
HAL Id: hal-01509832
https://hal.science/hal-01509832v1

Submitted on 18 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric modeling: consistency preservation using
two-layered variable substitutions (extended version)

Thomas Bellet, Agnès Arnould, Hakim Belhaouari, Pascale Le Gall

To cite this version:
Thomas Bellet, Agnès Arnould, Hakim Belhaouari, Pascale Le Gall. Geometric modeling: consistency
preservation using two-layered variable substitutions (extended version). [Research Report] Xlim UMR
CNRS 7252; CentraleSupélec, Université Paris-Saclay. 2017. �hal-01509832�

https://hal.science/hal-01509832v1
https://hal.archives-ouvertes.fr

Geometric modeling: consistency preservation
using two-layered variable substitutions

(extended version)

Thomas Bellet1, Agnès Arnould2, Hakim Belhaouari2, and Pascale Le Gall1

1 MICS, CentraleSupélec, University of Paris-Saclay, France
2 XLIM UMR CNRS 7252, University of Poitiers, France

Abstract. In the context of topology-based geometric modeling, opera-
tions transform objects regarding both their topological structure (i.e. cell
subdivision: vertex, edge, face, etc.) and their embeddings (i.e. relevant
data: vertex positions, face colors, volume densities, etc.). Graph trans-
formations with variables allow us to generically handle those operations.
We use two types of variables: orbit variables to abstract topological
cells and node variables to abstract embedding data. We show how these
variables can be simultaneously used, and we provide syntactic conditions
on rules to ensure that they preserve object consistency. This rule-based
approach is the cornerstone of Jerboa, a tool that allows a fast and safe
prototyping of geometric modelers.

Keywords: DPO graph transformations, labeled graphs, graph variables,
topology-based geometric modeling, consistency preservation.

1 Introduction

Context. Geometric modeling concerns mathematical models useful to create,
manipulate, modify or display realistic n-dimensional (nD) objects in numerous
application domains such as computer-aided design and manufacturing, mechan-
ical engineering, architecture, geology, archaeology, medical image processing,
scientific visualization, animated movies or video games. Many modeling tools
are therefore developed at expensive costs to fulfill the various application needs.
In order to facilitate the prototyping of new modelers, we developed a tool set
for designing and generating safe geometric modeler kernels, called Jerboa3 [1].

The Jerboa tool set. Objects are specified as generalized maps (G-maps) [6] which
allow uniform modeling of complex nD objects (e.g. 2D surfaces, 3D volumes) by
regular graphs. Their topological structure (i.e. cell subdivision) is encoded by
the graph structure and the arc labels, while their embeddings (i.e. geometric or
applicative data) are given by the node labels. Their consistency is guaranteed
thanks to G-map labeling constraints. Designing a modeler therefore starts by
specifying the dimension and the embeddings of manipulated objects (e.g. 3D

3 http://xlim-sic.labo.univ-poitiers.fr/jerboa/

(a) Modeler editor (b) Generated modeler

Fig. 1. Design and application of the face triangulation with Jerboa

objects with vertex positions and face colors in Fig. 1). Modeling operations are
then defined as graph transformation rules, using two types of dedicated variables:
orbit variables [18] and node variables [3] which respectively abstract topological
structures (e.g. in order to subdivide a face whatever its number of vertices)
and embeddings (e.g. in order to compute the barycenter of a face whatever its
vertices’ positions). The rule editor (see Fig. 1(a)) includes a syntactic analyzer
which guides the user while ensuring consistency. Once designed, a modeler can
be generated and used right away with the provided generic viewer (see Fig. 1(b))
or integrated into larger tools. End-users of this modeler are not required to
understand the rule language as they only pick and apply operations interactively.

Building consistent objects. Jerboa’s rule language relies on two key aspects: the
instantiation of variables and the syntactic conditions of consistency preservation
(i.e. conditions on rules that preserve G-map labeling constraints). As long as
only one variable type is concerned, these aspects have been proved well-founded.
Purely topological operations defined with the sole use of orbit variables (e.g.
unsew a vertex, sew two faces, etc.) have been discussed in [18, 4], whereas
geometric operations defined with the sole use of node variables (e.g translate a
vertex, swap two face colors, etc.) have been discussed in [2, 3]. Therefore, the
previous limitation of Jerboa regarded the simultaneous use of both variable types
which come with different instantiation mechanisms and syntactic conditions,
making them hard to use together.

Contribution. Following the general approach of DPO graph transformations with
variables defined in [10], we propose a two-layered instantiation of variables. Orbit
variables are first substituted by cells of the object, thus automatically duplicating
the node variables. These can then be substituted if a match morphism exists,
thus leading to a classical DPO application of the instantiated rule. To ensure
that transformed objects are consistent, we extend the syntactic conditions on
rules separetely defined for each variable type to rules with both variable types.

Related work. Formal rule languages are already commonly used in the context of
geometric modeling. In particular, L-systems are particularly useful to procedu-
rally model regular objects such as plants or buildings [5, 14]. However, they are

2

inadequate to design a generic geometric modeler since every new rule requires
dedicated implementation efforts. Conversely, graph transformation rules are
self-contained and can be applied with a single rule application engine (for a given
transformation class). Moreover, they have already been enriched with several
variable types with various genericity purposes (e.g. label computations [12],
labeling constraints [15, 16], structural transformations [11, 9]), which facilitated
the definition of variables dedicated to geometric modeling. At last, let us point
out that despite the existence of many efficient generic tools (i.e. GrGen.NET,
Groove, AGG, etc.) [17, 13], we favored the development of a dedicated tool [1]
for performance issues. Indeed, as any geometric modeler, modelers designed
with the help of Jerboa have to interactively handle objects that can be over a
million nodes large, whereas the mentioned tools only allow few thousand nodes.

Paper organization. Section 2 presents G-maps [6] and conditions under which
rules without variable define consistent transformations. Section 3 presents
orbit variables and node variables and their respective conditions of consistency
preservation. In Section 4, we introduce a dedicated two-layered instantiation
process to simultaneously use both variable types and we provide new conditions
for consistency preservation.

2 G-maps and their transformations

2.1 G-maps

The topological model of G-maps [6] can be directly encoded with labeled graphs:
the topological structure is defined by both the graph itself and the arc labels,
while the embedding is defined by node labels. To handle multiple embeddings
(e.g. vertex positions and face colors in Fig. 2(a)), we defined in [2] the category of
Π-graphs (with Π a finite set of node labels) as an extension of partially labeled
graphs [8], in which nodes have |Π| labels.

In the sequel, n ∈ N will denote the dimension of considered objects and τ
will denote a generic data type name with bτc its set of typed values.

Π-graph. For Π = (π :→ τ) a family of typed names, a Π-graph G =
(V,E, s, t, (π)π∈Π , α) consists in a set E of arcs, two functions source s : E → V
and target t : E → V , a family of partial functions4 (π : V → bτc)π∈Π that label
nodes and a partial function α : E → [0, n] that labels arcs.

