Thomas Bellet

Agnès Arnould

Hakim Belhaouari

Pascale Le Gall

Geometric modeling: consistency preservation using two-layered variable substitutions (extended version)

Keywords: DPO graph transformations, labeled graphs, graph variables, topology-based geometric modeling, consistency preservation

In the context of topology-based geometric modeling, operations transform objects regarding both their topological structure (i.e. cell subdivision: vertex, edge, face, etc.) and their embeddings (i.e. relevant data: vertex positions, face colors, volume densities, etc.). Graph transformations with variables allow us to generically handle those operations. We use two types of variables: orbit variables to abstract topological cells and node variables to abstract embedding data. We show how these variables can be simultaneously used, and we provide syntactic conditions on rules to ensure that they preserve object consistency. This rule-based approach is the cornerstone of Jerboa, a tool that allows a fast and safe prototyping of geometric modelers.

Introduction

Context. Geometric modeling concerns mathematical models useful to create, manipulate, modify or display realistic n-dimensional (nD) objects in numerous application domains such as computer-aided design and manufacturing, mechanical engineering, architecture, geology, archaeology, medical image processing, scientific visualization, animated movies or video games. Many modeling tools are therefore developed at expensive costs to fulfill the various application needs. In order to facilitate the prototyping of new modelers, we developed a tool set for designing and generating safe geometric modeler kernels, called Jerboa3 [START_REF] Belhaouari | JERBOA: A graph transformation library for topology-based geometric modeling[END_REF].

The Jerboa tool set. Objects are specified as generalized maps (G-maps) [START_REF] Damiand | Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing[END_REF] which allow uniform modeling of complex nD objects (e.g. 2D surfaces, 3D volumes) by regular graphs. Their topological structure (i.e. cell subdivision) is encoded by the graph structure and the arc labels, while their embeddings (i.e. geometric or applicative data) are given by the node labels. Their consistency is guaranteed thanks to G-map labeling constraints. Designing a modeler therefore starts by specifying the dimension and the embeddings of manipulated objects (e.g. 3D objects with vertex positions and face colors in Fig. 1). Modeling operations are then defined as graph transformation rules, using two types of dedicated variables: orbit variables [START_REF] Poudret | Graph Transformation for Topology Modelling[END_REF] and node variables [START_REF] Bellet | Constraint-preserving labeled graph transformations for topology-based geometric modeling[END_REF] which respectively abstract topological structures (e.g. in order to subdivide a face whatever its number of vertices) and embeddings (e.g. in order to compute the barycenter of a face whatever its vertices' positions). The rule editor (see Fig. 1(a)) includes a syntactic analyzer which guides the user while ensuring consistency. Once designed, a modeler can be generated and used right away with the provided generic viewer (see Fig. 1(b)) or integrated into larger tools. End-users of this modeler are not required to understand the rule language as they only pick and apply operations interactively.

Building consistent objects. Jerboa's rule language relies on two key aspects: the instantiation of variables and the syntactic conditions of consistency preservation (i.e. conditions on rules that preserve G-map labeling constraints). As long as only one variable type is concerned, these aspects have been proved well-founded. Purely topological operations defined with the sole use of orbit variables (e.g. unsew a vertex, sew two faces, etc.) have been discussed in [START_REF] Poudret | Graph Transformation for Topology Modelling[END_REF][START_REF] Bellet | Designing a topological modeler kernel: a rule-based approach[END_REF], whereas geometric operations defined with the sole use of node variables (e.g translate a vertex, swap two face colors, etc.) have been discussed in [START_REF] Bellet | Rule-based transformations for geometric modeling[END_REF][START_REF] Bellet | Constraint-preserving labeled graph transformations for topology-based geometric modeling[END_REF]. Therefore, the previous limitation of Jerboa regarded the simultaneous use of both variable types which come with different instantiation mechanisms and syntactic conditions, making them hard to use together.

Contribution. Following the general approach of DPO graph transformations with variables defined in [START_REF] Hoffmann | Graph transformation with variables[END_REF], we propose a two-layered instantiation of variables. Orbit variables are first substituted by cells of the object, thus automatically duplicating the node variables. These can then be substituted if a match morphism exists, thus leading to a classical DPO application of the instantiated rule. To ensure that transformed objects are consistent, we extend the syntactic conditions on rules separetely defined for each variable type to rules with both variable types. Related work. Formal rule languages are already commonly used in the context of geometric modeling. In particular, L-systems are particularly useful to procedurally model regular objects such as plants or buildings [START_REF] Bohl | Modeling Fruits and Their Internal Structure Using Parametric 3Gmap L-systems[END_REF][START_REF] Müller | Procedural modeling of buildings[END_REF]. However, they are inadequate to design a generic geometric modeler since every new rule requires dedicated implementation efforts. Conversely, graph transformation rules are self-contained and can be applied with a single rule application engine (for a given transformation class). Moreover, they have already been enriched with several variable types with various genericity purposes (e.g. label computations [START_REF] Hoffmann | Graph rewrite rules with structural recursion[END_REF], labeling constraints [START_REF] Orejas | Symbolic attributed graphs for attributed graph transformation[END_REF][START_REF] Orejas | Lazy graph transformation[END_REF], structural transformations [START_REF] Hoffmann | More on graph rewriting with contextual refinement[END_REF][START_REF] Habel | Expressiveness of graph conditions with variables[END_REF]), which facilitated the definition of variables dedicated to geometric modeling. At last, let us point out that despite the existence of many efficient generic tools (i.e. GrGen.NET, Groove, AGG, etc.) [START_REF] Pérez | A case study to evaluate the suitability of graph transformation tools for program refactoring[END_REF][START_REF] Jakumeit | A survey and comparison of transformation tools based on the transformation tool contest[END_REF], we favored the development of a dedicated tool [START_REF] Belhaouari | JERBOA: A graph transformation library for topology-based geometric modeling[END_REF] for performance issues. Indeed, as any geometric modeler, modelers designed with the help of Jerboa have to interactively handle objects that can be over a million nodes large, whereas the mentioned tools only allow few thousand nodes.

