N

N
N

HAL

open science

aGrUM: a Graphical Universal Model framework

Christophe Gonzales, Lionel Torti, Pierre-Henri Wuillemin

» To cite this version:

Christophe Gonzales, Lionel Torti, Pierre-Henri Wuillemin. aGrUM: a Graphical Universal Model
framework. IEA/AIE 2017 - 30th International Conference on Industrial Engineering and Other
Applications of Applied Intelligent Systems, Jun 2017, Arras, France. pp.171-177, 10.1007/978-3-

319-60045-1 20 . hal-01509651

HAL Id: hal-01509651
https://hal.science/hal-01509651
Submitted on 18 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01509651
https://hal.archives-ouvertes.fr

aGrUM: a Graphical Universal Model framework

Christophe Gonzales, Lionel Torti, and Pierre-Henri Wuillemin

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France, email:
firstname.lastname @lip6.fr

Abstract. This paper presents the aGrUM framework, a C++ library provid-
ing state-of-the-art implementations of graphical models for decision making, in-
cluding Bayesian Networks, Influence Diagrams, Credal Networks, Probabilistic
Relational Models. This is the result of an ongoing effort to build an efficient
and well maintained open source cross-platform software, running on Linux,
MacOS X and Windows, for dealing with graphical models. The framework also
contains a wrapper, pyAgrum, for exploiting aGrUM within Python.

1 Introduction

The aGrUM project started eight years ago at the artificial intelligence and decision de-
partment of University Pierre and Marie Curie (http://www.lip6. fr). Developed by
several contributors, in particular the authors of the present paper, the project grew into
an extensive open source graphical model framework. This one includes the aGrUM
C++ library, a Python wrapper and some applications, all running on Linux, MacOS
and Windows (supported compilers include g++, clang, mvsc, mingw). The framework
is freely available at http://agrum.lip6.fr!. There also exists a dedicated website
(http://pyagrum.lipé6. fr) for the python wrapper: pyAgrum.

The goal of aGrUM is the development of an efficient, easy-to-use and well main-
tained framework for dealing with graphical models for decision making (e.g., Bayesian
Networks, Influence Diagrams, efc.). The emphasis is set on high standards for perfor-
mance, code quality and usability. The aGrUM framework is now used by academics
and industrials around the world, both end-users and algorithm designers. European
projects DREAM, MIDAS and SCISSOR as well as French ANR projects SKOOB,
INCALIN, LARDONS and DESCRIBE also exploit aGrUM. It is a placeholder for its
authors’ research and more than fifty papers published in international conferences and
journals use aGrUM for implementation and benchmarking. The framework’s name,
aGrUM, stands for “A GRaphical Universal Model” but let us be clear that aGrUM does
not provide a universal model but offers serveral puns in the French language.

2 aGrUM features

The aGrUM C++ library is divided into seven modules, the majority of which relate to
different graphical models:

! The website also contains installation instructions, the library’s documentation and support.

http://www.lip6.fr
http://agrum.lip6.fr
http://pyagrum.lip6.fr

— BN: Bayesian Networks.

Learning: Bayesian Network learning algorithms [5], [2].
CN: Credal Networks [3].

FMDP: Factorized Markov Decision Processes [4].

— ID: Influence Diagrams.

— PRM: Probabilistic Relational Models [6].

Core: common data structures and utilities.

The BN module provides flexible and efficient implementations of Bayesian Net-
works. Those can be read from (and written to) files of different formats (BIF, DSL, net,
cnf, BIFXML, UAI). They can also be generated (randomly) from several “generators”
or learnt from data using the Learning module. The aGrUM library allows users to de-
fine BNs using traditional Conditional Probability Tables (CPT), but also using Noisy
OR or Noisy AND gates, Logit models, aggregators (and, or, max, min, exists, forall,
etc.). In addition, for a high level of efficiency, CPTs can be encoded using different
representations (arrays, sparse matrices, algebraic decision diagrams, etc.). Those are
exploited in various inference algorithms like Lazy Propagation, Shafer-Shenoy, Vari-
able Elimination, Gibbs sampling, etc., including relevant reasoning methods.

