphisms C∞-isotopic to the identity,
that is the connected component of the identity in Diff+(M).

It is important to notice that (6) and (7) define topological spaces and
not only sets as (1). Indeed, we endow I(M) and Diff(M) with the topol-
ogy of uniform convergence of sequences of operators/functions and all their
derivatives (the C∞-topology) and we endow (6) and (7) with the quotient
topology.

In fact, more can be said. Replacing C∞ operators, resp. C∞ functions
with Sobolev L2

l operators, resp. L2
l+1 functions (for l big), then I(M) is a

Banach complex analytic space in the sense of [3]. Also Diff0(M) is a complex
Hilbert manifold and acts by holomorphic transformations on I(M).

Remark 1. The Teichmüller space may have several/countably many con-
nected components (defined as the quotient of a connected component of the
space of operators I(M) by the Diff0(M) action). We will always consider a
single connected component of it.
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For M a smooth surface, this definition of Teichmüller space coincides
with the usual one. Then T (M) is a complex manifold and enjoys wonderful
properties such as the existence of several nice metrics or of explicit inter-
esting compactifications. The situation is completely different in the higher
dimensional case. It is known since quite a long time, at least since the first
works of Kodaira-Spencer at the end of the fifties, that the Teichmüller space
is not even a complex analytic space in general. In order to put an analytic
structure in some sense on the space T (M), one has to consider it as an an-
alytic stack. And in order to make this stack structure concrete and useful,
one has to give an explicit atlas of it.

This was done in [7]. The crucial idea is to understand the action of
Diff0(M) onto I as defining a foliation (in a generalized sense) on I. Hence
T (M) is the leaf space of this foliation, so as a stack, an atlas can be obtained
as a (generalized) holonomy groupoid for this foliation. The aim of this paper
is to serve as a comprehensive survey of [7], putting emphasis on the main
ideas, on examples and on applications. Only section 6 contains new results:
we briefly report on work in progress by C. Fromenteau.

2 Examples

Example 1. To begin with, let us consider the Teichmüller space of S1 × S1.
By Riemann’s uniformization theorem, every Riemann surface diffeomorphic
to S1 × S1 is a compact complex torus, that is the quotient of C by a lattice
Zv ⊕ Zw with (v, w) a direct R-basis1. Indeed, its universal covering cannot
be P

1 for topological reasons, and the case of D is discarded because its
automorphism group does not contain any Z2 subgroup acting freely.

A classical computation shows that the lattice can be assumed to be of the
form Z⊕Zτ with τ belonging to the upper half-plane H. Moreover, two such
lattices give rise to biholomorphic tori if and only they are related through
the formula

τ ′ =
aτ + b

cτ + d
=: A · τ with A =

(

a b
c d

)

∈ SL2(Z) (8)

Hence, the moduli space M(S1 × S1) is the complex orbifold H/SL2(Z), the
action being defined through (8).

However, the Teichmüller space T (S1×S1) is just H. This is because a non-
trivial element A of SL2(Z) sends the lattice associated to τ isomorphically
onto the lattice associated to τ ′ (we use the same notations as in (8)), but
does not send 1 to 1 and τ to τ ′. Since 1 and τ in C descends as two loops on

1 It should be noted that, in the definition of Teichmüller space, we consider any complex
structure, not only projective ones. Hence, in the case of S1 × S1, we have to prove that
every such structure is projective.
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S1 × S1 which generates a basis of the first homology group with values in Z,
and since 1 and τ ′ defines the same basis, this means that the biholomorphism
induced by A does not act trivially in homology. So it cannot be isotopic to
the identity and τ differs from A · τ in the Teichmüller space.

The Teichmüller space of Example 1 has the wonderful property of being
a complex manifold. Moreover, this complex structure is natural in the sense
that it is ”compatible” with deformation theory. More precisely, every defor-
mation of complex tori, that is every smooth morphism X → B with fibers
diffeomorphic to S1 × S1 defines a mapping from the parameter space B to
T (S1 × S1). The point here is that this mapping is holomorphic.