Paper organization. Section 2 presents G-maps [START_REF] Damiand | Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing[END_REF] and conditions under which rules without variable define consistent transformations. Section 3 presents orbit variables and node variables and their respective conditions of consistency preservation. In Section 4, we introduce a dedicated two-layered instantiation process to simultaneously use both variable types and we provide new conditions for consistency preservation.

G-maps and their transformations

G-maps

The topological model of G-maps [START_REF] Damiand | Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing[END_REF] can be directly encoded with labeled graphs: the topological structure is defined by both the graph itself and the arc labels, while the embedding is defined by node labels. To handle multiple embeddings (e.g. vertex positions and face colors in Fig. 2(a)), we defined in [START_REF] Bellet | Rule-based transformations for geometric modeling[END_REF] the category of Π-graphs (with Π a finite set of node labels) as an extension of partially labeled graphs [START_REF] Habel | Relabelling in graph transformation[END_REF], in which nodes have |Π| labels.

In the sequel, n ∈ N will denote the dimension of considered objects and τ will denote a generic data type name with τ its set of typed values. Π-graph. For Π = (π :→ τ) a family of typed names, a Π-graph G = (V, E, s, t, (π) π∈Π , α) consists in a set E of arcs, two functions source s : E → V and target t : E → V , a family of partial functions4 (π : V → τ) π∈Π that label nodes and a partial function α : E → [0, n] that labels arcs. All examples will be colored G-maps in dimension 2, such as in Fig. 2. Arcs are labeled on [0, 2] to encode topological relations, while nodes are labeled by positions and colors (functions pos and col respectively) to encode embedding data (A graph whose edge labels are in o is said to be of type o .

τ pos = [A, B, C, D, . . .], τ col = [, , , , . . .]). A B C D E (a) 2 2 2 2 2 2 (b) 1 1 1 1 1 1 1 (c)
Orbit. For v ∈ V G , the o -orbit of G adjacent to v, denoted by G o (v) (or o (v))
, is the subgraph of G whose set of nodes is the equivalence class of v using ≡ G o and whose set of arcs are those labeled on o between nodes of G o (v), and whose source, target, labeling functions are the restrictions of functions of G.

Embedding. An embedding π : o → τ is characterized by a name π, a data type name τ and a support orbit type o .

We will therefore consider pos : 1 2 → point and col : 0 1 → color. Regarding an embedding π : o → τ , all nodes of an o -orbit will share the same label by π (called π-label). G-maps are provided with an embedding constraint capturing this property [START_REF] Bellet | Rule-based transformations for geometric modeling[END_REF]. Besides, G-maps are equipped with constraints relating to the topology. The cycle constraint ensures that in G-maps, two i-cells can only be adjacent along (i -1)-cells. For instance, in Fig. 2(d), the 0202-cycle constraint implies that faces are stuck along topological edges.

Definition 1 (G-map [START_REF] Damiand | Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing[END_REF][START_REF] Poudret | Graph Transformation for Topology Modelling[END_REF][START_REF] Bellet | Rule-based transformations for geometric modeling[END_REF]). For Π = (π : o → τ) a family of embeddings, a G-map embedded on Π (or Π-embedded G-map) is a topological graph G = (V, E, s, t, (π) π∈Π , α) that satisfies the following consistency constraints:

-Symmetry: G is symmetric (i.e. ∀e ∈ E, ∃e ∈ E, such that s(e) = t(e), t(e) = s(e), and α(e) = α(e)), -Adjacent arcs: each node is the source node of n + 1 arcs labeled from 0 to n, -Cycles: ∀i, j such that 0 ≤ i ≤ i + 2 ≤ j ≤ n, there exists a cycle5 labeled by ijij starting from each node. -Embedding consistency: every node labeling function π ∈ Π is total and for all nodes v and w such that v ≡ o w, π(v) = π(w).

Consistent G-map transformations using DPO

Morphisms on Π-graphs extend morphisms defined on partially labeled graphs to a set of labels Π. In [START_REF] Bellet | Rule-based transformations for geometric modeling[END_REF], we extended relabeling graph transformations of [START_REF] Habel | Relabelling in graph transformation[END_REF] to Π-graphs using the double-pushout approach (DPO) [START_REF] Ehrig | Fundamentals of Algebraic Graph Transformation[END_REF]. We have shown in [START_REF] Bellet | Rule-based transformations for geometric modeling[END_REF] that the Π-graph category inherits from the partially labeled graph category [START_REF] Habel | Relabelling in graph transformation[END_REF] all classical properties such as the existence of pushouts.