All examples will be colored G-maps in dimension 2, such as in Fig. 2. Arcs
are labeled on [0, 2] to encode topological relations, while nodes are labeled by
positions and colors (functions pos and col respectively) to encode embedding
data (bτposc = [A,B,C,D, . . .], bτcolc = [, , , , . . .]).

4 Given X and Y two sets, a partial function f from X to Y is a total function
f : X ′ → Y , from X ′ a subset of X. X ′ is called the domain of f , and is denoted
by Dom(f). For x ∈ X\Dom(f), we say that f(x) is undefined, and write f(x) = ⊥.
We also note ⊥ : X → Y the function totally undefined, that is Dom(⊥) = ∅.

3

A

B C

D E

(a)

2

2

2

2

2

2

(b)

1

11

1 1

11

(c)

d
b

c
a

m n
l

j

k

i
g h

e f

0 0

0
0

0

00

(d)

d
b

c
a

m n
l

j

k

i
g h

e f

A A

B

B C

C

C

C

B

B

D

D E

E

(e)

Fig. 2. Decomposition of a geometric 2D object into a 2-G-map

G-maps intuitively result from the object decomposition into topological cells.
The 2D object of Fig. 2(a) is first (Fig. 2(b)) decomposed into faces connected
along their common edge with a 2-relation and provided with 2-loops on border
edges. Similarly, faces are split into edges connected with 1-relations (Fig. 2(c)).
At last, edges are split into vertices by 0-relations to obtain the 2-G-map of
Fig. 2(d). Nodes obtained at the end of the process are the G-map nodes and
the different i-relations are labeled arcs: for a G-map of dimension n, i belongs
to [0, n]. For readability purpose, we will use the graphical codes of Fig. 2 (black
line for 0-arcs, red dashed line for 1-arcs and blue double line for 2-arcs).

Topological cells of G-maps are defined by subgraphs called orbits and built
from an originating node v and a set o ⊆ [0, n]. By denoting 〈o〉 any ordered
list of elements of o (e.g. 〈1 2〉 or 〈2 1〉 for o = {1, 2}), the orbit 〈o〉(v) (of type
〈o〉 adjacent to v) is the subgraph which contains v, the nodes reachable from
node v using arcs labeled on o, and the arcs themselves. By definition, embedding
data (positions or colors) are shared by all nodes belonging to an orbit of the
associated type. In Fig. 2(e), the vertex adjacent to e is the orbit 〈1 2〉(e) which
contains nodes c, e, g and i, all labeled with the position B attached to the
vertex. Similarly, nodes a, b, c, d, e, f all belong to the same face orbit 〈0 1〉 and
are all labeled by the same color .

Topological graph. An Π-graph G is a n-topological graph if the arc labeling
function α is a total function on [0, n]. Gα, called the topological structure of G,
is the graph G, except that all node labeling functions are totally undefined.

Orbit type. An orbit type 〈o〉 is a subset o ⊆ [0, n], and denoted as a word on
[0, n] without repetition.

Orbit equivalence. For any orbit type 〈o〉, ≡G〈o〉 is the orbit equivalence relation
defined on VG×VG as the reflexive, symmetric and transitive closure built from arcs
with labels in o (i.e. ensuring for each arc e∈G with α(e)∈o, sG(e) ≡G〈o〉 tG(e)).
A graph whose edge labels are in 〈o〉 is said to be of type 〈o〉.
Orbit. For v ∈ VG, the 〈o〉-orbit of G adjacent to v, denoted by G〈o〉(v) (or
〈o〉(v)), is the subgraph of G whose set of nodes is the equivalence class of v using
≡G〈o〉 and whose set of arcs are those labeled on o between nodes of G〈o〉(v),
and whose source, target, labeling functions are the restrictions of functions of G.

4

Embedding. An embedding π : 〈o〉 → τ is characterized by a name π, a data
type name τ and a support orbit type 〈o〉.

We will therefore consider pos : 〈1 2〉 → point and col : 〈0 1〉 → color.
Regarding an embedding π : 〈o〉 → τ , all nodes of an 〈o〉-orbit will share the same
label by π (called π-label). G-maps are provided with an embedding constraint
capturing this property [2]. Besides, G-maps are equipped with constraints
relating to the topology. The cycle constraint ensures that in G-maps, two i-cells
can only be adjacent along (i− 1)-cells. For instance, in Fig. 2(d), the 0202-cycle
constraint implies that faces are stuck along topological edges.

Definition 1 (G-map [6, 18, 2]). For Π = (π : 〈o〉 → τ) a family of embed-
dings, a G-map embedded on Π (or Π-embedded G-map) is a topological graph
G = (V,E, s, t, (π)π∈Π , α) that satisfies the following consistency constraints:

– Symmetry: G is symmetric (i.e. ∀e ∈ E, ∃e′ ∈ E, such that s(e′) = t(e),
t(e′) = s(e), and α(e′) = α(e)),

– Adjacent arcs: each node is the source node of n+ 1 arcs labeled from 0 to n,

– Cycles: ∀i, j such that 0 ≤ i ≤ i+ 2 ≤ j ≤ n, there exists a cycle5 labeled by
ijij starting from each node.

– Embedding consistency: every node labeling function π ∈ Π is total and for
all nodes v and w such that v ≡〈o〉 w, π(v) = π(w).

2.2 Consistent G-map transformations using DPO

Morphisms on Π-graphs extend morphisms defined on partially labeled graphs
to a set of labels Π. In [2], we extended relabeling graph transformations of [8]
to Π-graphs using the double-pushout approach (DPO) [7].

Morphism. For two Π-graphs G = (VG, EG, sG, tG, (πG)π∈Π , αG) and H =
(VH , EH , sH , tH , (πH)π∈Π , αH), a Π-graph morphism m : G → H is defined by
two functions mV : VG→VH and mE : EG→EH preserving sources, targets and
labels - i.e. sH ◦mE = mV ◦ sG, tH ◦mE = mV ◦ tG, πH(m(v)) = πG(v) for
all π ∈ Π and v ∈ Dom(πG), and αH(m(e)) = αG(e) for all e ∈ Dom(αG). If
m(v) = v for all v ∈ VG and m(e) = e for all e ∈ EG, m is an inclusion and is
denoted m :G↪→H.

We have shown in [2] that the Π-graph category inherits from the partially
labeled graph category [8] all classical properties such as the existence of pushouts.

Rule. A rule r : L←↩K ↪→R consists of two inclusions K↪→L and K↪→R such that:
– for all v ∈ VL (resp. for all e ∈ EL and all π ∈ Π), αL(v) = ⊥ (resp.

πL(e) = ⊥) implies v ∈ VK and αR(v) = ⊥ (resp. e ∈ EK and πR(e) = ⊥,),
– for all v ∈ VR (resp. for all e ∈ ER and all π ∈ Π), αR(v) = ⊥ (resp.

