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Abstract

The  notion  of  geometrical  modulus  is  widely  used  in  foundry  to  approximate  castings  cooling  through 
Chvorinov's rule. An extension to its definition at a local scale has been devised, which can be used to 
determine  a  cooling  map  of  the  surface  of  an  arbitrary  casting.  An  algorithm using  simple  tessellated 
surfaces (.stl)  files as data entry has been tested,  the results showing good agreement with theoretical 
values for simple casting shapes. Experiments have confirmed the potential of this method to automatically  
and quickly (a few seconds to minutes) map the cooling of complex parts, despite some limitations mostly 
linked to the initial discretization of the surface. Potential applications would be automated hot spots location,  
as well as determination of local cooling times and solidification directions.

Keywords: computer assisted design; foundry; cooling; geometrical modulus; Voronoï cell

Introduction and context:

Mould  and  casting  designing  is  a  centuries  old 
problem.  Experiments  have  led  to  some  semi-
empirical rules which give accurate results in simple 
cases, at the cost of a long and difficult to automate 
process. Long designing times are not  generally a 
concern,  since  moulds  are  even  more  time 
consuming  to  produce  in  industrial  conditions, 
making  experimental  tests  the  critical  step  of  the 
whole  process.  However,  recent  improvements  in 
casting technologies (rapid prototyping in particular), 
have allowed a significant decrease in both time and 
cost of mould production. The subject of a quicker 
computer  assisted  casting  designing  is  thus 
becoming increasingly relevant to industrial foundry 
production.

Two main types of approaches are currently used in 
order to design castings: 

 traditional  foundry,  which  is  based  on 
Chvorinov law (linking the solidification time of a 

casting  with  purely  geometrical  considerations, 
summarized  by  the  geometrical  modulus), 
coupled  with  semi-empirical  rules  in  order  to 
streamline  the  casting  geometry.  This  method 
benefits from its simplicity (calculations limited to 
basic  mathematical  operations),  minimal 
necessary data (just the casting geometry), and 
pre-existing foundry rules (risers dimensions for 
example – [1]). Its main limitations are linked to 
three  characteristics:  its  global  nature  (for 
example,  it  will  consider  the  solidification  of  a 
cube  shaped  casting  as  one  entity, completely 
ignoring the progressive cooling from surface to 
core);  dependence  on  experience  and  user 
know-how (especially to partition the casting into 
elements having uniform cooling); and an output 
limited to the relative cooling of the different parts 
of the casting.

These methods were designed from start to optimize 
the foundry process and avoid defects.

 numerical simulations, mainly finite elements 
and  finite  volumes  methods.  These  tools  can 
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accurately describe both filling and solidification, 
using  well  known  physical  laws  and  models 
(thermodynamics,  fluid  mechanics,  thermal 
diffusion...) applied to local elementary volumes, 
and  calculating  interaction  between  them.  The 
main advantage of these methods is the access 
to  physical  data  following  the  simulation  [2], 
including evolution of the system with time and 
derived  physical  information  (grain  size  for 
example). Limits of this kind of approach are long 
computation times (which can be several  hours 
or days), and heavy reliance on the accuracy of 
base data not easily obtained (phase diagram of 
alloys, heat diffusion coefficients...).

This  approach was mostly designed to predict  the 
result of a given foundry process, thus the need to 
go through several design modifications/simulations 
cycles.

A  few  other  methods,  such  as  those  based  on 
largest  included  sphere  [3,  4],  exemplified  in  the 
medial  surface/axis  transformation  [5,  6],  or 
constructions  in  relation  to  Chvorinov  rule  ([7]  for 
example),  try  to  find  a  middle  ground  between 
accuracy  and  computation  speed.  However,  their 
theoretical bases are very often debatable, and the 
results obtained not compatible with existing foundry 
rules,  thus  limiting  their  usefulness  in  industrial 
context.

As a conclusion, there is currently no easy and quick 
method to qualitatively predict the solidification of a 
casting  that  does  not  necessitate  a  great  deal  of 
experience in foundry beforehand, or time intensive 
computations.  On  one  hand,  simulation  allows 
precise results, but those are not directly usable for 
designing the casting, and too long to obtain to be 
readily used in casting conception process. On the 
other hand, the traditional approach gives fast and 
effective answers for casting design (optimal risers 
or cooling blocks size and position can be directly 
deduced from geometric modulus for example), but 
cannot  be  automated,  due  the  need  of  ''intuitive'' 
decisions concerning the partitioning of the casting 
into thermally significant entities.

This  article  will  first  detail  a  local  definition  for 
geometrical  modulus  based  on  physical 
considerations,  then  develop  a  discrete  approach 
using  Voronoï  cells  to  approximate  it  (formal 
convergence  being  demonstrated  in  the  case  of 
plate  shape).  Considerations  about  numerical 
implementation  will  be  discussed,  leading  to  a 
working  algorithm  for  random  casting  shapes. 
Finally, computations results on simple and complex 
shapes  will  be  shown  and  analyzed,  highlighting 
limitations of the process and ways to optimize it.

Theoretical approach

Preliminary theoretical considerations:

The  main  idea  of  the  method  described  in  this 
article,  is  to  define  a  local  surface  value  for 
geometrical  modulus,  then  integrate  this  result  to 
differentiate thermally significant parts of the casting. 
This  is  the  opposite  of  the  traditional  foundry 
approach, where the casting is first partitioned into 
elementary entities, each being intuitively thermally 
homogeneous,  then  the  modulus  calculated.  The 
new  method  has  the  advantage  to  avoid  the 
prerequisite  knowledge  of  foundry  rules  for 
partitioning a casting. 

In  order  to  have  a  physical  significance,  the 
mathematical definition of local modulus must follow 
the  same  properties  and  geometry  as  the 
phenomenon described, namely thermal diffusion. It 
must  also be based on the same hypotheses that 
link  the  initial  definition  of  global  geometrical 
modulus to the solidification time of a casting. This 
last  imperative  is  necessary,  on  one  hand  to 
maintain  some  consistency  between  the  two 
definition scales of the modulus (global and local), 
and on the other hand to be able to directly use the 
resulting local modulus with existing foundry rules. 