The fundamental question is to know if this is a general property of Te-
ichmüller spaces or something specific to dimension one. Surely a Teichmüller
space has to be a complex object so we ask

Is it possible to endow any Teichmüller space with the structure of an analytic

space?

There are many cases for which this is true at least locally. For example,
in [2], Catanese shows this is ok locally for Kähler manifolds with trivial or
torsion canonical bundle and for minimal surfaces of general type with no
automorphisms or rigidified (i.e. with no automorphism smoothly isotopic to
the identity) with ample canonical bundle.

Recall that an analytic space is a Hausdorff topological space locally mod-
elled onto the zero set of holomorphic functions and that the Hausdorffness
requirement does not follow from the local models. There exist non-Hausdorff
analytic spaces, as well as non-Hausdorff manifolds, that is objects having the
right local model but not separated as topological spaces. More important for
us, this is exactly what happens for the Teichmüller space of irreducible Hy-
perkähler manifolds2 [11]. So we should allow non-Hausdorff analytic spaces
to expect a positive answer to our question.

Nevertheless, this is indeed not enough. The situation is even worse than
that, as shown by the following example.

Example 2. Our guiding example is that of S3×S1. It was proved by Kodaira
in [5] that any complex surface homeomorphic to S3 × S1 is a Hopf surface,
that is the quotient of C2 \ {(0, 0)} by the group generated by a holomorphic
contraction of C2. Besides, every such contraction can be either linearized
and then diagonalized with eigenvalues of modulus strictly less than 1, or
reduced to the following resonant normal form

(z, w) 7−→ gλ,p(z, w) := (λz + wp, λpw) for p ∈ N
∗, 0 < |λ| < 1 (9)

Note that p = 1 corresponds to the linear but non diagonalizable case,
whereas p > 1 corresponds to non-linear cases. As a consequence, the classifi-
cation of Hopf surfaces up to biholomorphism is as follows. Let Xg be such a

2 Here this is defined as the space of isomorphism classes of Hyperkähler complex structures
on a fixed smooth manifold, and not of arbitrary complex structures.
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surface defined by the contracting biholomorphism g of C2. Let λ1 and λ2 be
the eigenvalues of the linear part of g at (0, 0) and assume that |λ2| ≤ |λ1|.
Then,

1. If there is no resonance, that is if λp
2 is different from λ1 for all p ∈ N∗,

then Xg is biholomorphic to X(

λ1 0
0 λ2

).

2. If there is a resonance of order p, then Xg is biholomorphic either to
X(

λ1 0
0 λ2

) or to Xgλ,p
.

All these models are pairwise non biholomorphic. As a consequence, one can
show that T (S3 × S1), as a topological space, is as follows3 [7]. Let

A ∈ GLc
2(C)

π
−−−−→ (detA,Tr A) ∈ C2 (10)

where the superscript c means that we only consider contracting matrices.
The image of the map π in (10), say D, is a bounded domain in C2 that is
exactly the Teichmüller space of linear diagonal Hopf surfaces.

To add the linear but non diagonalizable case, one has to add a non-
separated copy C of the curve

π∗{A ∈ GLc
2(C) | 4 detA = (Tr A)2} (11)

in D. This is because a point in this curve corresponds to two non biholomor-
phic Hopf surfaces. Hence we distinguish (λ2, 2λ) ∈ D which encodes X(

λ 0
0 λ

)

and the same point in the added curve C which encodes X(

λ 1
0 λ

). The aug-

mented domain, say DC , is the Teichmüller space of linear Hopf surfaces and
has the topology of the conjugacy classes of contracting matrices. In partic-
ular, a sufficiently small neighborhood of a point

(

λ 1
0 λ

)

of C in DC does not

contain the corresponding point
(

λ 1
0 λ

)

of D, whereas every neighborhood of
(

λ 1
0 λ

)

∈ D contains
(

λ 1
0 λ

)

∈ C.
But we are not done, since the resonant non linear Hopf surfaces are miss-

ing. To include them, for each p > 1, we add a non-separated copy Cp of the
curve

{(λp+1, λ+ λp) | 0 < |λ| < 1} (12)

to encode the contractions gp,λ. Thus, a point (λp+1, λ + λp) in D encodes
X(

λ 0
0 λp

) whereas its double in Cp encodes Xgλ,p
.