A specific module is provided for learning the structure and/or parameters of BNs
from datasets. Currently, those can be either CSV files or SQL databases. Here again,
the library has been designed in order to be as flexible as possible and follows a compo-
nent-based approach: structure learning algorithms are a combination of a handler for
reading the database, a score among (BD, BDeu, K2, AIC, BIC/MDL) with, possibly,
some additional a priori (smoothing or Dirichlet), a component for scheduling local
structure changes and a set of constraints that the user wishes to be satisfied. The lat-
ter includes structural constraints like requiring/forbidding arcs, limiting the indegrees
and imposing a partial ordering on the nodes. The learning algorithms currently imple-
mented using this framework are greedy hill climbing, local search with tabu list and
K2. BN parameters can also be learnt either by maximum likelihood or maximum a
posteriori. All the learning algorithms are highly parallelized thanks to the OpenMP
library.

Beside BNs, other graphical models have been implemented: Credal Networks (mod-
ule CN), Factorized Markov Decision Processes (FMDP), Influence Diagrams (ID) and
Probabilistic Relational Models (PRM). These modules follow the same philosophy as
the BN module: high flexibility, inference efficiency, extended file format support. For
instance, all these models are shipped with tailored inference algorithms, e.g., loopy
propagation and Monte Carlo for CN, SPUDD for FMDPs, Shafer-Shenoy for IDs.

All the aforementioned modules rely on the core module for their data structures
and common algorithms. These include classical data structures like lists, hashtables,
AVL search trees, sets, heaps, etc., that have been implemented in the library in such
a way that they are both safe and particularly efficient. More complex data structures
and algorithms are provided, like graph definitions and algorithms (including, e.g., a
whole hierarchy of triangulations, notably incremental ones) and the different flavors
of multidimensional tables described in the preceding page. The core of the aGrUM
library also provides some tools used to make sure that aGrUM’s code satisfies the
highest quality standards and is memory leak free.

3 Extensions

Beside the aGrUM library, the aGrUM framework provides a wrapper for Python:
pyAgrum . It also implements the specific probabilistic graphical models (PGM) lan-
guage O3PRM (http://03PRM.1ip6. fr).

— Jupyter Graphicallnference Last Checkpoint: 02/17/2017 (autosaved) Logout

File Edit View Inset Cell Kemel Help devAgrum (python3) ©

#/3c @ B 2% [n/m Clyangom | = Celooar
In [17]: 1 gnb.showInference(bn,evs={"C0" :1, "VENTLUNG" :1}, targets={ "VENTALV" ,"CATECHOL" , "HR" , "MINVOLSET" , "ANAPHYLAXIS" , "STROKE *
2 size="10"

>

VENTTUBE KINKEDTUEE INTUBATION

!

VENTLUNG

l

MINVOL

HYPOVOLEMIA LVEAILURE
[N LI

Different learning algorithms

For now, there are three algorithms that are wrapped in pyAgrum : LocalSearchWithTabulList,

In [11]: 1 learner=gum.BNLearner("sample_asia.csv")
learner.uselocalSearchWithTabuList()

bn2=1learner.learnBN()

4 print("Learned in {@}ms".format(1eee+learner.currentTime()))
5 gnb.sideBySide(bn2,gnb.getInformation(bn2))

5 kl=gum.BruteForceKL(bn,bn2)

kl.compute()

9 ™

Learned in 2263.081676ms l

wherculos _or_cancer’ positive_XrY?

wberculasis?

wherculos_or_cancer] positive_Xra¥?

bronchitis?