These  essential  hypotheses  will  be  determined 
below  using  various  considerations,  first  about 
geometrical  modulus and its link with cooling,  and 
then about thermal diffusion in a casting.

Chvorinov  initial  observations  [8]  have  led  to  the 
discovery of a relationship between cooling duration 
and casting geometry:

t s=k . M 2
(1)

With  ts the  cooling  duration  to  solidify  the  liquid 
metal, k a coefficient dependent on mould conditions 
and alloy composition (for example, see [9] and [10] 
for further details and value determination), and M 
the  geometrical  modulus,  defined  by  the  ratio 
between the volume of the casting and its cooling 
surface. 

Demonstration of  this relationship can be obtained 
by theoretical considerations using the case of plate 
shaped castings. As such, Chvorinov's rule is based 
on  the  hypotheses  of  uniaxial  thermal  diffusion, 
uniformity  of  thermal  diffusion  properties  on  the  
mould surface and  uniformity of initial temperature. 
Further  studies  [11]  have  somewhat  refined  and 
expanded this result  to determine the solidification 
time as:
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t s=k . M n
(2)

with n a corrected exponent comprised between 1·5 
and  2,  that  takes  casting  curvature  (and  thus 
tridimensional thermal diffusion) into account.

Concerning the geometry of thermal diffusion, owing 
to  homogeneous  thermal  properties  at  the  inner 
surface of the mould and uniformity of temperature, 
thermal flux is initially normal to the surface of the 
casting. However, due to the different cooling rates 
existing in the various casting parts, the thermal flux 
direction  changes  with  time.  In  the  framework  of 
Chvorinov's rule, the cooling duration is linked to the 
initial conditions (more precisely, the shape of liquid 
metal before cooling) of the casting, making it a first 
order  (in  time)  model  for  thermal  diffusion. 
Consequently, a consistent hypothesis would be that 
the thermal flux retains its initial orientation, normal  
to the surface.

Properties of elementary Voronoï cells generated 
by the surface of a casting:

We consider a point on the surface of the casting to 
be  designed.  The  corresponding  Voronoï  cell 
generated  by  all  the  other  points  constituting  the 
surface, and further limited by the outer surface of 
the casting, will have the following properties:

 points  inside  the  cell  volume  are  (by 
construction), the nearest to the generating point; 
consequently, points inside the volume of the cell 
are  also  the  nearest  to  the  elementary  outer 
surface (this surface will be called the umbrella of 
the cell) around the generating point

 the convexity of Voronoï cell inner surfaces 
(surfaces  excluding  the  umbrella)  ensures  that 
thermal  flux  normal  to  the  umbrella  does  not 
cross another cell

These  elements  ensure  that  the  thermal  energy 
contained  within  the  elementary  Voronoï  cell  will 
(under the assumption of  a thermal flux normal to 
the initial cooling surface) diffuse exclusively through 
the  cooling  surface  that  is  the  umbrella.  The 
elementary  Voronoï  cell  is  a  meaningful  thermal 
entity  that  could  be  considered  isolated  from  the  
other  cells in  the  framework  of  the  previously 
detailed hypotheses. It is thus possible to define a 
local value of geometrical modulus by calculating the 
ratio between the volume and the umbrella surface 
(cooling  surface)  of  a  Voronoï  cell,  which  is 
generated by the surface of the casting around any 
of its points. While satisfying from a theoretical point 
of  view, this  definition  of  local  modulus  is  of  little 
practical use, as calculations would have to be made 

for an infinite number of points on the surface. It is 
therefore  interesting  to  study  a  discrete 
approximation of this local modulus, using a similar 
construction in order to keep compatible properties. 

Elementary  Voronoï  cell  approximation  using 
Delaunay triangulation of surface:

A  typical  discrete  approximation  of  surfaces  with 
triangular  facets  will  be  used  as  a  basis  for  the 
approximation  of  elementary  Voronoï  cells.  In  that 
case  there  is  a  finite  number  of  vertices  used  to 
generate the cells, with the following properties:

 lateral  facets  are  normal  to  the  vectors 
linking the generating vertex with nearby vertices, 
and  thus  are  normal  to  the  facets  defining  the 
umbrella  of  the  cell.  The  construction  of  the 
discrete  Voronoï  cell  is  compatible  with  the 
hypothesis of a thermal flux always normal to the 
casting surface. 

 the  second  hypothesis,  stating  that  each 
point inside a cell is nearer to the cell  umbrella 
than  any  other  outer  surface,  is  obviously  not 
verified in the case of triangular tessellation of the 
surface.  However, it  is  possible to demonstrate 
the  convergence  of  the  approximation  on  the 
theoretical  elementary cell.  Such  demonstration 
will  be  detailed  in  the  simple  case  of  3 
dimensions infinite plate.

Convergence (3D infinite plate) :

Theorem 1: the Voronoï cell wall defined by a vertex 
and a plane is a paraboloid of revolution 

Due to the rotational symmetry of the problem, we 
first  consider  two  parallel  lines  separated  by  a 
distance of e. A generating vertex G is situated on 
the upper line. Coordinates are given in the natural 
orthogonal coordinate system centered on G (G, x, 
y). The equation of the line (potentially) defining the 
boundary of the Voronoï cell generated by G and a 
given point of the lower line (coordinates (X,-e)) is:

X . x+e . y−
(e2+X2 )

2
=0 ; y∈[−e

2
;0] (3)

The inside surface of the Voronoï cell defined by the 
generating vertex G and each point of the lower line 
can be expressed by the following system:

x≤ min
X ≥ 0

{−e . y
X

+
(e2+X 2)

2. X } (4)
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x ≥max
X ≤ 0

{−e . y
X

+
(e2+X2)