We therefore obtain finally a non-Hausdorff space

D(C) = DC ⊔ C2 ⊔ . . . (13)

which looks like a bounded domain in C
2 plus a countable number of pair-

wise disjoint analytic curves and is endowed with the previously explained

3 Recall that we just consider one connected component of the Teichmüller space. Here,
the Teichmüller space has several connected components, cf. the discussion in [7].
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topology. The space is not Hausdorff along these curves, since a point in
such a curve and the corresponding point in DC cannot be separated. How-
ever, two such points do not play symmetric roles. Every open neighborhood
of (λp+1, λ + λp) in DC contains the corresponding point of Cp, whereas a
sufficiently small neighborhood of (λp+1, λ + λp) in Cp does not see the cor-
responding point of DC .

We note the following important consequence, which is known since
Kodaira-Spencer works on deformations in the sixties, but which is still fre-
quently overlooked.

Proposition 1. The Teichmüller space T (S3 × S1) cannot be endowed with

the structure neither of an analytic space nor of a non-Hausdorff analytic

space.

Proof. An analytic space, even non-Hausdorff, is locally Hausdorff since it is
locally modelled onto the zero set of some holomorphic functions in Cn. This
contradicts (13) and the subsequent discussion. ⊓⊔

3 Artin analytic stacks

As shown by Proposition 1, the Teichmüller space does not always admit the
structure of an analytic space, even locally. Hence, to see it as an analytic
object, one needs to use the more general notion of analytic stacks.

Let A be the category of (complex) analytic spaces and morphisms. We
consider the euclidean topology on the analytic spaces. Especially, a covering
is just an open covering for the euclidean topology. Fix some smooth manifold
M as in Section 1. By a M -deformation, we understand a smooth morphism
X → A over an analytic space all of whose fibers are complex manifolds
diffeomorphic to M .

We consider the contravariant functor M(M) from A to the category of
groupoids4 such that

1. For A an analytic space, M(M)(A) is the groupoid formed by M -
deformations over A (objects) and isomorphisms of M -deformations (mor-
phisms).

2. For f a morphism from A to B,M(M)(f) is the natural pull back mapping
from M(M)(B) to M(M)(A).

This functor satisfies several properties, in particular

1. Descent. Given an open covering (Aα) of A, and M -deformations Xα

over Aα and a cocycle of isomorphisms over the intersections, there exists
a unique X over A obtained by gluing all the Xα.

4 Recall that a groupoid is a category all of whose morphisms are invertible.
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2. Sheaf. Given an open covering (Aα) of A, M -deformations X and X ′ over
A, a collection of isomorphisms fα over Aα between the M -deformations
that coincide over the intersections glue into a unique morphism f .

This is an example of a stack over the site5 A, cf. [4]. This is the stack version
of the moduli space (6). To obtain the stack version of (7), we have to modify
slightly the construction. A M -deformation over A is smoothly a M bundle
over A with structural group Diff+(M). The functor T (M) associates to each
A the set of isomorphism classes of M -deformations over A whose smooth
bundle structure has structural group Diff0(M). Let us call reduced such a
M -deformation.

Let us make a break. We propose to replace the Teichmüller space T (M)
with a complicated contravariant functor T (M) which describes all the M -
deformations over analytic spaces with structural group Diff0(M). At first
sight, there is no reason to do this. This is not even clear that we are dealing
with something similar to the Teichmüller space.