πR(e) = ⊥) implies v ∈ VK and αL(v) = ⊥ (resp. e ∈ EK and πL(e) = ⊥).
We call L the left-hand side, R the right-hand side and K the interface of r.

5 A cycle is a sequence e1...ek of arcs such t(ei) = s(ei+1) for each 1 ≤ i < k and
t(ek) = s(e1). The word α(e1)...α(ek) is called its label.

5

d
b

c
a o

p
lj

ki
g
h

e
f

A

A

B

B

C
C

C
C

B

B D
D

E
E

(G)

db

ca
o
p

lj

ki
g
h

e
f

J

I

B

B

C

C

C

C

B

B D
D

E

E

(H)

uJ

Idb

ca
o
pl

j

ki
g
h

e

f

B

B

C

C

C

C

B

B D
D

E

E

(D)

db

c
a e

f
A

A

(L)

db

ca
e
f

(K)

db

ca e
f

(R)

uJ

I
I

J

v

v

m

Fig. 3. A direct derivation

Direct derivation. A direct derivation from a graph G to a graph H via
a rule r :L←↩K↪→R consists of two natural pushouts [8] as in Fig. 3, where
m :L→G, called a match morphism, is injective6. If this derivation exists, we
write G⇒r,mH.

For example, the rule L←↩K ↪→R in Fig. 3 matches a blue triangle which
has a vertex at position A. The rule transforms the triangle into a square by
splitting this vertex into two vertices at positions I and J , while changing the face
color to red. According to the rule definition, unmatched labels in L such as the
position of node d are also unmatched in R. Secondly, nodes of R with undefined
labels are preserved nodes of the rule, with undefined labels in L. Consequently,
added nodes of R such as the node v have all their labels defined in R (I and).
Moreover, changed labels such as the color of d in R () are matched in L ().
These rule properties ensure that when the rule is applied to a totally labeled
object such as G in Fig. 3, the resulting graph H is also totally labeled.

To ensure that direct derivations preserve G-map constraints of Definition 1,
[18] and [2] respectively introduced topological conditions and embedding con-
ditions on rules that ensure consistency preservation. For example, the rule of
Fig. 3 preserves consistency as the added nodes u and v are added with all their
adjacent arcs, cycles and embeddings. Similarly, the embedding modifications (
to and A to I/J) are consistently defined on all concerned nodes.

Result 1 (G-map consistency preservation using basic rules [18, 2, 3])
For r : L←↩ K ↪→ R a graph transformation rule and m : L→ G a match mor-
phism on a Π-embedded n-G-map, the direct transformation G⇒r,m H produces
a Π-embedded n-G-map if r satisfies the following topological conditions:

– Symmetry: L, K and R satisfy the symmetry constraint.

– Adjacent arcs:

• preserved nodes of K are sources of arcs having the same labels in both
the left-hand side L and the right-hand side R;

• removed nodes of L\K and added nodes of R\K must be source of exactly
n+ 1 arcs respectively labeled from 0 to n.

6 A morphism g is injective if gV and gE are injective.

6

– Cycles: for all pair (i, j) such 0 ≤ i ≤ i+ 2 ≤ j ≤ n,

• any added node of R\K is source of an ijij-cycle;

• any preserved node of K which is source of an ijij-cycle in L, is also
source of an ijij-cycle in R;

• any preserved node of K which is not source of an ijij-cycle in L is
source of the same i-arcs and j-arcs in L and R.

and the following embedding conditions for all π : 〈o〉 → τ in Π:

– Embedding consistency: L, K, R satisfy the embedding consistency constraint.

– Full match of transformed embeddings: if v is a node of K such that πL(v) 6=
πR(v), then every node of R〈o〉(v) is labeled and is the source of exactly one
i-arc for each i of 〈o〉.

– Labeling of extended embedding orbits: if v is a node of K and there exists
a node w in R〈o〉(v) such that w is not in L〈o〉(v), then there exists v′ in K
with v′ ≡L〈o〉 v and v′ ≡R〈o〉 v such that πL(v′) 6= ⊥.

3 Rule variables for geometric modeling

Let us consider the face triangulation operation of Fig. 4. On the topological
side, the face is subdivided into as many triangles as it contains edges. On the
embedding side, new face colors are computed as the mix of the subdivided face
color and the neighboring face color, while the position of the created vertex
is set as the barycenter of the transformed face. As the operation depends on
the attributes (number of vertices, position, color) of the matched object, its
definition by a single generic rule requires the use of variables.

A

B C

D

E

F

I

J

(a) Modeled object

A

B C

D

E

F

I

J

M

(b) Triangle triangulation

A

B C

D

E

F

I

J

N

(c) Square triangulation

Fig. 4. A modeling operation: face triangulation

3.1 Graph transformations with variables

Intuitively, rule schemes (rules with variables) describe as many concrete rules
as there are possibilities to instantiate variables with concrete elements. In
[10], a generic approach has been proposed to deal with variables within graph
transformations: roughly speaking, a rule scheme is first applied to a graph along a
kernel match morphism (in our case a morphism that only matches the topological
structure Lα of the left-hand side L). Then, if a substitution σ associating a value

7

vu
x, z y, z

vu
x, z y, zc(x,y), z c(x,y), z

p q(L) (R)vu
z z

(K)

(a) Rule scheme

u
A B

(L) vu
A B

qp
I I

! (K)! (R)!v u v

(b) A rule instance

Fig. 5. Embedding label computations with attribute variables

for all variables can be induced from the kernel match morphism, an instance
rule, generically denoted Lσ←↩Kσ ↪→Rσ for a rule scheme L←↩K ↪→R, can be
built and finally, applied to the graph as a classical rule.

Using this principle, [10] introduces three types of variables. Let us briefly
present two of them which relate to our dedicated variable types. First, attribute
variables illustrated in Fig. 5 allow label computation. In the rule scheme of edge
subdivision, variables x and y abstract two position labels while z abstracts a
color one. In the right-hand side, a topological vertex is added at the center of the
existing two positions, using the dedicated center operator c : point× point→
point, while the color is set to the same face color z. Secondly, clone variables
illustrated in Fig. 6 allow structural abstraction. Intuitively, in order to subdivide
n edges, nodes of the rule scheme which are labeled by the clone variable n are
duplicated by as many nodes as the multiplicity value used to instantiate n, while
arcs are duplicated accordingly to node duplications and arcs of the rule scheme.
Note that as we also use the attribute variables x, y, and z, the rule scheme of
Fig. 6(b) still requires to substitute them.

nnnnnnn
vu

x, z y, z

vu

x, z y, zc(x,y), z c(x,y), z

p q(L) (R)vu

z z

(K)
n

(a) Rule scheme with n as clone variable

v1u1

x, z y, z
v1u1

x, z y, zc(x,y), z c(x,y), z
p1 q1

z z

v2u2 p2 q2

v1u1

(L)!
x, z y, z

(K)!
z z

u2 v2 u2 v2
x, z y, z

(R)!
c(x,y), z c(x,y), z

(b) Instantiation of n by 2

Fig. 6. Expanding computations with clone variables

3.2 Node variables for embedding computation

Embedding computations require to traverse the topological structure of modified
objects: e.g. the face triangulation of Fig. 4 requires to access the colors of adjacent
faces, whether such faces exist or not. In [3], we therefore introduced node variables
which are similar to attribute variables. By directly using node names of L as
variables, we provide operators on node variables to access embedding labels and
adjacent nodes, thanks to G-map regularity. For a node variable a, a.π gives
access to its π-label while a.αi (with i ≤ n) gives access to the node connected to
node a by an i-arc. Embedding expressions used in a rule scheme L←↩K ↪→R are
then terms built over these operators and nodes of L. Thus, for a kernel match
morphism m : Lα → G, a rule instance LmV ←↩KmV ↪→RmV can be computed
by using the node matching function mV as variable substitution.