2. X } (5)
Simple  derivations  with  respect  to  X  lead  to  the 
equation of the Voronoï cell boundary:
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Figure 1: Construction of bounds for Voronoï cell surface in 3D case (1- paraboloid delimiting points 
nearer to G than any point of the lower plane, 2-upper bound of Voronoï cell defined by G and its 
nearest neighbours belonging to the mesh A, B, C, A', B' and C', 3- construction of lower bound by 
intersection of the right prism of base U and the paraboloid, 4- prism and lower bound, 5- Voronoï 
cell and its upper and lower bounds, 6- geometrical construction used to determine the distance 
between highest and lowest points of Voronoï cell)



y=
(X 2−e2)

2.e
=0 (6)

which,  considering  the  rotational  symmetry  of  the 
problem, defines a paraboloid of revolution (see Fig. 
1-1).  As  a  side,  but  interesting,  note,  the  volume 
thus enclosed is the smallest possible for a Voronoï  
cell  generated  by  G  and  any  number  of  points  
belonging to the plane. The intersection between the 
paraboloid and a parallel plane going through G is 
the circle of radius e centered on G. 

From this point on, an infinite plate of thickness e is  
considered. Its outer surface consists of two parallel  
planes, each discretized with a density of points per  
surface  unit  of  respectively  nsup and  ninf ,  for  the 
upper  and  lower  plane.  A generating  vertex  G  is  
situated on the upper plane, with an umbrella U (2D  
Voronoï cell defined by G and its nearest neighbours  
on the upper plane) of surface S.

Theorem 2: upper boundary of the distance between 
generating  vertex and lowest  point  of  the  Voronoï 
cell

We consider the generating vertex G and A, B, C its 
three  nearest  non-aligned  vertices  on  the  lower 
plane  (thus  G',  orthogonal  projection  of  G  on  the 
lower plane is located inside the ABC triangle). By 
construction of the Voronoï cell, its lowest point L is 
equidistant from G, A, B and C. 

R=AL=BL=CL=GL (7)

L', orthogonal projection of L on the lower plane, is 
thus the center of the circumscribed circle of  ABC 
triangle:

r=AL'=BL '=CL '=GL' (8)

Simple  considerations  on  ALL'  and  GG'L'  right 
angled triangles (see Fig. 1-6) give :

R2=L L' 2+r2 (9)

and 

R2=(LL'+e)2+G' L '2 (10)

 if L is under the lower plane, or 

R2=(LL'−e )2+G' L '2 (11)

 if L is between upper and lower planes.

Combining equations 9, 10 and 11 gives:

R2=e2

4
+r 2+ 1

4
.( r2−G' L' 2

e )
2

− r2−G' L' 2

2
;

r2 ≥G' L '2 ≥0 (12)

and finally

R≤√ e2

4
+r 2+ r4

4.e2 (13)

giving a higher boundary of the Voronoï cell distance  
between its highest and lowest points.

Theorem  3:  convergence  of  discrete  geometrical 
modulus when discretization length decreases

According to [12]  and [13],  the maximum distance 
between linked vertices in a Delaunay triangulation 
lmax, is related to the vertex density n by:

lmax=O (√ log ⁡(n)
n ) (14)

with a limit of 0 as density increases.

The  area  S  of  the  umbrella  U  around  vertex  G 
decreases when density nsup increases. With a high 
enough vertex density (nsup  > Nsup),  the umbrella  is 
thus included inside the circle of radius e centered 
on G.

By  construction  (G  and  its  neighbours  being 
coplanar),  the  Voronoï  cell  generated  by  G  is 
included  in  the  right  prism  of  base  U.  A  lower 
boundary of the cell volume can then be obtained by 
the  intersection  of  the  prism  with  the  paraboloid 
defined in Theorem 1 (as visible in Fig.1 -3). When 
nsup > Nsup, the boundary volume can be separated in 
two  parts:  first,  the  volume  where  the  prism  is 
completely included in the paraboloid; then, the rest. 
Only the former will be considered for the definition 
of  the lower boundary of  the Voronoï  cell  volume. 
Considering  lmax(U)  the  upper  boundary  of  the 
distance between G and any point belonging to U, 
and using equation 6, the height h of the included 
prism is given by:

h=
e
2
−

lmax(U )
2.e

(15)
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On the other hand, the volume of  the cell  can be 
easily upper bound by the product of the umbrella 
surface by the maximum height of the Voronoï cell 
as defined in theorem 2. These elements lead to the 
upper and lower bounds of the Voronoï cell volume 
(see Fig. 1-2 for the upper boundary, Fig.1-4 for the 
lower  one,  and  Fig.1-5  for  the  cell  constructed 
between its boundaries). 

S .( e
2
−

lmax (U )
2.e )≤V cell ≤S .√ e2

4
+r2+ r 4

4.e2 ;

r ≤ lmax (inf )=O(√ log (n inf )
ninf

)
lmax (U )=O(√ log (nsup )

nsup
) (16)

S .( e
2
−O (√ log (nsup )

nsup
))≤V cell

V cell ≤ S .√ e2

4
+O (√ log (ninf )

ninf
) (17)

thus  providing  upper  and  lower  bounds  for  the  
geometrical  modulus  of  the  cell,  and  proving  its  
convergence  when  both  upper  and  lower  planes  
vertices density increases :

e
2
−O(√ log (nsup)

nsup
)≤M cell ≤√ e

2

4
+O(√ log (n inf )

ni nf
)

(18)
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Figure 2: Principle of computations for non-convex Voronoï cells



Numerical implementation details:

The input file uses the .stl  ASCII format: triangular 
facets  are  defined  by  the  coordinates  of  three 
vertices  and  a  normal  unit  vector,  indicating  the 
outside of the solid. This choice was made in order 
to  have  a  widespread  and  simple  to  handle  input 
format.

The core of the Voronoï cells  calculations is done 
using the Voro++ C++ library [14]. According to [15], 
this  library  allows  simple  and  rather  quick 
computations, the main limitation being its inability to 
handle concavities in Voronoï cells. 