The point here is that in many cases a stack can also be described by a
single groupoid, called atlas or presentation of the stack. An atlas is far from
being unique and we can look for a ”nice” one. In our case we can choose
as an atlas a groupoid that looks much more like the Teichmüller space and
which is in fact an enriched version of it. To see this less theoretically, let us
revisit the example of complex tori of dimension one.

Example 3. We let again M to be S1 × S1 with a fixed orientation. Then
T (M) describes all reduced deformations with complex tori as fibers and
their morphisms. We claim that an atlas for this stack can be obtained as
follows. Consider the universal family X → H where X is the quotient of
C×H by the free and proper holomorphic action

(z, τ, p, q) ∈ C×H× Z× Z 7−→ (z + p+ qτ, τ) (14)

This is a reduced S1 × S1-deformation. The fiber over τ is the complex torus
Eτ of lattice (1, τ). We rewrite this family as the following groupoid

X ⇉ H (15)

with both arrows equal to π. This must be thought of as follows. The set of
objects is H, that is the Teichmüller space T (S1 × S1). The set of morphisms
is X and the two maps are the projection on the source and the target
of the morphism. In (15), since both equals π, every morphism has same
source and target τ . The set of morphisms above τ is Eτ and represents the
group of translations of the complex torus Eτ . Here, we set the projection of
(0, τ) ∈ C × H in X to be the zero translation. Hence our groupoid is just
T (S1 × S1) with its translation group above each complex torus τ .

5 In fact, a stack is a 2-functor but we will not go into that.
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We will not prove our claim, this would force us to give many and many
definitions, but we can give a heuristic interpretation of it. The key point
is that if you are given an analytic space A, then every torus deformation
above A can be recovered from (15). From the one hand, above a sufficiently
small open set Aα of A, such a deformation is completely and uniquely up to
isomorphism characterized by a holomorphic map from Aα to H6. From the
other hand, gluings of these families over Aα are completely characterized by
maps from Aα ∩Aβ to X since such gluings are translations along the fibers
of the deformation.

Note that (15) is a complex Lie groupoid: its sets of objects and morphisms
are complex manifolds and the source and target maps are holomorphic sub-
mersions.

In the general case, an atlas for T (M) is given by the action groupoid

Diff0(M)× I(M) ⇉ I(M) (16)

with source map s and target map t defined as

s(f, J) = J and t(f, J) = J · f (17)

with J · f defined as the right hand side of (5). Since there is a dictionnary
between a stack and an atlas for it, (16) explains why we say that T (M) is
the stack version of T (M).

Compared with (15), this is no longer a complex Lie groupoid but an
infinite dimensional object. And it does not help us to understand the Te-
ichmüller space since it is just a rewriting of (7). But recall that an atlas is
not unique. So introducing T (M) is interesting only if we can find a nice and
useful atlas of it. By nice, we think of a complex Lie groupoid, but we will
see it is too much too expect. We need a singular version of a complex Lie
groupoid. So we define

Definition 1. A stack over the site A is an Artin analytic stack if it admits
an atlas A1 ⇉ A0 with A0 and A1 being finite dimensional complex analytic
spaces and the source and target maps being smooth morphisms. Such a
groupoid is called a singular Lie groupoid.

The main result of [7] is to prove that, under a mild uniform condition
on the automorphism group of M when considered as a complex manifold,
T (M) is an Artin analytic stack and to construct an explicit atlas with the
properties of Definition 1. This is the best possible answer to the question of
Section 2. The Teichmüller space T (M) is not an analytic space but its stack
version T (M) is Artin analytic.

6 This is the meaning of universal family in Kodaira-Spencer deformation theory.
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4 Foliations and holonomy groupoid

To understand the stack structure of T (M), we need to make a diversion
through foliation theory. Stacks and groupoids are also useful to understand
the structure of the leaf space of a foliation.