8

d
d

b
c
a

e f(R)

i, t

j, t

p, t

p, t p, u

p, u

p,vp,v

(L)

a b

e

c

f

d

(K)

a b

e

c

f

i, t

j, t

v = mix (e. col, e. α 2. col)

u = mix (b. col, b. α 2. col)

t = mix (a. col, a. α 2. col)

s = a. col

i, s

j, s

i, s

k, s

j, s k, s

p = bary (pos (a)) 〈0 1〉i = a. pos

j = c. pos

k = d. pos

j,v
j,v

i, u
i, u

k, u

k, u

k,v
k,v

(a) Rule scheme

(R)!

d
d
b

c
a

e f

a b

e

c

f

d

a b

e

c

f

M M

M

MM

M

A A

C

CB

B

A A

C

C
B

B

A A

C

C
B

B

(L)! (K)!
(b) A rule instance

(R)!(L)! (K)!

d
d
b

c
a

e f

a b

e

c

f

d

a b

e

c

f

O O

O

OO

O

C C

I

IJ

J

C C

I

I
J

J

C C

I

I
J

J

(c) Another rule instance

Fig. 7. Triangle triangulation with embedding terms

From the rule scheme of Fig. 7(a), we can build the two rule instances
of Fig. 7(b) and 7(c) respectively corresponding to triangles BAC and JCI of
Fig. 4(a). In the left-hand side, the term a.col is respectively evaluated as and .
In the right-hand side, the dedicated operator mix : color × color → color is
applied to the face color (a.col) and the color of the neighboring face (a.α2.col). At
rule application, a.α2 is evaluated as the 2-neighbor of a. Note that in the border,
nodes are their self 2-neighbors (e.g. node a in Fig. 2(e)). Consequently, some
created faces in Fig. 7(b) and 7(c) keep their original color. At last, embedding
expressions also include operators in charge of collecting all embedding values
carried by a given orbit. In the rule scheme of Fig. 7(a), the term pos〈0 1〉(a) is
evaluated as the multiset of positions labeling the face, i.e. of 〈0 1〉-orbit adjacent
to node a. In the instance of Fig. 7(b), this set is [A,B,C] and the added vertex
is positioned at bary([A,B,C]) = M using a dedicated barycenter operator.

x wts

(L)

u y z
ws

(K)

z ws

(R)

z

c = s. col d = w. col e = mix (s. col, w. col)

c
c

cc

d
d

d
d

e e

ee
v v v

(a) Rule scheme

xwts
u y z

ws

z

ws

zv v v
(R)!(L)! (K)!

(b) A rule instance

Fig. 8. Face merge with embedding terms

In order to instantiate a rule scheme built over node variables into a rule that
satisfies the conditions of Result 1, we introduced in [3] a completion step. Let us
consider the example of Fig. 8 that merges two faces by removing their common
edge and mixing their colors. This operation can be defined independently of face
shapes by the minimal rule scheme of Fig. 8(a) that only deals with the central
edge and the adjacent nodes. The completion step automatically includes in the
rule instance all nodes concerned by embedding modifications. In the example
of Fig. 8(b) corresponding to an application to the object of Fig. 2(e), this step

9

completes the rule with the rest of the two faces so that the green color can be
attached on the whole new faces.

Consequently, rule schemes are exempt from the condition of full match of
transformed embeddings of Result 1. However, to prevent misapplication cases
in which two different embedding orbits would be matched as a single one, the
condition of full match is replaced by a non-overlap condition on match morphism.
Note that similarly to the condition of injective match morphism, the non-overlap
condition has to be dynamically checked, with no particular difficulty.

Result 2 (G-map consistency preservation using node variables [3])
For r :L←↩K↪→R a rule scheme with node variables and m :Lα→G a match

morphism on a Π-embedded G-map, if r satisfies the conditions of Result 1, except
the full match of transformed embeddings, and satisfies the following non-overlap
condition for all 〈o〉 occurring as support orbit type in Π = (π : 〈o〉 → τ), then
the instance rule7 rmV :LmV←↩KmV ↪→RmV satisfies the conditions of Result 1.

Non-overlap: for v, u ∈ VL such as v 6≡L〈o〉 u, m(v) 6≡G〈o〉 m(u).

3.3 Orbit variables for topological rewriting

As existing variable types were unfit to abstract G-map cell transformations, we
introduced orbit variables in [18]. Intuitively, these are typed by an orbit type
〈o〉 so that they can abstract any G-map orbit of type 〈o〉. By rewriting 〈o〉 into
another type 〈o′〉, we can change arc labels or remove arcs. For example, the
rule scheme of Fig. 9(a) models the topological triangulation of any face - i.e
any orbit of type 〈0 1〉. Note that, as for clone variables in Fig. 6, the other
node labels, in this case the color labels, are duplicated along the orbit variable
instantiation. Note also that these colors have been chosen to help reading of
orbit copies, disregarding G-map embedding consistency preservation.

⟨ 0 _ ⟩ 〈 _ 2 ⟩ 〈 1 2 ⟩〈 0 1 ⟩
v(L)

v
(K) (R) v’ v’’v

(a) Rule scheme on the orbit type 〈0 1〉

d
d
b

c

a

e f
(L)

a b

e

c

f

d

a b

e

c

f
d’

a’ b’

e’
c’

f’

d’’
a’’ b’’

e’’

c’’

f’’

! (K)! (R)!
(b) Triangle rule instance

(L)! (K)! (R)!

j
g h

m
k l

i

n

g h

m
k l

i

n

j

j’’

g’’ h’’

m’’
k’’ l’’

i’’

n’’

j

g h

m

k l

i

n

j’
g’ h’

m’
k’ l’

i’

n’

(c) Square rule instance

Fig. 9. Face triangulation with orbit variable

7 Note that the instantiation includes the completion step that consist in extending
the matched and transformed patterns to the embedding orbits [3].