Morphism. For two Π-graphs G = (V G , E G , s G , t G , (π G) π∈Π , α G) and H = (V H , E H ,
= m V • s G , t H • m E = m V • t G , π H (m(v)) = π G (v)
Rule. A rule r : L← K →R consists of two inclusions K →L and K →R such that:

-for all v ∈ V L (resp. for all e ∈ E L and all π ∈ Π), α

L (v) = ⊥ (resp. π L (e) = ⊥) implies v ∈ V K and α R (v) = ⊥ (resp. e ∈ E K and π R (e) = ⊥,), -for all v ∈ V R (resp. for all e ∈ E R and all π ∈ Π), α R (v) = ⊥ (resp. π R (e) = ⊥) implies v ∈ V K and α L (v) = ⊥ (resp. e ∈ E K and π L (e) = ⊥).
We call L the left-hand side, R the right-hand side and K the interface of r. Direct derivation. A direct derivation from a graph G to a graph H via a rule r : L← K → R consists of two natural pushouts [START_REF] Habel | Relabelling in graph transformation[END_REF] as in Fig. 3, where m : L → G, called a match morphism, is injective6 . If this derivation exists, we write G ⇒ r,m H.

For example, the rule L ← K → R in Fig. 3 matches a blue triangle which has a vertex at position A. The rule transforms the triangle into a square by splitting this vertex into two vertices at positions I and J, while changing the face color to red. According to the rule definition, unmatched labels in L such as the position of node d are also unmatched in R. Secondly, nodes of R with undefined labels are preserved nodes of the rule, with undefined labels in L. Consequently, added nodes of R such as the node v have all their labels defined in R (I and). Moreover, changed labels such as the color of d in R () are matched in L (). These rule properties ensure that when the rule is applied to a totally labeled object such as G in Fig. 3, the resulting graph H is also totally labeled.

To ensure that direct derivations preserve G-map constraints of Definition 1, [START_REF] Poudret | Graph Transformation for Topology Modelling[END_REF] and [START_REF] Bellet | Rule-based transformations for geometric modeling[END_REF] respectively introduced topological conditions and embedding conditions on rules that ensure consistency preservation. For example, the rule of Fig. 3 preserves consistency as the added nodes u and v are added with all their adjacent arcs, cycles and embeddings. Similarly, the embedding modifications (to and A to I/J) are consistently defined on all concerned nodes.

Result 1 (G-map consistency preservation using basic rules [START_REF] Poudret | Graph Transformation for Topology Modelling[END_REF][START_REF] Bellet | Rule-based transformations for geometric modeling[END_REF][START_REF] Bellet | Constraint-preserving labeled graph transformations for topology-based geometric modeling[END_REF]) For r : L ← K → R a graph transformation rule and m : L → G a match morphism on a Π-embedded n-G-map, the direct transformation G ⇒ r,m H produces a Π-embedded n-G-map if r satisfies the following topological conditions:

-Symmetry: L, K and R satisfy the symmetry constraint.

-Adjacent arcs:

• preserved nodes of K are sources of arcs having the same labels in both the left-hand side L and the right-hand side R; • removed nodes of L\K and added nodes of R\K must be source of exactly n + 1 arcs respectively labeled from 0 to n.

-Cycles: for all pair (i, j) such

0 ≤ i ≤ i + 2 ≤ j ≤ n,
• any added node of R\K is source of an ijij-cycle;

• any preserved node of K which is source of an ijij-cycle in L, is also source of an ijij-cycle in R; • any preserved node of K which is not source of an ijij-cycle in L is source of the same i-arcs and j-arcs in L and R.

and the following embedding conditions for all π : o → τ in Π:

-Embedding consistency: L, K, R satisfy the embedding consistency constraint.

-Full match of transformed embeddings:

if v is a node of K such that π L (v) = π R (v), then every node of R o (v)
is labeled and is the source of exactly one i-arc for each i of o . -Labeling of extended embedding orbits: if v is a node of K and there exists a node

w in R o (v) such that w is not in L o (v), then there exists v in K with v ≡ L o v and v ≡ R o v such that π L (v) = ⊥.

Rule variables for geometric modeling

Let us consider the face triangulation operation of Fig. 4. On the topological side, the face is subdivided into as many triangles as it contains edges. On the embedding side, new face colors are computed as the mix of the subdivided face color and the neighboring face color, while the position of the created vertex is set as the barycenter of the transformed face. As the operation depends on the attributes (number of vertices, position, color) of the matched object, its definition by a single generic rule requires the use of variables.

Graph transformations with variables

Intuitively, rule schemes (rules with variables) describe as many concrete rules as there are possibilities to instantiate variables with concrete elements. In [START_REF] Hoffmann | Graph transformation with variables[END_REF], a generic approach has been proposed to deal with variables within graph transformations: roughly speaking, a rule scheme is first applied to a graph along a kernel match morphism (in our case a morphism that only matches the topological structure L α of the left-hand side L). Then, if a substitution σ associating a value for all variables can be induced from the kernel match morphism, an instance rule, generically denoted L σ ← K σ → R σ for a rule scheme L ← K → R, can be built and finally, applied to the graph as a classical rule.

v u x, z y, z v u x, z y, z c(x,y), z c(x,y), z p q (L) (R) v u z z (K) (a) Rule scheme u A B (L) v u A B q p I I (K) (R) v u v (b) A rule instance
Using this principle, [START_REF] Hoffmann | Graph transformation with variables[END_REF] introduces three types of variables. Let us briefly present two of them which relate to our dedicated variable types. First, attribute variables illustrated in Fig. 5 allow label computation. In the rule scheme of edge subdivision, variables x and y abstract two position labels while z abstracts a color one. In the right-hand side, a topological vertex is added at the center of the existing two positions, using the dedicated center operator c : point × point → point, while the color is set to the same face color z. Secondly, clone variables illustrated in Fig. 6 allow structural abstraction. Intuitively, in order to subdivide n edges, nodes of the rule scheme which are labeled by the clone variable n are duplicated by as many nodes as the multiplicity value used to instantiate n, while arcs are duplicated accordingly to node duplications and arcs of the rule scheme. Note that as we also use the attribute variables x, y, and z, the rule scheme of Fig. 6(b) still requires to substitute them.