Summary  overview  of  Voro++  computation 
scheme [15]:

For each vertex, the to-be calculated Voronoï cell is 
first initialized as a global parallelepipedic container. 
Series of walls (planes) are then applied sequentially 
to  the  cell,  cutting  it  and  removing  parts  of  its 
volume. Walls can have two differing origins:

 perpendicular  bisector  planes  between  the 
current  vertex  and  its  neighbours,  that 
correspond to the standard definition of a Voronoï 
cell. These planes will be named inner walls.

 planes that  approximate  the  outer  shell  of 
the solid studied. In the case of a surface that is 
already tessellated, such as stl files, there is no 
error risk between Voronoï calculations and initial 
data. These planes will be defined as outer walls.

As a side note, the incremental use of walls in this 
algorithm  accounts  for  the  impossibility  of  non-
convex cells. More precisely : the outside of purely 
convex Voronoï  cells  is  defined,  unequivocally, by 
the union in the mathematical sense of all outer half-
spaces (area of space that is on the outer side of a 
wall)  –  see  first  line  of  Fig.  2.  The  case  of  non-
convex cells  is  more complex,  as concavity exists 
only  locally.  Outer  half-spaces  should  be  divided 
between those linked to planes delimiting a convex 
solid  (convex  outer  half-spaces)  and  those  that 
locally  define  a  concavity  (concave  outer  half-
spaces); the outside of the Voronoï cell is then the 
union of all  convex outer half-spaces with all  local 
intersections of concave outer half-spaces. As such, 
the  definition  of  local  concavities  requires  to 
simultaneously cut the initial solid by more than one 
wall or plane (see second line of Fig. 2), which is not 
possible  in  the  Voro++  framework.  This  problem 
could be solved by a decomposition of the solid in 

convex parts.  However, according to existing work 
[16],  there  is  no  simple  way  to  implement  this 
decomposition  in  the  general  case  of  an  arbitrary 
geometry.

A workaround, however, has been devised, owing to 
several facts: 

 Voronoï  cells  defined  only  by  interaction 
between  points  (without  any  outer  wall)  are 
always  convex  (general  property  of  Voronoï 
cells). Concavity can thus only happen on parts 
of the cell defined by the umbrella.

 The tessellation of the outer surface means 
that vertices are always part of the surface.

 The  tessellation  of  the  outer  surface  with 
triangles  leads  to  an  interesting  property:  all 
concavities (which always exist as edges of the 
mesh  in  this  case)  are  in  direct  contact  with 
vertices.

With  these  conditions,  it  is  possible  to  simply 
compute non-convex cells by following a two-steps 
procedure: first,  determining an  enveloping convex 
cell,  defined by the inner  walls  and the maximum 
subset  of  outer  walls  that  defines  a  convex outer 
surface; then determining the complimentary convex 
cell, defined  by the inner  walls  and  the subset  of 
outer  walls  that  defines  a  concave  outer  surface,  
with inverted normals (see last line Fig. 2). Each of 
the  enveloping  and  complimentary  cell  is  convex, 
and can thus be directly computed by Voro++ library. 
The final non convex Voronoï cell (limited by the full 
complement of outer walls) is then easily obtained 
as  the  difference  between  the  enveloping  and 
complimentary cells (see Fig. 3).

Detailed  steps  of  the  geometrical  modulus  
computation (summarized in Fig. 4 :

- Pre-treatment of stl file:

For each vertex, the facets comprising its umbrella 
are separated into two categories: “concave” facets 
and “convex” facets. For each facet of the umbrella, 
the position of all other vertex belonging to the same 
umbrella relative to the exterior normal of the facet is 
tested; if all points are “below” the facet plane, the 
facet will be considered convex; if at least one point 
is  “above”  the  plane,  the  facet  is  considered 
concave,  relatively  to  the  current  vertex  (a  given 
facet belongs to three different umbrellas, and can 
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thus be categorized as convex relatively to some of 
of them, while being considered concave relatively 
to the others).

A list is then created, that contains the coordinates 
of  the  vertex  at  the  origin  of  the  umbrella,  the 
coordinates of the normal to one facet belonging to 
the  umbrella,  and  an  indicator  of  the  concavity 
associated with this facet as part of this umbrella.

- The vertices and facets (walls) list is applied to the 
Voro++ computation scheme twice: first, only taking 
“convex”  facets  for  each vertex into  account  (thus 
generating  enveloping  convex  cells  of  the  real 
Voronoï cells); the second time, all facets are used 
in  the  calculation,  but  the  normals  of  “concave” 
facets  are  inverted  (leading  to  the  complementary 
cells to the real ones). 

Each  Voronoï  calculation  generates  two  different 
outputs : a list of cells with their associated volumes, 
and  a  list  of  cells  with  their  associated  facets 
surfaces. The surfaces (polygons), are identified by 
a  relative  integer  each,  with  the  polygons 
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Figure 3: Example of 3D Voronoï non convex 
cell  (left),  with  complimentary  cell  (right). 
Cooling surface (umbrella) is visible in green.

Figure 4: Steps of geometrical modulus computation algorithm



corresponding  to  contacts  between  cells  having 
positive  identifiers,  and  the  outer  walls  (cooling 
surfaces) being identified by negative values.

- Post-treatment: for each cell, the results of the two 
computations are combined,  in  order  to determine 
both its volume and cooling surface.

Cell  volume  is  easily  obtained  by  the  difference 
between  the  volumes  of  enveloping  cell  and 
complimentary cell:

V voronoi=V convex−V concave (19)

Cooling  surface,  however,  is  more  difficult  to 
calculate, as it requires identifying common surfaces 
from enveloping and complimentary cells:

S voronoi=(Sconvex∪Sconcave)/(Sconvex ∩Sconcave)
(20)

First, the global cooling surface is initialized as the 
sum of  cooling surfaces of  the enveloping convex 
cell.  A  comparison  of  cooling  surfaces  between 
enveloping and complimentary cells is then carried 
out; if a cooling surface belongs to both computed 
cells, it is subtracted from the global surface value; 
in the other case, it is added to the global surface 
value. 