10

The two instance rules of Fig. 9(b) and 9(c) are constructed as follows:

1. the node v labeled in L with the orbit type 〈0 1〉 is substituted by a face, i.e.
a 〈0 1〉-orbit, e.g. a triangle (resp. a square), to build Lσ ;

2. each node of Lσ is kept in Rσ, and duplicated twice, corresponding to the
nodes v, v′ and v′′, labeled by different types in R;

3. for the face matched by node v, 0-arcs are conserved in Rσ while 1-arcs
are removed as v is relabeled in R by 〈0 〉 (an “empty” label replaces 1);
similarly, for node v′, the type 〈 2〉 means both removal of 0-arcs and 2-
relabeling of 1-arcs while for the v′′ node, 〈1 2〉 entails 1-relabeling of 0-arcs
and 2-relabeling of 1-arcs;

4. at last, as indicated by the arcs of R between v, v′ and v′′ nodes, any node
of the matched face v is connected to its image in copy v′ with a 1-arc, and
all v′ and v′′ images of a given node are connected with a 0-arc.

Topological rewriting. A topological rewriting 〈ω〉 of an orbit type 〈o〉 is defined
by a word ω on [0, n]∪{ }, of same length as o, and such that for all i in [0, n], there
is at most one occurrence of i in ω. We write 〈o→ω〉 for the type rewriting function
that associates each label oi ∈ [0, n] at position i in 〈o〉 to its images ωi at the
same position in 〈ω〉 - i.e. 〈o→ω〉(oi) = ωi. For a graph G = (V,E, s, t, (π)π∈Π , α)
of type 〈o〉, we denote G〈o→ω〉 = (V,E′, s, t, (π)π∈Π , α

′) the rewritten graph with
E′⊂E such that ∀e ∈ E, e 6∈ E′ if 〈o→ω〉(α(e)) = , and e ∈ E′ otherwise with
α′(e) = 〈o→ω〉(α(e)). At last, for convenience, 〈o〉 denotes both an orbit type
and the identity type rewriting function 〈o→o〉.
Rule scheme with orbit variable. For an orbit type 〈o〉, a rule scheme
L←↩K↪→R with orbit variable 〈o〉 is such that all nodes of L, K and R are labeled
by topological rewritings of 〈o〉 and at least one node of L is labeled by 〈o〉.
Orbit variable instantiation. For r : L←↩K ↪→R a rule scheme with orbit
variable 〈o〉 and O a graph of type 〈o〉, we denote rO : LO←↩KO ↪→RO the
instantiated rule8 [18]. The functions that respectively associate instance nodes
with their originating nodes in graphs of r or in O are respectively denoted
↑LLO : VLO→VL, ↑LKO : VKO→VK , ↑RRO : VRO→VR and ↑OrO : (VLO ∪VKO ∪VRO)→VO.
In particular, for all π ∈ Π and all node v of rO, we have π(v) = π(↑OrO (v)).

Since nodes of rule schemes contain topological rewritings as special labels
used to match topological graphs, they do not belong to the same Π-category
than the underlying Π-embedded G-maps. However, as in Fig. 9, these extra
labels disappear after variable instantiation. Additionally, the syntactic conditions
that preserve G-map topological consistency have been adapted to handle both
the explicit arcs of rule graphs and the implicit arcs of topological rewritings
that label nodes. For example, node v′ in Fig. 9(a) is added with all its adjacent
arcs as both the 0-arc and 1-arc are explicit in R, while the 2-arc is implicit in
the orbit rewriting 〈 2〉. Similarly, v′ is added with an half-implicit 0202-cycle
as v′ and v′′ are connected with an explicit 0-arc while 2 is at the same position
in their topological rewritings 〈 2〉 and 〈1 2〉.
8 L0, K0, and R0 are the Cartesian product graphs of O and resp. graphs L, K and
R, by keeping tracks of arc relabelings and arc removals.

11

Result 3 (Topological consistency preservation using orbit variable [18])
For r :L←↩K↪→R a rule scheme with orbit variable 〈o〉 and a graph O of type 〈o〉,
the instance rule rO :LO←↩KO↪→RO satisfies the topological conditions of G-map
consistency preservation of Result 1 if r satisfies the same conditions extended to
implicit arcs and cycles such as for v a node of L, K or R labeled by 〈ω〉:

– for i ∈ [0, n], v is source of an implicit i-arc if i ∈ 〈ω〉; for v ∈ K, this
implicit i-arc is preserved if i is at the same position in 〈ωL〉 and 〈ωR〉 the
respective labels of v in L and R - i.e. 〈ωL〉→〈ωR〉(i) = i;

– for all (i, j), v is source of an implicit ijij-cycle if i ∈ 〈ω〉, j ∈ 〈ω〉, and
there exists a node v′ in L labeled by 〈ω′〉 and source of an i′j′i′j′-cycle such
that i′ = 〈ω〉→〈ω′〉(i) and j′ = 〈ω〉 → 〈ω′〉(j);

– for all (i, j), v is source of an half-implicit ijij-cycle if i ∈ 〈ω〉 (resp. j ∈ 〈ω〉)
and either v is source of an j-loop (resp. i-loop) or v is connected by an j-arc
(resp. i-arc) to a node v′ labeled by 〈ω′〉 such that i (resp. j) is at the same
position in 〈ω〉 and 〈ω′〉 - i.e. 〈ω〉→〈ω′〉(i) = i (resp. 〈ω〉→〈ω′〉(j) = j).

As orbit variables abstract multiple nodes (and arcs), their combined use with
node variable requires some care in order to instantiate both variable types.

4 Rule schemes for specifying modeling operations

4.1 Combining orbit variables and node variables

Let us consider the rule scheme of Fig. 10(a) that defines the face triangulation of
Fig. 4 by combining the two variable transformations of Fig. 7 and 9. Intuitively,
as the orbit variable 〈0 1〉 defines the topological structure of the rule instance,
it has to be substituted first in order to provide all the node variables required
to match the embedding of the face. When the orbit variable is instantiated in
Fig. 10(b) by a triangle face, the terms v.pos and v.col are duplicated on all
instantiated nodes. However, they are rewritten by respectively replacing v by the
new node names a, b, . . . , f . For example, the term mix(v.col, v.α2.col) has been
rewritten on c′′ by mix(c.col, c.α2.col) as c is the corresponding new variable.