So assume we start with a smooth foliation F of a smooth manifold M .
Then F is defined through charts with values in Rp × Rn−p such that the
changes of charts are of the type

(x, t) ∈ R
p × R

n−p 7−→ (g(x, t), h(t)) ∈ R
p × R

n−p (18)

that is send plaques {t = Cst} onto plaques. Gluing the plaques following the
changes of charts gives the leaves, that is disjoint immersed submanifolds that
form a partition of M . Transverse local sections to F are given by {x = Cst}.

Example 4. An easy but yet interesting example is that of a linear foliation
of a torus. Consider the trivial foliation of R2 given by parallel straight lines
making a fixed angle α with the horizontal. It descends on the torus R2/Z2

as a foliation by curves with leaves wrapping around the torus. Its properties
depend on the arithmetic type of α.

1. If α = p/q is rational then the leaves of the foliation are closed curves
diffeomorphic to S1 that make p turns in the vertical direction and q in
the horizontal one. The foliation has only compact leaves.

2. If α is irrational then the leaves are diffeomorphic to R and are dense in
the torus. The foliation is minimal.

If we look for the leaf space, we can fix a meridian T on our torus. It is a
global transverse to the foliation. Each leaf L will cut the circle T in at least
one point. More precisely, the intersection L ∩ T is an orbit of the rotation
of angle α and the leaf space is given by the quotient of T by the group G
generated by this rotation.

1. If α = p/q is rational then G is isomorphic to Zq and T/G identifies with
S1.

2. If α is irrational then G is isomorphic to Z and T/G is not Hausdorff.

Let us see now how stacks and groupoids can help us in defining the leaf
space.

In Example 4, identifying T with S1 ⊂ C and G with the group generated
by the rotation z 7→ rα(z) := exp 2iπαz, we may encode this as the Lie
groupoid 〈rα〉 × S

1
⇉ S

1 with source and target maps given by

s(g, z) = z and t(g, z) = g(z) (19)

This is an example of an action Lie groupoid: the source map is the projection
onto the second factor and the target map is given by the action, cf. (17).
Of course, just doing this is not enough. We have to think of this groupoid
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as defining a stack over the category of smooth manifolds. And as such, it is
not the only groupoid defining this stack. Hence we have to think as the leaf
space not as G× T ⇉ T but as an equivalence class of groupoids.

There exists a general construction to encode the leaf space in a Lie
groupoid: the étale holonomy groupoid. Roughly speaking, one starts with a
foliated atlas of F and define as objects of the groupoid the disjoint union
of a complete sets of local transverse sections. Then the set of morphisms
encodes the holonomy morphisms. This is quite technical to do and we refer
to [8, §5.2] for more details.

As in Example 4, this groupoid is an atlas for a stack over the category of
smooth manifolds. And this stack has lots of different atlases, all equivalent.
We will not give the precise definition of the equivalence relation needed
here7. Let us just say that this equivalence class is an enriched version of the
topological quotient. It does not remember neither M nor F but encodes the
topological leaf space and moreover the smoothness of the initial construction
(since it remains in the realm of Lie groupoids) and all the holonomy data.
This is the best definition of a leaf space. In the case of Example 4, if α is
rational, then G× T ⇉ T is equivalent to the trivial groupoid S1 ⇉ S1, that
is the stack is just the manifold S

1. However, if α and α′ are irrational, then
the corresponding Lie groupoids G × T ⇉ T are equivalent if and only if
α′ = A ·α as in (8), see [10]. Stacks allow to distinguish the leaf spaces in the
irrational case.

Of course everything works in the analytic context. If the foliation is holo-
morphic, then the étale holonomy groupoid is a complex Lie groupoid and
defines a stack over the category of complex manifolds. If we look at regu-
lar foliations (i.e. leaves are manifolds) on a singular space, then everything
works except that the étale holonomy groupoid is now a singular Lie groupoid
and the stack is Artin analytick in the sense of Definition 1.

5 The Teichmüller stack

We are now in position to give the main results of [7] and the main ingredients
of the proof. As before, we denote by M a compact connected oriented even-
dimensional smooth manifold, by T (M) its Teichmüller space.