Voronoï  cell  geometrical  modulus is  then deduced 
by  a  simple  ratio  between  the  two  previously 
computed  values.  Results  are  exported  in  simple 
text  file  containing  the  coordinates  of  each 
generating  vertex,  with  the  associated  modulus. 
Visualization of modulus mapping can then easily be 
carried out using point cloud analysis software.

This algorithm presents some important limitations:

 The vertex that  generates a given Voronoï 
cell  is  not  always  at  the  gravity  center  of  its 
umbrella,  especially  in  the case of  an irregular 
mesh or modulus gradient. This can lead to small 
errors  if  the  computed  geometrical  modulus  is 
considered  a  property  of  the  generating  vertex 
alone. A proper view would be to associate the 
modulus  value  of  a  Voronoï  cell  to  its  whole 
umbrella, rather than to its generating vertex. As 
a direct consequence, accurate modulus gradient  
determination  on  the  surface  of  the  mesh  
necessitates additional calculations.

 An  excessively fine meshing of the surface 
can lead to  considerable errors in  the modulus 
value.  This  is  due to the fixed precision of  the 

computations,  which  becomes  proportionately 
more  important  when  the  cooling  surface  and 
volume of the Voronoï cell decrease.

Experimental results and interpretations:

Elementary shapes

A few basic geometric shapes have been tested, as 
a means to  evaluate the effective accuracy of  the 
algorithm in simple situations: homogeneously thick 
plates, cylinders and wedges.

In order to assess the precision of the algorithm in 
the case of uniform cooling, the program was run on 
simple  parallelepiped  20x20x2  mm  plates,  with 
discretization lengths ranging from 0·5 mm to 2 mm 
(by 0·1 mm steps), 2·5 mm and 3 mm. Neglecting 
the increased cooling near the edges, the theoretical 
value of  geometrical  modulus in  the center  of  the 
plate (more than 1 mm from the edges) should be 
M=1 mm. Calculations give the right value, with no 
dispersion  (standard  deviation  is  0).  This  “perfect” 
result, however, can be explained by the tessellation 
of the shape: since the two largest faces of the plate 
are  symmetric,  their  triangular  tessellations  are 
perfectly identical,  and their vertices superimposed 
when  looking  from  a  normal  direction.  All  the 
calculated Voronoï cells are then limited by the plane 
separating the plate in the middle.

A way to avoid this effect is to use truncated right 
circular cones (frustums) instead of plates: since the 
tessellation  is  generated  from  the  edges  of  the 
shape, varying apertures induce small variations in 
discretization  lengths,  which  create  shifts  of  the 
vertices  between  the  two  opposite  faces.  The 
dimensions of the frustums (thickness 2 mm) studied 
are summarized in Table 1, along with the effective 
discretization lengths (calculated as the square root 
of  the  ratio  between  surface  area  and  number  of 
vertices)  for  each  face.  The  following  general 
observations can be carried out on the results:

 The  maximum  error  of  calculated 
geometrical  modulus in each of the frustums is 
very small: less than 1% in all cases (see Fig. 5). 
This value is far less than the traditional modulus 
threshold  of  20% used to  determine  significant 
cooling  difference  in  a  part  (equivalent  to  50% 
more  or  less  cooling  time,  standard  definition 
commonly used in traditional foundry).
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 Modulus repartition (taking into account the 
two  opposing  faces)  is  centered  on  the 
theoretical modulus, with a predominance of the 
most extreme values (see Fig. 5).

 The series of tests with large frustum face 
radius  ranging  from  5  to  5·9  mm  shows 
increasing  (resp.  decreasing)  maximum  (resp. 
minimum) values  as  the  radius  increases.  This 
effect  can  be  explained  by  a  progressive 
misalignment  of  vertices  on  the  two  opposing 
faces: when the radius is 5 mm, the meshes are 
perfectly  symmetric  (as  in  the  parallelepiped 
shape),  and computations yield  only  theoretical 
modulus  value;  as  the  radius  is  increased, 
vertices drift farther away, leading to errors. This 
explanation  is  further  confirmed  by  the  non-
random  nature  of  modulus  repartition  on  the 
faces when observed with a dilated color scale, in 
order  to evidence small  variations (see Fig.  6), 
which follows the pattern of mismatched meshes. 

 For a given frustum shape, an increase of 
the discretization length from 0,5 mm to 0·7 mm 
leads to more extreme values of  the computed 
geometrical  modulus.  This  result  seems  in 
agreement  with  the  convergence  of  calculated 

modulus  with  diminishing  discretization  length. 
However,  the  former  observations  concerning 
vertices  alignment  cast  some  doubt  about  the 
validity  of  this  experimental  confirmation,  as  it 
cannot  be  carried  out  for  every  mesh 
configuration imaginable.
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Figure 5: Geometrical modulus M distribution for varying large face radius frustums (discretization 
length 0·5 mm) 

Figure  6:  Geometrical  modulus repartition on 
the face of a frustum (discretization length 0·5 
mm – small radius 5 mm – large radius 5·5 mm)



As a summary of geometrical modulus computations 
on plate-like  shapes,  two  main characteristics  can 
be evidenced :  first,  a  good agreement (less than 
1%)  of  the  calculated  modulus  with  its  theoretical  
value (result to be taken cautiously due to the other 
characteristic  described  below);  second,  the 
foremost importance of vertices positions (especially 
alignment), which is  difficult to control during mesh  
generation,  and  can  completely  conceal  all  other  
effects in  the  framework  a  finite  number  of 
experimental tests.