⟨ 0 1 ⟩ ⟨ 0 _ ⟩ ⟨ 1 2 ⟩

z = mix (v. col, v. α 2. col)

y = bary (pos (v))
u, z y, zv

(L)
v

(K)
u, x

v’ v’’v (R)

⟨ _ 2 ⟩
u, z

u = v. pos

x = v. col

 〈0 1〉

(a) Rule scheme on the orbit type 〈0 1〉

d
d

b

c

a

e f

y(b), z(b)

y(d), z(d)

a b

e

c

f

d

a b

e

c

f

u(b), z(b)
u(b), z(b)

u(d), z(d)

z(v) = mix (v. col, v. α 2. col)

y(v) = bary (pos (v))

u(d), z(d)

u(a), z(a)

y(a), z(a)

y(c), z(c)

y(e), z(e) y(f), z(f)

u(a), z(a)

u(c), z(c)

u(c), z(c)

u(e), z(e) u(f), z(f)

a’ b’
a’’ b’’

c’

e’ f’

d’
e’’ f’’

c’’ d’’
u(b), x(b)

u(d), x(d)

u(a), x(a)

u(e), x(e) u(f), x(f)

u(c), x(c)
u(v) = v. pos

x(v) = v. col
 〈0 1〉

(ρ R)"u(e), z(e) u(f), z(f)(ρ L)" (ρ K)"

(b) After orbit variable substitution and term rewriting

Fig. 10. Face triangulation with both variables types

12

Definition 2 (Term rewriting). Let r :L←↩K↪→R be a rule scheme with orbit
variable 〈o〉 and node variables. Let rO be a rule scheme with node variables
resulting from a substitution 〈o〉 by a graph O of type 〈o〉.

The rewritten rule scheme r(O) results from the respective application of the
following term functions ρv for each node v of rO to the node labels of rO, such
that ρv extends the following variable substitution: for every node variable u of VL,
ρv(u) = u′ in which u′ is the unique node variable of VLO such that ↑LLO(u′) = u
and ↑OrO(u′) = ↑OrO(v).

Similarly to the rule scheme of Fig. 7(a), the rewritten one of Fig. 10(a) only
requires to substitute node variables to produce the instance rules of Fig. 7(b)
and 7(c), but in this case multiple terms define the same value. For example,
the barycenter is successively defined as bary(pos〈0 1〉(a)), bary(pos〈0 1〉(b)), . . . ,
bary(pos〈0 1〉(f)) which will all result in the same position. Therefore we must
adapt the conditions of consistency preservation.

4.2 Consistency preservation

Let us consider the rule scheme of Fig. 11(a) that still defines the triangulation,
but with different embedding computations. In particular, the center is positioned
right between the corner and the barycenter (c(v.pos, bary〈0 1〉(v))) and the color
of created faces is defined as the mix between the original color and the color of
the adjacent face around the corner (v.α1.α2.col). Note that this rule satisfies the
conditions of embedding consistency preservation as defined in Result 2. However,
most instances of this scheme surely break the embedding consistency. Fig. 11(b)
and 11(c) respectively present the rule instance and the intuitive representation
for its application to the triangle ABC of Fig. 4(a). This rule breaks the added
vertex consistency since three different positions are computed: I = c(A,M),
J = c(B,M), K = c(C,M) with M = bary([A,B,C]). Similarly, each created
face is embedded with two different colors since the original color is mixed with
the colors of the faces around the two corners.

⟨ 0 1 ⟩ ⟨ 0 _ ⟩ ⟨ 1 2 ⟩

z = mix (v. col, v. α 1.α 2. col)

y = c (v. pos, bary (pos (v))
u, z y, zv

(L)
v

(K)
u, x

v’ v’’v (R)

⟨ _ 2 ⟩
u, z

u = v. pos

x = v. col

 〈0 1〉

(a) Rule scheme on the orbit type 〈0 1〉

d
d
b

c
a

e f(R)(L)

a b

e

c

f

d

(K)

a b

e

c

f

I I

K

KJ

J

A A

C

CB

B

A A

C

C
B

B

A A

C

C
B

B

(b) A rule instance

A

B C

I

J K

(c) Intuitive representation

Fig. 11. Break of G-map consistency

13

To prevent inconsistencies, conditions on rule scheme must take into account
the pattern expanding and the term rewriting due to the orbit variable substitu-
tion. For this purpose, considering rule schemes without orbit variable, we first
define the equivalence between two embedding terms that ensures embedding
equality on rule application to a G-map.

Definition 3 (Term equivalence). Let r : L←↩K ↪→R be a rule scheme with
node variables.

For any terms t and t′ of r that define an embedding π : 〈o〉 → τ , the
equivalence between terms, denoted t ≡L〈o〉 t′, is the smallest equivalence relation
extending the equivalence between nodes of L such that:

– for all dimension i ∈ [0, n], let 〈o′〉 the sub-orbit of 〈o〉 containing all dimen-
sions j of 〈o〉 such j + 2 ≤ i or i+ 2 ≤ j, if t ≡L〈o′〉 t′ then t.αi ≡L〈o〉 t′.αi,

– for all dimension i ∈ 〈o〉, if t ≡L〈o〉 t′ then t ≡L〈o〉 t′.αi and t.αi ≡L〈o〉 t′,
– for all embedding π′ : 〈o′〉 → τ ′, if t ≡L〈o′〉 t′ then t.π′ ≡L〈o〉 t′.π′,

– for all orbit 〈o′〉, if t ≡L〈o′〉 t′ then π〈o′〉(t) ≡L〈o〉 π〈o′〉(t′),
– for all user function f : s1×...×sm → sm+1 and all terms t1, t

′
1 : s1, ..., tm, t

′
m :

sm, if t1 ≡L〈o〉 t′1 and ... and tm ≡L〈o〉 t′m then f(t1, ..., tm) ≡L〈o〉 f(t′1, ..., t
′
m).

Intuitively, in the rule scheme of Fig. 10(b), the two terms bary(pos〈0 1〉(a))
bary(pos〈0 1〉(b)) are equivalent because a and b belong to the same 〈0 1〉-orbit in L.
Similarly, mix(a.col, a.α2.col) and mix(c.col, c.α2.col) are equivalent because: (i)
a.col and c.col are equivalent as they belong to the same 〈0 1〉-orbit carrying the
color embedding; (ii) a.α2.col and c.α2.col are equivalent as the α2-access ensures
that a.α2 and c.α2 belong to the same 〈0 1〉-orbit and thus have the same color.

Theorem 1 (Evaluation equality along term equivalence). Let r : L←↩
K ↪→R be a rule scheme with node variables and m : Lα → G a kernel match
morphism on a Π-embedded n-G-map G.

If two terms t and t′ of r defining an embedding π : 〈o〉 → τ are equivalent,
i.e. t ≡L〈o〉 t′, then their interpretations along mV are equal, i.e. tmV = t′mV .

Proof. Let r : L←↩K ↪→R be a rule scheme with embedding terms (without orbit
variable) and m : Lα → G a kernel match morphism on a Π-embedded n-G-
map G. Let us show by induction on the structure of t and t′, that if two terms t
and t′ of r defining an embedding π : 〈o〉 → τ are equivalent, i.e. t ≡L〈o〉 t′, then
their interpretations along mV are equal, i.e. tmV = t′mV .

If t ≡L〈o〉 t′, then by term equivalence definition 3, one of the following case
is verifyed:

– t = u and t′ = u′ are two node variables of L. Then, by match morphism
definition, qmV ≡G〈o〉 q

′mV .