n n n n n n n v u x, z y, z v u x, z y, z c(x,y), z c(x,y), z p q (L) (R) v u z z (K) n (a)
Rule scheme with n as clone variable

v 1 u 1 x, z y, z v 1 u 1 x, z y, z c(x,y), z c(x,y), z p 1 q 1 z z v 2 u 2 p 2 q 2 v 1 u 1 (L) x, z y, z (K) z z u 2 v 2 u 2 v 2
x, z y, z

Node variables for embedding computation

Embedding computations require to traverse the topological structure of modified objects: e.g. the face triangulation of Fig. 4 requires to access the colors of adjacent faces, whether such faces exist or not. In [START_REF] Bellet | Constraint-preserving labeled graph transformations for topology-based geometric modeling[END_REF], we therefore introduced node variables which are similar to attribute variables. By directly using node names of L as variables, we provide operators on node variables to access embedding labels and adjacent nodes, thanks to G-map regularity. For a node variable a, a.π gives access to its π-label while a.α i (with i ≤ n) gives access to the node connected to node a by an i-arc. Embedding expressions used in a rule scheme L ← K → R are then terms built over these operators and nodes of L. Thus, for a kernel match morphism m :

L α → G, a rule instance L m V ← K m V → R m V
can be computed by using the node matching function m V as variable substitution. From the rule scheme of Fig. 7(a), we can build the two rule instances of Fig. 7(b) and 7(c) respectively corresponding to triangles BAC and JCI of Fig. 4(a). In the left-hand side, the term a.col is respectively evaluated as and .

In the right-hand side, the dedicated operator mix : color × color → color is applied to the face color (a.col) and the color of the neighboring face (a.α 2 .col). At rule application, a.α 2 is evaluated as the 2-neighbor of a. Note that in the border, nodes are their self 2-neighbors (e.g. node a in Fig. 2(e)). Consequently, some created faces in Fig. 7(b) and 7(c) keep their original color. At last, embedding expressions also include operators in charge of collecting all embedding values carried by a given orbit. In the rule scheme of Fig. 7(a), the term pos 0 1 (a) is evaluated as the multiset of positions labeling the face, i.e. of 0 1 -orbit adjacent to node a. In the instance of Fig. 7 In order to instantiate a rule scheme built over node variables into a rule that satisfies the conditions of Result 1, we introduced in [3] a completion step. Let us consider the example of Fig. 8 that merges two faces by removing their common edge and mixing their colors. This operation can be defined independently of face shapes by the minimal rule scheme of Fig. 8(a) that only deals with the central edge and the adjacent nodes. The completion step automatically includes in the rule instance all nodes concerned by embedding modifications. In the example of Fig. 8(b) corresponding to an application to the object of Fig. 2(e), this step completes the rule with the rest of the two faces so that the green color can be attached on the whole new faces.

Consequently, rule schemes are exempt from the condition of full match of transformed embeddings of Result 1. However, to prevent misapplication cases in which two different embedding orbits would be matched as a single one, the condition of full match is replaced by a non-overlap condition on match morphism. Note that similarly to the condition of injective match morphism, the non-overlap condition has to be dynamically checked, with no particular difficulty.

Result 2 (G-map consistency preservation using node variables [START_REF] Bellet | Constraint-preserving labeled graph transformations for topology-based geometric modeling[END_REF])

For r : L← K →R a rule scheme with node variables and m : L α →G a match morphism on a Π-embedded G-map, if r satisfies the conditions of Result 1, except the full match of transformed embeddings, and satisfies the following non-overlap condition for all o occurring as support orbit type in Π = (π : o → τ), then the instance rule7 r m

V : L m V ← K m V →R m V satisfies the conditions of Result 1. Non-overlap: for v, u ∈ V L such as v ≡ L o u, m(v) ≡ G o m(u).

Orbit variables for topological rewriting

As existing variable types were unfit to abstract G-map cell transformations, we introduced orbit variables in [START_REF] Poudret | Graph Transformation for Topology Modelling[END_REF]. Intuitively, these are typed by an orbit type o so that they can abstract any G-map orbit of type o . By rewriting o into another type o , we can change arc labels or remove arcs. For example, the rule scheme of Fig. 9(a) models the topological triangulation of any face -i.e any orbit of type 0 1 . Note that, as for clone variables in Fig. 6, the other node labels, in this case the color labels, are duplicated along the orbit variable instantiation. Note also that these colors have been chosen to help reading of orbit copies, disregarding G-map embedding consistency preservation.