Cylinder shape was used to study the effect of a 
constant  surface  curvature  combined  with  a  set 
geometrical modulus. Cylinder radius is 2 mm, and 
its length is 10 mm. The area of interest is located at 
a distance of at least 2 mm from extremities, in order 
to avoid the increased cooling at boundaries. With 
these parameters, the cylinder part studied can be 
considered equivalent to a section of an infinite, 2 
mm  radius,  cylinder,  leading  to  an  homogeneous 
theoretical modulus of 1 mm (half of cylinder radius). 
Varying  discretization  lengths  were  used,  ranging 
from  0·2  mm  to  1·5  mm.  Main  results  are 
summarized in Fig. 7, and further discussed below:

 The  average  geometrical  modulus  values 
are  near  the  theoretical  value,  with  increasing 
accuracy  when discretization  length  decreases. 
Furthermore,  the  average  geometrical  modulus 
decreases  with  increasing  discretization  length. 
These  effects  are  the  result  of  two  different 
phenomena:  first,  the  shape tessellation,  which 
means that the geometry analyzed is not exactly 
that of a cylinder; second, the errors associated 
with  the  geometrical  modulus  calculations 
through  Voronoï  cells.  In  order  to  isolate  the 
consequences  of  each  phenomenon,  the 
discretized cylinders “global” theoretical modulus 
was estimated by the ratio of their  true volume 
and surface (not taking the extreme closing disks 

into account). The word “global” here refers to the 
value of geometrical modulus if  it  was perfectly 
uniform  in  the  geometry  studied.  Comparison 
between  the  global  modulus  and  its  average 
computed  value  (Fig.  7)  shows  that  their 
evolutions  with  discretization  length  are  similar 
(decreasing), but slightly less pronounced in the 
case of the global module (difference is less than 
1·5%).  This  difference  is  probably  due  to  an 
inadequate comparison, as the averaging of local 
module values does not take the weight (volume) 
of each Voronoï cell into account.

 The extreme values of geometrical modulus 
seen in the cylinder for each discretization length 
are less than 12% away from the average value. 
This  means  that  the  results  accuracy  is  high 
enough  to  distinguish  geometric  entities  with 
homogeneous cooling, as these can be defined 
by  a  continuous  volume  where  the  modulus 
shows less than 20% variations.

 Extreme  modulus  values  evolution  do  not 
seem to correlate at all with discretization length. 
However,  the  vertices  presenting  extreme 
(whether high or low) modulus values are located 
in areas of the cylinder with a change of vertices 
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Figure  7:  Geometrical  modulus  evolution  with 
discretization length for cylinder shape (extreme, 
average and global values)

Figure  8: Link between geometrical modulus 
errors  and  mesh  irregularity;  center:  high 
modulus  errors  with  highly  irregular  mesh, 
right side: homogeneous modulus on regular 
mesh  (2  mm  radius  cylinder  -  0·3  mm 
discretization length) 



density,  as  visible  in  central  part  of   Fig  8. 
Furthermore, high regularity of the mesh (visible 
by simple observation) correlates well with very 
low  standard  deviation  and  limited  extreme 
values of the modulus, as seen in the case of 0·4 
mm discretization length (see right part of  Fig. 
8).  As  a  conclusion,  and  for  cylinder  shapes,  
mesh regularity is a first order factor controlling  
the  accuracy  of  geometrical  modulus  
computations, with discretization length being a  
second  order  parameter  that  determines  the  
maximum potential amplitude for these errors, as 
is the case with plate shapes. Due to these two 
main effects, no influence of curvature has been 
evidenced.  Another  interesting  consequence  is 
that  discretization  errors  on  the  shape (1·5% 
maximum  difference  between  global  and 
theoretical modulus)  are negligible compared to 
local effect of mesh irregularities (1.5% to 10.5% 
difference between global and extreme modulus 
values).

Lastly, a  wedge shape was the obvious choice to 
study the effect of geometrical modulus gradient. In 
order to increase the number of vertices analyzed by 
using symmetries, computations were carried out on 
a triangular right prism of height 10 mm. Its base 
is an isosceles triangle with 10° angles and a third 
side of length 20 mm. Discretization lengths of 0·5, 
0·6,  0·7  and  1  mm  were  used.  With  this  simple 
geometry,  theoretical  geometrical  modulus  can 
easily be expressed as a function of the distance x 
to the edge of angle α (not taking into account other 
edge effects, as is the case for an infinite wedge):

M ( x )=x . tan (α
2 ) ⁡ (21)

Increased cooling near the other edges is neglected, 
by not taking the vertices located nearer than 2 mm 
from  these  edges  into  account  for  the  following 
results:

 First,  for  a  set  discretization  length,  a 
decrease  of  the  geometrical  modulus  (which 
corresponds  to  a  lower  distance  to  the  angle 
edge)  leads  to  an  increase  of  the  maximum 
relative  error  of  the  computation  (see  Fig.  9). 
Experimental  errors  show  an  exponential 
evolution  when  the  modulus  decreases.  As  a 
consequence, it  should be possible  to define a 
minimum  modulus  below  which  the  error 
becomes significant  in a foundry context  (more 
than  20%  error).  However,  this  experimental 
threshold  shows  no  direct  correlation  with 
discretization  length,  and  cannot  be  used  to 
define  an  upper  boundary  for  discretization  in 
order to limit errors.

 On the other hand, for a given geometrical 
modulus,  the  maximum error  on  the  computed 
value  shows  no  obvious  correlation  with 
discretization  length.  This  observation  seems 
contradictory  with  a  convergence  of  the 
calculated  values  with  decreasing  discretization 
lengths  (synonymous  to  increasing  vertices 
density).  However,  a  local  comparison  of  high 
and low error  Voronoï  cells  yields the following 
results  :  low  error  cells  correspond  to  aligned 
vertices  on  the  planes  constituting  the  wedge, 
whereas  high  error  cells  are  located  where 
meshes of the planes are dissimilar (see Fig. 10). 
In a way similar to the plate shape, the potential 
maximum  error  value  for  a  given  modulus  is 
indeed  determined  by  discretization  length,  but 
the degree to which this potential is realized in a 
given casting shape depends solely on vertices 
alignment