– t = p.αi, t
′ = p′.αi with i ∈ [0, n], p and p′ two node termes, and p ≡L〈o′〉 p′

with 〈o′〉 the sub-orbit of 〈o〉 containing all dimensions j of 〈o〉 such that
j + 2 ≤ i or i+ 2 ≤ j. Then by induction hypothesis, pmV ≡G〈o′〉 p

′mV . And
thanks to the cycle consistency constraint on the G-map G (see Definition 1),
tmV and tmV are two nodes of the same 〈o′〉-orbit and then of the same
〈o〉-orbit , i.e. tmV ≡G〈o〉 t

′mV .

14

– t = p.αi (resp. t′ = p′.αi) with i ∈ 〈o〉 and p (resp. p′) is a node term, and
p ≡L〈o〉 t′ (resp. t ≡L〈o〉 p′). Then by induction hypothesis pmV ≡G〈o〉 t

′mV

(resp. tmV ≡G〈o〉 p
′mV). And thanks to the embedding consistency constraint

on the G-map G (see Definition 1), tmV ≡G〈o〉 t
′mV .

– t = p.π′ and t′ = p′.π′ with π′ : 〈o′〉 → τ ′ an embedding of Π, p and p′ two
node termes, and p ≡L〈o′〉 p′. Then, by induction hypothesis pmV ≡G〈o′〉 p

′mV .
And by definition of embedded G-maps, pmV and p′mV have the same π′-
embedding (π′(pmV) = π′(p′mV)), and therefore tmV = t′mV .

– t = π′
〈o′〉(p) and t′ = π′

〈o′〉(p
′) with π′ : 〈o′〉 → τ ′ an embedding of Π, p and

p′ two node termes, and p ≡L〈o′〉 p′. Then by induction hypothesis pmV and
p′mV are two nodes of the same collected 〈o′〉-orbit, i.e. pmV ≡G〈o′〉 p

′mV .
Consequently, tmV and t′mV are the same set of τ ′ values, i.e. tmV = t′mV .

– t = f(p1, . . . , pm) and t′ = f(p′1, . . . , p
′
m) with a user function f : s1 × ...×

sm → sm+1, and p1, . . . , pm, p
′
1, . . . , p

′
m terms of type s1, . . . , sm respectively,

and p1 ≡L〈o′〉 p′1, . . . , pm ≡L〈o′〉 p′m. By induction hypothesis, because s1,
. . . , sm are user types distinct from nodes, t1

mV = t′1
mV , . . . , tm

mV = t′m
mV .

Then, f(t1
mV , . . . , tm

mV) = f(t′1
mV , . . . , t′m

mV), and therefore tmV = t′mV .

Consequently, equivalent embedding terms have equal interpretations. �

We now define a condition on rule schemes with orbit variable that ensure term
equivalence, and therefore stability along the instantiation process. Intuitively,
this condition ensures that when a term labels a node that is also labeled by a
topological rewriting, the rewritten terms should be equivalent for all expanded
embedding orbits. This can be predicted by comparing the term itself with terms
capturing the relabeling of concern arcs - i.e. that belong to the embedding orbit.

Let us consider the term bary(pos〈0 1〉(v)) that labels node v′′ in the rule
scheme of Fig. 10(a). As node v′′ is labeled by 〈1 2〉 and will be expanded, we
must ensure equivalence for all labels of the 〈1 2〉-subset of 〈1 2〉 (vertex orbit
carrying the position embedding), therefore in this case for both 1 and 2. As
node v appearing in the term is originally labeled 〈0 1〉 in L, we have to consider
the respective reverse relabeling 〈1 2→0 1〉(1) = 0 and 〈1 2→0 1〉(2) = 1.
Consequently, the term must be equivalent to both bary(pos〈0 1〉(v.α0)) and
bary(pos〈0 1〉(v.α1)). This is indeed true as v.α0 and v.α1 both belong to the
collected orbit 〈0 1〉(v).

Similarly, let us consider the term mix(v.col, v.α2.col) labeling v′′. We must
ensure equivalence for all labels of the 〈1 2〉-subset of the 〈0 1〉 (face orbit carrying
the color embedding), therefore in the case only 1. As node v appearing in the
term is originally labeled by 〈0 1〉 in L, we consider 〈1 2→0 1〉(1) = 0 and show
that the term is equivalent to mix(v.α0.col, v.α0.α2.col). As α0 belong to the
face orbit 〈0 1〉 carrying the color embedding, v.col and v.α0.col are equivalent.
Similarly, because of the 0202-cycle constraint of G-maps, v.α2 and v.α0.α2

belong to the same face, therefore v.α2.col and v.α0.α2.col are equivalent terms.

15

Definition 4 (Condition of term stability). Let r : L←↩ K ↪→ R be a rule
scheme with orbit variable and node variables, and v a node of L, K or R, such
v is labeled by an embedding term t defining an embedding π : 〈o〉 → τ and by a
topological rewriting 〈ωv〉.

The term t is stable along instantiation if for all label i of 〈o′〉 the 〈o〉-subset
of 〈ωv〉, t is equivalent to the rewritten term ti (i.e. t ≡L〈o〉 ti) in which any
occurence of a variable x ∈ VL is replaced by x.αj, in which j = 〈ωv→ωx〉(i) 9

with 〈ωx〉 the topological rewriting that labels x in L.

Finally, rule schemes containing both node variables and orbit variables
preserve G-map consistency if they satisfy all conditions previously introduced,
including term stability. Note that the non-overlap condition of Result 2 is still
to be additionally checked on the application morphism.

Theorem 2 (G-map consistency preservation using both variable types).
For a rule scheme r : L←↩ K ↪→R with orbit variable and node variables, any
rule instance resulting from the orbit variable substitution satisfies the conditions
of Result 2 if r satisfies the topological conditions of Result 3 and the following
embedding conditions:

– Embedding consistency of Result 1;

– Labeling of extended embedding conditions orbits of Result 1;

– Term stability of Definition 4.

Proof. For r : L←↩K ↪→R a rule scheme with orbit variable and node variables, we
have to show that any rule instance resulting from the orbit variable substitution
satisfies the conditions of Result 2 (G-map consistency preservation using node
variables) if r satisfies the topological conditions of Result 3 (G-map consistency
preservation using orbit variable) and the following embedding conditions:

– Embedding consistency and labeling of extended embedding conditions orbits
of Result 1 (G-map consistency preservation using basic rules);

– Term stability of Definition 4.

Result 3 showed that if a rule scheme with orbit variable satisfies the topolog-
ical conditions of Result 1 up to arcs and cycles within orbit variable, instances
resulting from the orbit variable substitution fully satisfy the same conditions.
As nodes variable substitution does not affect the topological structures of rules,
instances resulting from this second step also satisfy these conditions. We still
have to show that rule instances satisfy the embedding conditions of Result 1.

[3] already showed that if a rule scheme with orbit variable satisfy the non-
overlap condition of Result 2, instance resulting from node variable substitution
satisfy the full match of transformed embeddings of Result 1.