⟨ 0 _ ⟩ 〈 _ 2 ⟩ 〈 1 2 ⟩ 〈 0 1 ⟩ v (L) v (K) (R) v' v'' v
(K) (R) (b) Triangle rule instance (L) (K) (R) j g h m k l i n g h m k l i n j j'' g'' h'' m'' k'' l'' i'' n'' j g h m k l i n j' g' h' m' k' l' i' n'
(c) Square rule instance The two instance rules of Fig. 9(b) and 9(c) are constructed as follows: 1. the node v labeled in L with the orbit type 0 1 is substituted by a face, i.e. a 0 1 -orbit, e.g. a triangle (resp. a square), to build L σ ; 2. each node of L σ is kept in R σ , and duplicated twice, corresponding to the nodes v, v and v , labeled by different types in R; 3. for the face matched by node v, 0-arcs are conserved in R σ while 1-arcs are removed as v is relabeled in R by 0 (an "empty" label replaces 1); similarly, for node v , the type 2 means both removal of 0-arcs and 2relabeling of 1-arcs while for the v node, 1 2 entails 1-relabeling of 0-arcs and 2-relabeling of 1-arcs; 4. at last, as indicated by the arcs of R between v, v and v nodes, any node of the matched face v is connected to its image in copy v with a 1-arc, and all v and v images of a given node are connected with a 0-arc. Topological rewriting. A topological rewriting ω of an orbit type o is defined by a word ω on [0, n]∪{ }, of same length as o, and such that for all i in [0, n], there is at most one occurrence of i in ω. We write o → ω for the type rewriting function that associates each label o i ∈ [0, n] at position i in o to its images ω i at the same position in ω -i.e. o → ω (o i) = ω i . For a graph G = (V, E, s, t, (π) π∈Π , α) of type o , we denote G o→ω = (V, E , s, t, (π) π∈Π , α) the rewritten graph with [START_REF] Poudret | Graph Transformation for Topology Modelling[END_REF]. The functions that respectively associate instance nodes with their originating nodes in graphs of r or in O are respectively denoted

E ⊂ E such that ∀e ∈ E, e ∈ E if o → ω (α(e)) =
↑ L L O : V L O →V L , ↑ L K O : V K O →V K , ↑ R R O : V R O →V R and ↑ O r O : (V L O ∪ V K O ∪ V R O) →V O .
In particular, for all π ∈ Π and all node v of r O , we have π

(v) = π(↑ O r O (v)
). Since nodes of rule schemes contain topological rewritings as special labels used to match topological graphs, they do not belong to the same Π-category than the underlying Π-embedded G-maps. However, as in Fig. 9, these extra labels disappear after variable instantiation. Additionally, the syntactic conditions that preserve G-map topological consistency have been adapted to handle both the explicit arcs of rule graphs and the implicit arcs of topological rewritings that label nodes. For example, node v in Fig. 9(a) is added with all its adjacent arcs as both the 0-arc and 1-arc are explicit in R, while the 2-arc is implicit in the orbit rewriting 2 . Similarly, v is added with an half-implicit 0202-cycle as v and v are connected with an explicit 0-arc while 2 is at the same position in their topological rewritings 2 and 1 2 .

Result 3 (Topological consistency preservation using orbit variable [START_REF] Poudret | Graph Transformation for Topology Modelling[END_REF]) For r : L ← K →R a rule scheme with orbit variable o and a graph O of type o , the instance rule r O : L O ← K O →R O satisfies the topological conditions of G-map consistency preservation of Result 1 if r satisfies the same conditions extended to implicit arcs and cycles such as for v a node of L, K or R labeled by ω :

-

for i ∈ [0, n], v is source of an implicit i-arc if i ∈ ω ; for v ∈ K, this implicit i-arc is preserved if i is at the same position in ω L and ω R the respective labels of v in L and R -i.e. ω L → ω R (i) = i; -for all (i, j), v is source of an implicit ijij-cycle if i ∈ ω , j ∈ ω , and
there exists a node v in L labeled by ω and source of an i j i j -cycle such that i = ω → ω (i) and j = ω → ω (j); for all (i, j), v is source of an half-implicit ijij-cycle if i ∈ ω (resp. j ∈ ω) and either v is source of an j-loop (resp. i-loop) or v is connected by an j-arc (resp. i-arc) to a node v labeled by ω such that i (resp. j) is at the same position in ω and ω -i.e. ω → ω (i) = i (resp. ω → ω (j) = j).

As orbit variables abstract multiple nodes (and arcs), their combined use with node variable requires some care in order to instantiate both variable types.

4 Rule schemes for specifying modeling operations

Combining orbit variables and node variables

Let us consider the rule scheme of Fig. 10(a) that defines the face triangulation of Fig. 4 by combining the two variable transformations of Fig. 7 and9. Intuitively, as the orbit variable 0 1 defines the topological structure of the rule instance, it has to be substituted first in order to provide all the node variables required to match the embedding of the face. When the orbit variable is instantiated in Fig. 10(b) by a triangle face, the terms v.pos and v.col are duplicated on all instantiated nodes. However, they are rewritten by respectively replacing v by the new node names a, b, . . . , f . For example, the term mix(v.col, v.α 2 .col) has been rewritten on c by mix(c.col, c.α 2 .col) as c is the corresponding new variable.

⟨ 0 1 ⟩ ⟨ 0 _ ⟩ ⟨ 1 2 ⟩ z = mix (v. col, v. α 2 . col) y = bary (pos (v)) u, z y, z v (L) v (K) u, x v' v'' v (R) ⟨ _ 2 ⟩ u, z u = v. pos x = v. col 〈0 1〉 (
u(d), z(d) z(v) = mix (v. col, v. α 2 . col) y(v) = bary (pos (v)) u(d), z(d) u(a), z(a) y(a), z(a) y(c), z(c) y(e), z(e) y(f), z(f) u(a), z(a) u(c), z(c) u(c), z(c) u(e), z(e) u(f), z(f) a' b' a'' b'' c' e' f' d' e'' f'' c'' d'' u(b), x(b) u(d), x(d) u(a), x(a) u(e), x(e) u(f), x(f) u(c), x(c) u(v) = v. pos x(v) = v. col 〈0 1〉 (ρ R) u(e), z(e) u(f), z(f) (ρ L) (ρ K)
(b) After orbit variable substitution and term rewriting Fig. 10. Face triangulation with both variables types Definition 2 (Term rewriting). Let r : L← K →R be a rule scheme with orbit variable o and node variables. Let r O be a rule scheme with node variables resulting from a substitution o by a graph O of type o . The rewritten rule scheme r(O) results from the respective application of the following term functions ρ v for each node v of r O to the node labels of r O , such that ρ v extends the following variable substitution: for every node variable

u of V L , ρ v (u) = u in which u is the unique node variable of V L O such that ↑ L L O (u) = u and ↑ O r O (u) = ↑ O r O (v).
Similarly to the rule scheme of Fig. 7(a), the rewritten one of Fig. 10(a) only requires to substitute node variables to produce the instance rules of Fig. 7(b) and 7(c), but in this case multiple terms define the same value. For example, the barycenter is successively defined as bary(pos 0 1 (a)), bary(pos 0 1 (b)), . . . , bary(pos 0 1 (f)) which will all result in the same position. Therefore we must adapt the conditions of consistency preservation.