0.07993658992755403

06
Entropy

Out[11]: {'bhattacharya': 4.488629431483271,
‘errorPQ': 0,
'errorQP': 128,
"hellinger': 1.4062460471962672,
"K1PQ': 17.324500422860527,
'K1QP': 15.429040246618547}

Fig. 1: Some Python notebooks using pyAgrum.

http://O3PRM.lip6.fr

3.1 pyAgrum

pyAgrum is a Python wrapper for the C++ aGrUM library. It provides a very user
friendly high-level interface for manipulating aGrUM'’s graphical models while keep-
ing the high performance level of the C++ library. Within Python Notebooks, pyAgrum
can be easily used as a PGM graphical editor. Figure 1 shows such notebooks, illustrat-
ing, e.g., how BN structure learning and inferences can be performed. Note that many
computations’ outputs are provided graphically in order to facilitate their analysis by
the users. Other learning libraries, such as Pandas (http://pandas.pydata.org),
can also be used in conjunction with pyAgrum’s models. The latter include Bayesian
Networks, Credal Networks and Influence Diagrams. All these features make pyAgrum
a very versatile and efficient PGM package. Tutorials, demos and downloading/instal-
lation instructions can be found at http://pyagrum.lip6.fr.

Figure 2 is taken from one of many examples provided with the pyAgrum notebooks
(notebooks are available on pyAgrum website http://pyagrum.lip6.fr). In this
example, we use pyAgrum to iterate over 100 probabilistic inferences to produce these
results. Without entering into details, the idea is to visualize the impact of evidence
over one variable on another. Here the x axis represents an increasing belief that the
MINVOLSET variable of the classical benchmark Bayesian network Alarm equals
NORM AL. The y axis indicates the posterior probability of the V ENT ALV variable
given the evidence over MINV OLSFET. Each curve indicates the probability of a
particular value of VENT ALV given the evidence on MINVOLSET.

3.2 O3PRM

The aGrUM library contains a specific module named PRM for Probabilistic Rela-
tional Models. They are a fully object-oriented extension of Bayesian Networks, as
specified in [7]: they implement the notions of classes, interfaces, instances, attributes,
reference slots, slot chains, systems, efc. Their object-oriented nature greatly reduces
the maintenance and creation costs of complex systems with many repeated subcompo-
nents. Highly efficient inference engines like structured variable elimination (SVE) or
SVE with relevant reasoning are provided in the module. A bridge with the BN module
exists that enables grounding PRMs into BN, thereby allowing the exploitation of all
the available BN-related algorithms of aGrUM. Finally, a domain specific language
O3PRM has been developed to enable users to easily create PRMs.

4 Towards aGrUM 1.0

aGrUM is under active development and, even if many of its features are robust and well
designed, aGrUM is still missing some fundamental algorithms and useful features that
we strive to implement.

Regarding approximate probabilistic inference, we wish to add various Belief Prop-
agation algorithms. For exact inference, we still have to parallelize and further optimize
our inference engines. With these additions, aGrUM will offer a wide variety of opti-
mized probabilistic inference algorithms, making it a complete framework for proba-
bilistic inference.

http://pandas.pydata.org
http://pyagrum.lip6.fr
http://pyagrum.lip6.fr

Jupyter demoPyAgrum s Logout
File Edit View nsert Cell Kernel Help devAgrum (pythen3) O

+ % @ B 4+ ¥ M B C Coe v| @ | CellToolbar

Using inference as a function

It is also easy to use inference as a routine in more complex procedure.

In [13]: import time

r=range(e,100,2)
xs=[x/100.8 for x in r]

tf=time.time()

ys=[gum.getPosterior(bn,{'MINVOLSET':[0,x/100.0,0.5]}, '"VENTALV').tolist()
for x in r]

delta=time.time()-tf

p=plot(xs,ys) '
legend(p, [bn.variableFromName('VENTALY').label(i)
for i in range(bn.variableFromName('VENTALY').domainsize())],loc=7);
title('VENTALV (100 inferences in %d ms)'%delta);
ylabel('posterior Probability');
xlabel('Evidence on MINVOLSET : [0,x,0.5]');

VENTALV (100 inferences in 0 ms)

08 —

'

05 — R0
Low
041 | — NORMAL

| — HIGH
03 '

ty
-

posterior Probabili

02

o1

00

00 02 04 06 08 10
Evidence on MINVOLSET - [0,%,0.5]

Fig. 2: pyAgrum in action: sensibility analysis

We plan to add the Expectation-Maximization (EM) algorithm and its structural
counterpart SEM into aGrUM’s learning module. The EM algorithm is widely used
in machine learning for finding maximum likelihood or maximum a posteriori esti-
mates of parameters. In conjunction with the learning algorithms already implemented
in aGrUM, the framework will offer a broad range of methods for learning Bayesian
Networks and other graphical models.