 Finally,  errors  appearing  in  low  thickness 
locations can be especially high due to another 
effect, linked to the algorithm used. As visible in 
Fig.  11 [Figure  11 near  here],  which  shows  a 
representation  of  the  Voronoï  cells  constituting 
the  shape,  some  cells  near  the  edge  are  
elongating far  outside of  the solid  volume (out-
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Figure 9: Relative error of computed geometrical 
modulus  as  a  function  of  theoretical  modulus 
(discretization length of 0·5 mm)

Figure  10:  Correlation  between  high 
geometrical  modulus  error  and  meshes 
misalignment  on  a  prism  shape  (0·6  mm 
discretization length) - view from above



stepping  cells),  leading  to  very  overestimated  
modulus  values.  As  the  computation  scheme 
applies only outer walls on the cell on the side of 
its  umbrella,  an  insufficiently  fine  mesh  on  the 
opposite side can lead to this overstepping. This 
effect can only be avoided with certainty for all 
discretization lengths by applying each outer wall 
to  every  Voronoï  cell,  with  a  corresponding 
increase in computation time, and an inability to 
process non-convex shapes.

Analysis of complex (industrial) part:

The shape studied is a connector between 2 tubes 
with one flat flange as seen in Fig. 12. These tubes 
have 20 mm outer radiuses, with one having 10 mm 
inner  radius,  and  the  other  15  mm.  Simple 
geometrical  considerations  give  the  theoretical 
values for  isolated tubes  geometrical  moduli:  M=5 

mm  and  M=2·5  mm.  Due  to  shape  complexity, 
geometrical modulus at the junction cannot be easily 
evaluated.  Discretization  of  the  solid  surface  has 
been carried out,  with a maximum length of  λ=2·5 
mm,  leading  to  a  mesh  containing  about  3600 
vertices,  which  was  subsequently  exported  to  .stl 
format.  Total  computation  time  for  geometrical 
modulus  calculations  of  this  file  was  26  seconds. 
This  duration  is  probably  far  longer  than  an 
optimized program would take, as the version of the 
algorithm used generates several intermediate (and 
unnecessary)  files  for  control  and  study  purpose. 
The modulus mapping obtained is shown in Fig. 13. 
The following observations can be carried out:

 rapidly cooling areas (edges of  the shape) 
can  easily  be  identified,  contrary  to  traditional 
approach,  where  they  are  considered  part  of 
larger geometrical entities.

 modulus  values  computed  far  from  the 
junction  are  more  precise  than  given  by  the 
traditional  approach.  The  Voronoï  cells  method 
automatically  takes  the  curvature  into  account, 
leading  to  differing  modulus  values  inside  and 
outside of hollow cylinders. For example, instead 
of a global value of 2·5 mm for a whole cylinder, 
the surface should have a theoretical modulus of 
2·3  mm  outside  and  2·8  mm  inside,  which 
corresponds to experimental results (2·2 and 3·1 
mm respectively).

 the modulus inside the thicker tube is less 
homogeneous  than  in  other  parts  of  the 
connector,  which  locally  hides  the  curvatures 
effect;  the  variations,  however, are  under  10%, 
which  corresponds  roughly  to  the  shape 
approximation of a 10 mm curvature with a 2·5 
mm  discretization  length.  As  such,  a  smaller 
discretization  length  can  easily  improve 
homogeneity and accuracy.

For  comparison  purpose,  the  same  (discretized) 
shape was analyzed using finite  elements method 
(using  Elmer  FEM  solver),  as  well  as  its 
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Figure 11: Example of out-stepping computed 
Voronoï  cell  centered  on  high  geometrical 
modulus error vertices in a prism shape (0·6 
mm discretization length)

Figure  12:  Connector part  draft  (dimensions in 
meters)

Figure 13: Modulus mapping of connector part



corresponding  green-sand  mold,  with  the  starting 
hypothesis  of  liquid  filled  mold  (simple  cooling). 
Physical  parameters  used  for  the  simulation  are 
those of AlSi12 alloy, given in Table 2 [Table 2 near 
here],  and have  been obtained  from the  following 
papers:  [17  -  20].  Simulated  cooling  duration  was 
60s,  to  ensure  solidification  of  the  whole  part 
(computation  time is  8660s for  281000 elements). 
The main obstacle for comparisons is the difference 
in results types between the two methods: Voronoï 
cell approach gives an indicator of the time needed 
to  solidify  a  volume  cell  (last  point  of  the  cell 
solidified),  while  FEM  simulations  gives  local 
temperature  evolution  at  vertices.  In  order  to 
express these differing results in a comparable way, 
vertices data had to be converted to cell data.  This 
was  done  by  linking  each  vertex  to  the 
corresponding  Voronoï  cell,  then  considering  the 
solidification  time  for  the  cell  as  the  highest 
solidification time of vertices it contains. These data 
were then converted to geometrical modulus values 
using equation 1, with parameters carefully chosen 
to obtain a range of values comparable with Voronoï 
computation  results  (see  Fig.  14).  The  main 
comparison results are following:

  Post-treated FEM data show many aberrant 
points, as visible on Fig. 14-2. Such phenomenon 
seems more pronounced in thin components of 
the  part.  This  effect  is  closely  linked  to  the 
conversion from vertex data to cell data, as each 
cell  contains  an  average  of  only  3  vertices, 
leading to errors in estimated solidification time 
by FEM (some cells have no vertex to estimate 
cooling duration, and others have vertices at non 
representative  locations).  Statistically,  these 
errors are more probable in thinner areas, as the 
vertices density is constant throughout the part, 
and could  be limited by the use of  a  very fine 
FEM mesh.

 Theoretical Voronoï cells cooling difference 
between the inside and outside of tubes was not 
easily evidenced in simulation results (Fig. 14-2) 
contrary to Voronoï approach (Fig. 14-1), which is 
most  likely  a  consequence  of  the  relatively 
coarse volume meshing (a few elements in the 
thickness of the part). However, an asymmetry of 
temperature  distribution  in  tube  thickness  is 
visible  in  raw FEM temperature  data  (see  Fig. 
15), hinting that this effect indeed exists, but with 
a  lesser  magnitude  than  calculated  by  Voronoï 
cells  approach.  The  difference  can  easily  be 
explained by the first  order diffusion hypothesis 
used  in  the  Voronoï  method,  compared  to 
reevaluated diffusion direction at each simulation 
step.