Consistency preservation

Let us consider the rule scheme of Fig. 11(a) that still defines the triangulation, but with different embedding computations. In particular, the center is positioned right between the corner and the barycenter (c(v.pos, bary 0 1 (v))) and the color of created faces is defined as the mix between the original color and the color of the adjacent face around the corner (v.α 1 .α 2 .col). Note that this rule satisfies the conditions of embedding consistency preservation as defined in Result 2. However, most instances of this scheme surely break the embedding consistency. Fig. 11(b) and 11(c) respectively present the rule instance and the intuitive representation for its application to the triangle ABC of Fig. 4(a). This rule breaks the added vertex consistency since three different positions are computed:

I = c(A, M), J = c(B, M), K = c(C, M) with M = bary([A, B, C]).
Similarly, each created face is embedded with two different colors since the original color is mixed with the colors of the faces around the two corners. To prevent inconsistencies, conditions on rule scheme must take into account the pattern expanding and the term rewriting due to the orbit variable substitution. For this purpose, considering rule schemes without orbit variable, we first define the equivalence between two embedding terms that ensures embedding equality on rule application to a G-map. Definition 3 (Term equivalence). Let r : L ← K → R be a rule scheme with node variables.

⟨ 0 1 ⟩ ⟨ 0 _ ⟩ ⟨ 1 2 ⟩ z = mix (v. col, v. α 1 .α 2 . col) y = c (v. pos, bary (pos (v)) u, z y, z v (L) v (K) u, x v' v'' v (R) ⟨ _ 2 ⟩ u, z u = v. pos x = v. col 〈0 1〉 (
For any terms t and t of r that define an embedding π : o → τ , the equivalence between terms, denoted t ≡ L o t , is the smallest equivalence relation extending the equivalence between nodes of L such that:

for all dimension i ∈ [0 Intuitively, in the rule scheme of Fig. 10(b), the two terms bary(pos 0 1 (a)) bary(pos 0 1 (b)) are equivalent because a and b belong to the same 0 1 -orbit in L. Similarly, mix(a.col, a.α 2 .col) and mix(c.col, c.α 2 .col) are equivalent because: (i) a.col and c.col are equivalent as they belong to the same 0 1 -orbit carrying the color embedding; (ii) a.α 2 .col and c.α 2 .col are equivalent as the α 2 -access ensures that a.α 2 and c.α 2 belong to the same 0 1 -orbit and thus have the same color.

Theorem 1 (Evaluation equality along term equivalence). Let r : L ← K → R be a rule scheme with node variables and m : L α → G a kernel match morphism on a Π-embedded n-G-map G.

If two terms t and t of r defining an embedding π : o → τ are equivalent, i.e. t ≡ L o t , then their interpretations along m V are equal, i.e. t m V = t m V . Proof. Let r : L ← K → R be a rule scheme with embedding terms (without orbit variable) and m : L α → G a kernel match morphism on a Π-embedded n-Gmap G. Let us show by induction on the structure of t and t , that if two terms t and t of r defining an embedding π : o → τ are equivalent, i.e. t ≡ L o t , then their interpretations along m V are equal, i.e. t m V = t m V .

If t ≡ L o t , then by term equivalence definition 3, one of the following case is verifyed:

t = u and t = u are two node variables of L. Then, by match morphism definition,

q m V ≡ G o q m V . -t = p.α i , t = p .α i with i ∈ [0,
V = t 1 m V , . . . , t m m V = t m m V . Then, f (t 1 m V , . . . , t m m V) = f (t 1 m V , . . . , t m m V), and therefore t m V = t m V .
Consequently, equivalent embedding terms have equal interpretations.

We now define a condition on rule schemes with orbit variable that ensure term equivalence, and therefore stability along the instantiation process. Intuitively, this condition ensures that when a term labels a node that is also labeled by a topological rewriting, the rewritten terms should be equivalent for all expanded embedding orbits. This can be predicted by comparing the term itself with terms capturing the relabeling of concern arcs -i.e. that belong to the embedding orbit.

Let us consider the term bary(pos 0 1 (v)) that labels node v in the rule scheme of Fig. 10(a). As node v is labeled by 1 2 and will be expanded, we must ensure equivalence for all labels of the 1 2 -subset of 1 2 (vertex orbit carrying the position embedding), therefore in this case for both 1 and 2. As node v appearing in the term is originally labeled 0 1 in L, we have to consider the respective reverse relabeling 1 2 → 0 1 (1) = 0 and 1 2 → 0 1 (2) = 1. Consequently, the term must be equivalent to both bary(pos 0 1 (v.α 0)) and bary(pos 0 1 (v.α 1)). This is indeed true as v.α 0 and v.α 1 both belong to the collected orbit 0 1 (v).