We also plan to add into aGrUM mixed discrete/continuous extensions of Bayesian
networks, including, e.g., that proposed in [1], and to provide efficient learning and
inference algorithms for these models.

Algorithms are not the only way we wish to improve aGrUM for a first stable ver-
sion. Indeed, documentation and tutorials are as important as algorithms for spreading
aGrUM’s use. Even if we try to provide the most complete and up-to-date documenta-
tion, we still feel that its readability and examples can be improved.

As for all open source projects, aGrUM’s community is very important to us and
we hope to convince more people from various scientific communities to adopt aGrUM
and pyAgrum as their main tool for modeling graphical models. To achieve this goal we
are putting a lot of efforts in making aGrUM and pyAgrum easier to use: distributing
PyPi and conda packages, porting aGrUM to Windows, talking about aGrUM in various

conferences. Another important change for aGrUM is its open source license. Currently,
aGrUM is distributed under GPL2.0, which can forbid its use due to the contaminant
nature of GPL2.0. We plan to switch to LGPL or another integration friendly open
source license.

We hope to release version 1.0 of aGrUM in 2017. Afterwards, we plan to improve
aGrUM’s performance with integration of GPU support and memory optimization. We
also plan to test aGrUM against other open source framework with the goal to provide
the most performing graphical model framework in the open source community.

5 Conclusion

This paper has presented aGrUM, a powerful framework for manipulating graphical
models for decision making. It is designed to be flexible, well maintained and highly
efficient. The core of the framework is the C++ aGrUM library but wrappers like pyA-
grum enable users to exploit aGrUM within high level and easy-to-use programming
languages like Python.

The development of the aGrUM framework has not only been stimulated by aca-
demic research, it is also the result of different industrial collaborations. For instance,
aGrUM’s O3PRMs are exploited in ongoing projects with EDF (the French national
electricity provider) on risk management in nuclear power plants and with IBM on the
exploitation of probabilities in rule-based expert systems. The BN learning module is
exploited in projects with IRSN, the French Institute for Nuclear Safety, for nuclear in-
cident scenario reconstruction. Other projects with Airbus Research and the Open Turns
project use aGrUM for structural learning in copules with continuous variables.

References

1. Cortijo, S., Gonzales, C.: Bayesian networks with conditional truncated densities. In: Florida
Artificial Intelligence Research Society Conference (FLAIRS’16). pp. 656—-661 (2016)

2. Gonzales, C., Dubuisson, S., Manfredotti, C.E.: A new algorithm for learning non-stationary
dynamic Bayesian networks with application to event detection. In: Florida Artificial Intelli-
gence Research Society Conference (FLAIRS’15). pp. 564-569 (2015)

3. Hourbracq, M., Baudrit, C., Wuillemin, P.H., Destercke, S.: Dynamic Credal Networks: intro-
duction and use in robustness analysis. In: International Symposium on Imprecise Probability:
Theories and Applications (ISIPTA’13). pp. 159-169 (2013)

4. Magnan, J.: Représentations graphiques de fonctions et processus décisionnels Markoviens
factorisés. Ph.D. thesis, University Pierre and Marie Curie, Paris, France (2016)

5. Magnan, J.C., Wuillemin, P.H.: Efficient Incremental Planning and Learning with Multi-
Valued Decision Diagrams. Journal of Applied Logic (2016)

6. Torti, L.: Structured probabilistic inference in object-oriented probabilistic graphical models.
Ph.D. thesis, University Pierre and Marie Curie, Paris, France (2012)

7. Torti, L., Wuillemin, P.H., Gonzales, C.: Reinforcing the object-oriented aspect of probabilis-
tic relational models. In: Workshop on Probabilistic Graphical Models (PGM’10). pp. 273—
280 (2010)

	aGrUM: a Graphical Universal Model framework