Let us show that the embedding consistency condition and of the term stability
condition ensure that rule instances satisfy the embedding consistency condition.
Let us note r(O) : L(O)←↩K(O) ↪→R(O) the rule scheme resulting from orbit

9 Note that if 〈ωv→ωx〉(i) = , ti does not exist and therefore t is not stable.

16

substitution and term rewriting. For any embedding operation π : 〈o〉 → τ , let us
consider v and v′ two nodes of R(O) (resp. L(O), K(O)) connected by an αi-arc
e with i ∈ 〈o〉, respectively labeled by the rewritten term t and t′. Two cases
exist:

– v and v′ have a same antecedent u in R (resp. L, K), e is abstracted
by an implicit arc of the topological rewritings labeling u. In this case, t
and t′ comes from the same term s, which has been rewritten along the
substituted orbit. Therefore, any node variable x of L occurring in s has
been respectively substituted by two variables of the substituted pattern LO

with the same image in the substituted orbit, i.e. two variable xt and xt′

such as ↑OrO(xt) = ↑OrO(v) and ↑OrO(xt′) = ↑OrO(v′). Let us note 〈ωu〉 and 〈ωx〉
the respective labels of u and x. Because of term equivalence, the arc e has
an antecedent e′ in LO such that its label is j = 〈ωu→ωx〉(i) and therefore,
xt′ = xt.αj . Because the condition of term stability of Definition 4 ensure
that the term s must equivalent using either x or x.αj , therefore t and t′

are equivalent. As equal terms produce equal values, v and v′ satisfy the
embedding consistency.

– v and v′ have two respective antecedents u and u′ in R (resp. L, K), e is an arc
of R (resp. L, K). As r satisfy the embedding consistency condition, t and t′

originate from a same term s. Moreover, as v and v′ are connected with a rule
arc, they are at the same position in the instance orbit, i.e. ↑OrO(v) = ↑OrO(v′).
Therefore, t and t′ have been rewritten with the same node variables at the
same position, i.e for all variable x ∈ VL occurring in s, x is rewritten by
the same variable y ∈ VLO in t and t′ as ↑OrO(v) = ↑OrO(v′) = ↑OrO(y). The two
terms are therefore equal, and as equal terms produce equal values, v and v′

satisfy the embedding consistency. �

5 Conclusion

In this paper, we have presented a rule-based language for geometric modeling
involving two types of variables, node variables and orbit variables, and provided
them with a two-layered variable substitution mechanism. Orbit variables are first
substituted, therefore defining the resulting topological structure and generating
new node variables; these node variables are then substituted to compute the new
embeddings. Moreover, rules written in a DPO style are provided with syntactic
conditions ensuring the consistency preservation of embedded G-maps - i.e. by
construction, transformed objects are also embedded G-maps. In particular, by
introducing the conditions of term stability and terms equivalence, the syntactic
conditions of embedding consistency preservation have been adapted to handle the
new node variables generated by the orbit variable instantiation. This language
is the core of Jerboa, a tool set for designing and generating geometric modelers.

References

1. Belhaouari, H., Arnould, A., Le Gall, P., Bellet, T.: JERBOA: A graph transforma-
tion library for topology-based geometric modeling. In: 7th International Conference

17

on Graph Transformation (ICGT 2014). LNCS, vol. 8571, pp. 269–284. Springer,
York, UK (Jul 2014)

2. Bellet, T., Arnould, A., Le Gall, P.: Rule-based transformations for geometric
modeling. In: 6th International Workshop on Computing with Terms and Graphs
(TERMGRAPH 2011), Part of ETAPS. p. 20p. Saarbrücken, Germany (Apr 2011)

3. Bellet, T., Arnould, A., Le Gall, P.: Constraint-preserving labeled graph transfor-
mations for topology-based geometric modeling. Research report, XLIM (Feb 2017),
https://hal.archives-ouvertes.fr/hal-01476860

4. Bellet, T., Poudret, M., Arnould, A., Fuchs, L., Le Gall, P.: Designing a topological
modeler kernel: a rule-based approach. In: Shape Modeling International Conference
(SMI). pp. 100–112. IEEE (2010)

5. Bohl, E., Terraz, O., Ghazanfarpour, D.: Modeling Fruits and Their Internal
Structure Using Parametric 3Gmap L-systems. The Visual Computer 31(6-8),
819–829 (Jun 2015)

6. Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for
Computer Graphics and Image Processing. A K Peters/CRC Press (Sep 2014)

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs on Theoretical Computer Science, Springer (2006)

8. Habel, A., Plump, D.: Relabelling in graph transformation. In: Proceedings of the
First International Conference on Graph Transformation. pp. 135–147. ICGT ’02,
Springer-Verlag, London, UK (2002)

9. Habel, A., Radke, H.: Expressiveness of graph conditions with variables. Electronic
Communications of the EASST 30 (2010), Graph and Model Transformation 2010

10. Hoffmann, B.: Graph transformation with variables. In: Formal Methods in Software
and Systems Modeling: Essays Dedicated to Hartmut Ehrig on the Occasion of His
60th Birthday. LNCS, vol. 3393, pp. 101–115. Springer, Berlin, Heidelberg (2005)

11. Hoffmann, B.: More on graph rewriting with contextual refinement. In: Echahed,
R., Habel, A., Mosbah, M. (eds.) Graph Computation Models Selected Revised
Papers from GCM 2014. Electronic Communications of the EASST, vol. 71 (2015)

12. Hoffmann, B., Jakumeit, E., Geiß, R.: Graph rewrite rules with structural recursion.
In: Mosbah, M., Habel, A. (eds.) 2nd Intl. Workshop on Graph Computational
Models (GCM 2008). pp. 5–16 (2008)

13. Jakumeit, E., Buchwald, S., Wagelaar, D., Dan, L., Hegedüs, Á., Herrmannsdörfer,
M., Horn, T., et al.: A survey and comparison of transformation tools based on the
transformation tool contest. Science of computer programming 85, 41–99 (2014)

14. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling of
buildings. In: ACM SIGGRAPH 2006 Papers. pp. 614–623. SIGGRAPH ’06, ACM,
New York, NY, USA (2006)

15. Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transfor-
mation. Electronic Communications of the EASST 30 (2010), Graph Computation
Models 2010

16. Orejas, F., Lambers, L.: Lazy graph transformation. Fundamenta Informaticae
118(1-2), 65–96 (Jan 2012)

17. Pérez, J., Crespo, Y., Hoffmann, B., Mens, T.: A case study to evaluate the
suitability of graph transformation tools for program refactoring. International
Journal on Software Tools for Technology Transfer 12(3-4), 183–199 (2010)

18. Poudret, M., Arnould, A., Comet, J.P., Le Gall, P.: Graph Transformation for
Topology Modelling. In: 4th International Conference on Graph Transformation
(ICGT’08). LNCS, vol. 5214, pp. 147–161. Springer, Leicester, UK (Sep 2008)

18