Definition 2. We call Teichmüller stack the stack T (M) defined in Section
3.

We have

Theorem 1 (cf. [7]). Assume that there exists a constant a ∈ N such that,

for all J ∈ T (M), the dimension of the automorphism group of the corre-

sponding complex manifold XJ is bounded by a.

7 It is called Morita equivalence and basically is an adaptation of equivalence of category
in the world of smooth manifolds.
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Then T (M) is an Artin analytic stack.

Before explaining the main ideas of the proof, some important remarks
have to be done.

1. The proof is constructive and geometric. It builds a concrete singular Lie
groupoid as atlas for T (M) which comes from the existence of a geometric
structure (a foliated structure) of I(M). This is perhaps the most inter-
esting aspect of the result.

2. The hypothesis is used to control that the constructed atlas is finite-
dimensional. In any case this is a mild restriction since we may easily
stratify T (M) by strata satisfying the hypotheses for a given a. Classical
results of Grauert ensure that this gives a nice analytic stratification, see
[7] for more details.

The crucial idea is to understand that the action of Diff0(M) defines a
”generalized foliation” on I(M) so that the construction of a ”generalized
étale holonomy groupoid” can be carried out. To do this, many technical
problems have to be overcome, the most serious one being the presence of
non-trivial automorphisms (remark that the isotropy groups of the actions
are constituted by automorphisms).

1st case: no automorphisms.

Here we assume that, for all J ∈ T (M), we have

Aut (XJ) ∩Diff0(M) = {Id} (20)

Hypothesis (20) exactly means that the Diff0(M) action is free. It is thus
natural to expect that it defines a foliation in some sense. Now, this is a
reformulation of Kuranishi’s theorem of existence of a versal space [6].

Theorem 2 (Kuranishi, 1962). Let X0 = (M,J0) be a compact complex

manifold whose underlying smooth structure is M . Assume (20). Then there

exists a finite-dimensional analytic space K0 such that the space I(M) is

locally isomorphic to K0 ×Diff0(M) in a neighborhood of J0.

Of course this local isomorphism preserves locally the action, so this gives
really a foliated chart for the action. The plaques are open neighborhoods of
the identity in the Fréchet manifold Diff0(M) and a transverse local section is
given by the analytic space K0. So this is an infinite dimensional but of finite
codimension foliation of an infinite-dimensional analytic space, cf. Section 1,
just before Remark 1.

In this situation, we can carry out the construction of the étale holonomy
groupoid. Only slight adaptations have to be done. Note that the finite codi-
mension of the foliation ensures the finite dimensionality of the holonomy
groupoid.

2nd case: general case. Kuranishi’s theorem takes now the following more
general form.
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Theorem 3 (Kuranishi, 1962). Let X0 = (M,J0) be a compact complex

manifold whose underlying smooth structure is M . Let Aut0(X0) be the con-

nected component of the identity in the automorphism group of X0. Then

1. A neighborhood of the identity in the quotient space (Diff0(M)/Aut0(X0))
is a Fréchet manifold.

2. There exists a finite-dimensional analytic space K0 such that the space

I(M) is locally isomorphic to K0×(Diff0(M)/Aut0(X0)) in a neighborhood

of J0.

As in the previous case, this local isomorphism preserves locally the action,
but this time this does not give a foliated chart for the action. The problem is
that the plaques are now modelled onto (Diff0(M)/Aut0(X0)), i.e. depends on
the automorphism group of the base manifold X0. Hence plaques of different
charts cannot be glued. There is no leaf to be constructed from the plaques.

Now we can reformulate Theorem 3 as giving a local isomorphism at J0
between I(M) and the product

Diff0(M)× [K0/Aut
0(X0)] (21)

where the brackets mean that we consider the right hand side as an Artin
analytic stack. In other words, Aut0(X0) acts8 on K0 and we consider its
quotient as a stack. In foliated terms, we force the plaques to be open neigh-
borhoods of the identity in the Fréchet manifold Diff0(M). This is possible
subject to the condition that we let the transverse sections to be analytic
stacks rather than analytic spaces.