Similarly, let us consider the term mix(v.col, v.α 2 .col) labeling v . We must ensure equivalence for all labels of the 1 2 -subset of the 0 1 (face orbit carrying the color embedding), therefore in the case only 1. As node v appearing in the term is originally labeled by 0 1 in L, we consider 1 2 → 0 1 (1) = 0 and show that the term is equivalent to mix(v.α 0 .col, v.α 0 .α 2 .col). As α 0 belong to the face orbit 0 1 carrying the color embedding, v.col and v.α 0 .col are equivalent. Similarly, because of the 0202-cycle constraint of G-maps, v.α 2 and v.α 0 .α 2 belong to the same face, therefore v.α 2 .col and v.α 0 .α 2 .col are equivalent terms.

Definition 4 (Condition of term stability). Let r : L ← K → R be a rule scheme with orbit variable and node variables, and v a node of L, K or R, such v is labeled by an embedding term t defining an embedding π : o → τ and by a topological rewriting ω v .

The term t is stable along instantiation if for all label i of o the o -subset of ω v , t is equivalent to the rewritten term t i (i.e. t ≡ L o t i) in which any occurence of a variable x ∈ V L is replaced by x.α j , in which j = ω v → ω x (i) 9with ω x the topological rewriting that labels x in L.

Finally, rule schemes containing both node variables and orbit variables preserve G-map consistency if they satisfy all conditions previously introduced, including term stability. Note that the non-overlap condition of Result 2 is still to be additionally checked on the application morphism.

Theorem 2 (G-map consistency preservation using both variable types). For a rule scheme r : L ← K → R with orbit variable and node variables, any rule instance resulting from the orbit variable substitution satisfies the conditions of Result 2 if r satisfies the topological conditions of Result 3 and the following embedding conditions:

-Embedding consistency of Result 1; -Labeling of extended embedding conditions orbits of Result 1; -Term stability of Definition 4.

Proof. For r : L ← K → R a rule scheme with orbit variable and node variables, we have to show that any rule instance resulting from the orbit variable substitution satisfies the conditions of Result 2 (G-map consistency preservation using node variables) if r satisfies the topological conditions of Result 3 (G-map consistency preservation using orbit variable) and the following embedding conditions:

-Embedding consistency and labeling of extended embedding conditions orbits of Result 1 (G-map consistency preservation using basic rules); -Term stability of Definition 4.

Result 3 showed that if a rule scheme with orbit variable satisfies the topological conditions of Result 1 up to arcs and cycles within orbit variable, instances resulting from the orbit variable substitution fully satisfy the same conditions. As nodes variable substitution does not affect the topological structures of rules, instances resulting from this second step also satisfy these conditions. We still have to show that rule instances satisfy the embedding conditions of Result 1.

[3] already showed that if a rule scheme with orbit variable satisfy the nonoverlap condition of Result 2, instance resulting from node variable substitution satisfy the full match of transformed embeddings of Result 1.

Let us show that the embedding consistency condition and of the term stability condition ensure that rule instances satisfy the embedding consistency condition. v and v have a same antecedent u in R (resp. L, K), e is abstracted by an implicit arc of the topological rewritings labeling u. In this case, t and t comes from the same term s, which has been rewritten along the substituted orbit. Therefore, any node variable x of L occurring in s has been respectively substituted by two variables of the substituted pattern L O with the same image in the substituted orbit, i.e. two variable x t and x t such as

↑ O r O (x t) = ↑ O r O (v) and ↑ O r O (x t) = ↑ O r O (v).
Let us note ω u and ω x the respective labels of u and x. Because of term equivalence, the arc e has an antecedent e in L O such that its label is j = ω u → ω x (i) and therefore, x t = x t .α j . Because the condition of term stability of Definition 4 ensure that the term s must equivalent using either x or x.α j , therefore t and t are equivalent. As equal terms produce equal values, v and v satisfy the embedding consistency.

v and v have two respective antecedents u and u in R (resp. L, K), e is an arc of R (resp. L, K). As r satisfy the embedding consistency condition, t and t originate from a same term s. Moreover, as v and v are connected with a rule arc, they are at the same position in the instance orbit, i.e. ↑ O r O (v) = ↑ O r O (v). Therefore, t and t have been rewritten with the same node variables at the same position, i.e for all variable x ∈ V L occurring in s, x is rewritten by the same variable y ∈ V L O in t and t as

↑ O r O (v) = ↑ O r O (v) = ↑ O r O (y).
The two terms are therefore equal, and as equal terms produce equal values, v and v satisfy the embedding consistency.

Conclusion

In this paper, we have presented a rule-based language for geometric modeling involving two types of variables, node variables and orbit variables, and provided them with a two-layered variable substitution mechanism. Orbit variables are first substituted, therefore defining the resulting topological structure and generating new node variables; these node variables are then substituted to compute the new embeddings. Moreover, rules written in a DPO style are provided with syntactic conditions ensuring the consistency preservation of embedded G-maps -i.e. by construction, transformed objects are also embedded G-maps. In particular, by introducing the conditions of term stability and terms equivalence, the syntactic conditions of embedding consistency preservation have been adapted to handle the new node variables generated by the orbit variable instantiation. This language is the core of Jerboa, a tool set for designing and generating geometric modelers.

Fig. 1 .

 1 Fig. 1. Design and application of the face triangulation with Jerboa

Fig. 2 .

 2 Fig. 2. Decomposition of a geometric 2D object into a 2-G-map

 for all π ∈ Π and v ∈ Dom(π G), and α H (m(e)) = α G (e) for all e ∈ Dom(α G). If m(v) = v for all v ∈ V G and m(e) = e for all e ∈ E G , m is an inclusion and is denoted m : G → H.