 Taking  the  preceding  restrictions  into 
account,  Voronoï  method  seems  to  lead  to 
geometrical  modulus  values  comparable  to 
estimations  resulting  from  FEM  computations. 
For macroscopic components of the casting (thin 
tube is  around 0.25 mm, and thick tube has a 
mean modulus of  0.5 mm for both internal  and 
external faces, with a small asymmetry) , these 
results  show  the  determination  of  the  same 
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Figure  14: Comparison of geometrical modulus 
mapping obtained by  (1)  Voronoï  cells  method 
and  (2)  post-treated  FEM  simulation  data,  for 
connector part

Figure  15:  Temperature  distribution  in  the 
thickness of tubular area from connector part



cooling  sequence  in  the  part  using  the  two 
methods.

As a summary, the algorithm used to compute local 
geometrical  modulus  is  far  quicker  than  both 
traditional  calculations  and  finite  elements 
simulations. Its accuracy and data requirements are 
intermediate  to  the  two  other  methods,  with  an 
increased precision in space compared to traditional 
approach, and lower accuracy (due to the simplified 
diffusion hypothesis involved) than in simulations.

Conclusions:

A local definition for geometrical modulus has been 
devised,  based  on  the  concept  of  Voronoï  cells 
around a point  of  the surface of  the casting,  with 
properties in agreement with both pre-existing global 
expression  of  the  modulus  and  initial  (first  order) 
thermal  diffusion.  Accurate  approximations  of 
continuous  modulus  mapping  can  be  obtained  by 
using discrete Voronoï cells constructions, centered 
on  the  vertices  of  a  meshing  of  the  casting 
(convergence is demonstrated in the case of plate 
shapes). 

Numerical implementation of this concept has been 
achieved,  using  the  Voro++  library  as  a  basis  for 
Voronoï cells computations, with some modifications 
to  take  non-convex  geometries  into  account.  The 
resulting  program  is  very  quick  in  comparison  to 
numerical  simulations  (the  complete  process  is 
about a few minutes in high density meshes), and 
takes standard .stl  files  as input,  the output  being 
simple text files containing vertices coordinates and 
their associated modulus.

Experimental  computation tests  have been carried 
out on simple shapes (plates, cylinders and wedges) 
to evidence the effects of various properties (mesh 
density,  modulus  gradients,  curvatures)  on  the 
computed modulus accuracy. Results have instead 
shown  the  primary  importance  of  mesh 
characteristics,  to  the  point  that  other  effects  are 
completely concealed by it:

 mesh  size  /  local  modulus  ratio  sets  the 
maximum possible amplitude for modulus errors 

 the  exact  error  (within  these  boundaries) 
happening  on  a  given  vertex  is  linked  to  local 
mesh  configuration,  such  as  mesh  size 
discontinuity,  or  vertices  misalignment  on 
opposing faces 

These  elements  give  some  clues  to  optimize  the 
meshing of the casting shape:

 mesh  size  must  be  fine  enough  both  to 
approximate accurately the shape of the casting, 
and  to  set  an  upper  boundary  for  systematic 
errors in the geometrical modulus computations.

 a finer mesh size is needed in finer areas of 
the casting (which have a low modulus) to avoid 
proportionately  larger  errors.  Experimental 
observations (not supported by theoretical work) 
seem to show that a discretization length of the 
mesh less than the underlying modulus value is 
enough to obtain an accurate modulus (less than 
20% error) in a foundry context.

 mesh  density  variations  should  be 
progressive, in order to avoid errors linked with 
mesh size discontinuity.

Finally, comparison of this new approach with finite 
element  simulation  on  a  complex  shape  revealed 
that,  although  less  precise  than  numerical 
simulations  (due  to  the  unidirectional  thermal 
diffusion  hypothesis  inherent  in  the  definition  of 
geometrical  modulus),  the Voronoï  cells  method is 
both  less  demanding  in  physical  data,  and 
considerably  quicker  (around 300 times).  As such, 
this  approach  does  not  constitute  a  suitable 
replacement  for  simulation,  but  instead  would 
combine  well  with  it,  by  using  first  several  fast 
computation /  casting designing cycles to optimize 
and refine casting shape (risers locations and sizes 
for  example)  and  process,  then  using  numerical 
simulation only once on the final shape to predict the 
part properties (grain size for example).
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Tables :

Table 1: Summary of parameters studied on the frustum shape

Small face 
radius (x10-3m)

Large face radius 
(x10-3m)

Nominal 
discretization 

length (x10-3m)

Effective mean 
discretization length 
(x10-3m – small face)

Effective 
mean 

discretization 
length (x10-

3m – large 
face)

5 5 0,5 0,48 0,48

5 5 0,7 1,044 1,044

5 5,1 0,5 0,48 0,499

5 5,1 0,7 1,044 1,073

5 5,2 0,5 0,48 0,516

5 5,2 0,7 1,044 1,126

5 5,3 0,5 0,48 0,538

5 5,3 0,7 1,044 1,147

5 5,4 0,5 0,48 0,556

5 5,4 0,7 1,044 1,196

5 5,5 0,5 0,48 0,574

5 5,6 0,5 0,48 0,597

5 5,7 0,5 0,48 0,617

5 5,8 0,5 0,48 0,642

5 5,9 0,5 0,48 0,659

5 10 0,5 0,48 0,3187
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Table 2: Materials parameters and boundaries conditions used for finite elements simulation of connector 
part

AlSi12 Green sand mold

Density (kg.m-3) 2820 1500

Heat capacity (J.kg-1.K-1) 970 450

Conductivity (W.m-1.K-1) 130 0,53

Initial temperature (K) 900 293

Metal / sand heat transfer 
coefficient (W.m-2.K-1)

1

Overheating (K) 50 (900 K)
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