Then (21) can be interpreted as a foliated chart in a generalized sense and
the gluings will respect this foliated structure. In [7], we call it a foliation

transversely modelled on a translation groupoid or in short a TG foliation.
The next step consists in showing how to adapt the machinery of holonomy

étale groupoid to the world of TG foliations. This forms the technical core
of [7]. The gap with the classical theory is important and lots of work is
needed. We will not get into that, since we attain our assigned goal: give a
comprehensive introduction to the results and objects of [7].

Remark 2. In the realm of Section 4, we get an étale holonomy groupoid. This
is more than a singular Lie groupoid since the source and target maps are not
only smooth morphisms but also étale morphisms. In the general case, the
holonomy groupoid associated to a TG foliation has no more this property.

6 The Teichmüller stack of Hopf surfaces

In this last section, we shall briefly report on work in progress by C. Fro-
menteau on the Teichmüller stack of S3 × S1. We explain in Example 2 the

8 In fact, this is not exactly an action, see [7] for more details.
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quite complicated topology of the Teichmüller space of S3 × S1 as well as
the different normal forms for the associated complex structures. It is known
that the automorphism group of a Hopf surface has dimension 2, 3 or 4 de-
pending on the normal form. Hence the hypothesis of Theorem 1 is fulfilled
and T (S3 × S1) is an Artin analytic stack. The construction of the holonomy
groupoid refered to in Section 5 does not give a useful atlas in this case. In
particular its set of objects has countably many connected components. To
really work with T (S3 × S1) we need another atlas.

C. Fromenteau gave a much nicer atlas that can be described as follows.
Let G be the Lie group biholomorphic to GL2(C)×C as a complex manifold
but with the following product rule

(A, t) ∗ (B, s) = (AB, t+ s detA) (22)

Let M be the product GLc
2(C)× C. Then one may define

1. a holomorphic action · of G onto M .
2. a holomorphic injection ı of M into G

such that the Lie groupoid (G×M)/Z ⇉ M is an atlas of T (S3 × S1). Here
the Z-action is defined as

(p, g,m) ∈ Z×G×M 7−→ (ı(m)pg,m) (23)

and the source and target maps are the projections of the maps9

(g,m) ∈ G×M 7−→ m and (g,m) 7→ m · g (24)

One interest of this atlas is for cohomological computations. For example,
T (S3 × S1) has well defined de Rham cohomology groups, cf. [1]. This coho-
mology is different from the cohomology of the topological space T (S3 × S1)
since it takes also into account the cohomology of the automorphism groups
of Hopf surfaces.

In any case, these cohomology groups are very difficult to compute in gen-
eral. Having such an atlas makes the calculations possible. Roughly speaking,
they are just the equivariant cohomology groups of the action · of G onto M .
Here, with more work, one can compute them and show that the generators
in dimension 2 can be realized as non-trivial holomorphic bundles above P1

with fiber a Hopf surface (which must be thought of as isotrivial but not
trivial S1 × S3-deformation above P1). It is not clear however whether the
generator of the first cohomology group (which is equal to C) can be realized
as a holomorphic S1 × S3-deformation above a compact Riemann surface.

9 The action groupoid G×M ⇉ M with source and target maps defined in (24) is an atlas
for the stack of reduced S3×S1-deformations admitting a covering C2\{(0, 0)}-deformation
plus a choice of a base point in the covering family. Together with ı, this forms a gerbe
with band Z.
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d’un espace analytique donné. Ann. Inst. Fourier 16, 1–95 (1966).

4. Fantechi, B.: Stacks for everybody. European Congress of Mathematics, Vol. I
(Barcelona, 2000), 349–359, Progr. Math., 201, Birkhäuser, Basel (2001).
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