Fig. 3 .

 3 Fig. 3. A direct derivation

Fig. 4 .

 4 Fig. 4. A modeling operation: face triangulation

Fig. 5 .

 5 Fig. 5. Embedding label computations with attribute variables

2 Fig. 6 .

 26 Fig. 6. Expanding computations with clone variables

vFig. 7 .

 7 Fig. 7. Triangle triangulation with embedding terms

 (b), this set is [A, B, C] and the added vertex is positioned at bary([A, B, C]) = M using a dedicated barycenter operator.

Fig. 8 .

 8 Fig. 8. Face merge with embedding terms

Fig. 9 .

 9 Fig. 9. Face triangulation with orbit variable

 , and e ∈ E otherwise with α (e) = o → ω (α(e)). At last, for convenience, o denotes both an orbit type and the identity type rewriting function o → o . Rule scheme with orbit variable. For an orbit type o , a rule scheme L← K →R with orbit variable o is such that all nodes of L, K and R are labeled by topological rewritings of o and at least one node of L is labeled by o . Orbit variable instantiation. For r : L ← K → R a rule scheme with orbit variable o and O a graph of type o , we denote r O : L O ← K O → R O the instantiated rule 8

 a) Rule scheme on the orbit type 0 1

Fig. 11 .

 11 Fig. 11. Break of G-map consistency

 Let us note r(O) : L(O) ← K(O) → R(O) the rule scheme resulting from orbit substitution and term rewriting. For any embedding operation π : o → τ , let us consider v and v two nodes of R(O) (resp. L(O), K(O)) connected by an α i -arc e with i ∈ o , respectively labeled by the rewritten term t and t . Two cases exist:

 s H , t H , (π H) π∈Π , α H), a Π-graph morphism m : G → H is defined by two functions m V : V G →V H and m E : E G →E H preserving sources, targets and labels -i.e. s H • m E

 , n], let o the sub-orbit of o containing all dimensionsj of o such j + 2 ≤ i or i + 2 ≤ j, if t ≡ L o t then t.α i ≡ L o t .α i , for all dimension i ∈ o , if t ≡ L o t then t ≡ L o t.α i and t.α i ≡ L o t , for all embedding π : o → τ , if t ≡ L o t then t.π ≡ L o t .π , for all orbit o , if t ≡ L o t then π o (t) ≡ L o π o (t), for all user function f : s 1 ×...×s m → s m+1 and all terms t 1 , t 1 : s 1 , ..., t m , t m : s m , if t 1 ≡ L o t 1 and ... and t m ≡ L o t m then f (t 1 , ..., t m) ≡ L o f (t 1 , ..., t m).

 n], p and p two node termes, and p ≡ L o p with o the sub-orbit of o containing all dimensions j of o such that j + 2 ≤ i or i + 2 ≤ j. Then by induction hypothesis, p m V ≡ G o p m V . And thanks to the cycle consistency constraint on the G-map G (see Definition 1), t m V and t m V are two nodes of the same o -orbit and then of the same o -orbit , i.e.t m V ≡ G o t m V .t = p.α i (resp. t = p .α i) with i ∈ o and p (resp. p) is a node term, andp ≡ L o t (resp. t ≡ L o p). Then by induction hypothesis p m V ≡ G o t m V (resp. t m V ≡ G o p m V).And thanks to the embedding consistency constraint on the G-map G (see Definition 1),t m V ≡ G o t m V .t = p.π and t = p .π with π : o → τ an embedding of Π, p and p two node termes, and p ≡ L o p . Then, by induction hypothesisp m V ≡ G o p m V .And by definition of embedded G-maps, p m V and p m V have the same πembedding (π (p m V) = π (p m V)), and therefore t m V = t m V .t = π o (p) and t = π o (p) with π : o → τ an embedding of Π, p and p two node termes, and p ≡ L o p . Then by induction hypothesis p m V and p m V are two nodes of the same collected o -orbit, i.e. p m V ≡ G o p m V . Consequently, t m V and t m V are the same set of τ values, i.e. t m V = t m V . t = f (p 1 , . . . , p m) and t = f (p 1 , . . . , p m) with a user function f : s 1 × ... × s m → s m+1 , and p 1 , . . . , p m , p 1 , . . . , p m terms of type s 1 , . . . , s m respectively, and p 1 ≡ L o p 1 , . . . , p m ≡ L o p m . By induction hypothesis, because s 1 , . . . , s m are user types distinct from nodes, t 1 m

http://xlim-sic.labo.univ-poitiers.fr/jerboa/

Given X and Y two sets, a partial function f from X to Y is a total function f : X → Y , from X a subset of X. X is called the domain of f , and is denoted by Dom(f). For x ∈ X\Dom(f), we say that f (x) is undefined, and write f (x) = ⊥. We also note ⊥ : X → Y the function totally undefined, that is Dom(⊥) = ∅.

A cycle is a sequence e1...e k of arcs such t(ei) = s(ei+1) for each 1 ≤ i < k and t(e k) = s(e1). The word α(e1)...α(e k) is called its label.

A morphism g is injective if gV and gE are injective.

Note that the instantiation includes the completion step that consist in extending the matched and transformed patterns to the embedding orbits[START_REF] Bellet | Constraint-preserving labeled graph transformations for topology-based geometric modeling[END_REF].

L 0 , K 0 , and R 0 are the Cartesian product graphs of O and resp. graphs L, K and R, by keeping tracks of arc relabelings and arc removals.

Note that if ωv → ωx (i) = , ti does not exist and therefore t is not stable.