
HAL Id: hal-01509539
https://hal.science/hal-01509539

Submitted on 18 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exponential approximation schemata for some network
design problems

Nicolas Boria, Nicolas Bourgeois, Bruno Escoffier, Vangelis Paschos

To cite this version:
Nicolas Boria, Nicolas Bourgeois, Bruno Escoffier, Vangelis Paschos. Exponential approxima-
tion schemata for some network design problems. Journal of Discrete Algorithms, 2013, 22,
�10.1016/j.jda.2013.06.011�. �hal-01509539�

https://hal.science/hal-01509539
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour

l'Aide à la Décision
CNRS UMR 7243

CAHIER DU LAMSADE

303

Mars 2011

Exponential approximation schemata for some
network design problems

N. Boria, N. Bourgeois, B. Escoffier, V. Th. Paschos

Exponential approximation schemata for some network

design problems∗

Nicolas Boria1 Nicolas Bourgeois1 Bruno Escoffier1 Vangelis Th. Paschos1,2

1LAMSADE, CNRS and Université Paris-Dauphine, France

{boria,bourgeois,escoffier,paschos}@lamsade.dauphine.fr
2Institut Universitaire de France

March 1, 2011

Abstract

We study approximation of some well-known network design problems such as traveling sales-

man problem (for both minimization and maximization versions) and min steiner tree, by moder-
ately exponential algorithms. The general goal of the issue of moderately exponential approximation
is to catch-up on polynomial inapproximability, by providing algorithms achieving, with worst-case
running times importantly smaller than those needed for exact computation, approximation ratios
unachievable in polynomial time.

Keywords: Exponential algorithms; Approximation algorithms; Steiner tree; Traveling Salesman
Problem

1 Introduction

Among network design problems, traveling salesman problem and min steiner tree have been
extensively studied in combinatorial optimization, due to both their numerous practical applications
and their theoretical interest. Among these works, many results deal with complexity and polytime
approximation of these NP-hard problems. In particular, even in restricted versions, these problems are
known to be APX-hard. Moreover, many results have been obtained in the paradigm the exact and/or
parameterized computation for these problems. The goal of this paper is to explore their approximability
in superpolynomial or moderately exponential time. Roughly speaking, if a given problem is solvable in
time say O∗(γn) but is NP-hard to approximate within some ratio r, we seek r-approximation algorithms
with complexity - significantly - lower than O∗(γn). This issue has already been considered for several
other problems such as minimum set cover [10, 6], min coloring [5], max independent set and
min vertex cover [4], min bandwidth [11, 15], . . . Similar issues arise in the field of FPT algorithms,
where approximation notions have been introduced, for instance, in [12, 7].

Among the several natural questions occurring in this setting, two keep most of our attention in this
work:

• The first one deals with ratios close to 1. For an APX-hard problem solvable to optimality in
time O∗(γn), can we find, for any ǫ > 0, a 1 + ǫ (or 1 − ǫ, if we handle maximization problems)
approximation algorithm working in time O∗(γn

ǫ), where γǫ < γ?

• The second one deals with “worse” ratios. Given a polytime r-approximation algorithm, can we
reach ratios better than r with “low” exponential running times, in particular ratios r+ ǫ (or r− ǫ)
in time O∗(γn

ǫ) where γǫ → 1 when ǫ→ 0?

In both traveling salesman problem and min steiner tree, a complete undirected graphG = (V,E)
is given, together with a distance or cost c(e) > 0 for each edge e ∈ E. The instance is said to be metric

∗Research partially supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010.

1

if c satisfies the triangle inequality, i.e., c(u, v) + c(v, w) > c(u,w) for any three vertices u, v, w. For
min steiner tree, a subset S ⊆ V of terminal vertices (or simply terminals) is given. A Steiner tree
T = (V ′, E′) is a subgraph of G (V ′ ⊆ V and E′ ⊆ E) which is a tree spanning all the terminals, i.e.,
S ⊆ V ′. The cost of the tree T is c(T) =

∑

e∈E′ c(e). The goal of the problem is to find a Steiner tree
of minimum cost. Note that the instances are usually assumed to be metric since, otherwise, one can
easily transform it into an equivalent metric one by replacing the cost of each edge e = (u, v) by the cost
of a shortest path between u and v. The problem is known to be NP-hard and even APX-hard [1]. The
feasible solution consisting of computing a minimum spanning tree on the subset of terminals is a trivial 2-
approximate solution, and several works managed to improve this ratio, up to the polytime approximation
algorithm of [24] guaranteeing a ratio 1 + ln(3)/2 < 1.55. Dealing with exact computation, the problem
is known to be solvable in O∗(1.36n) (and exponential space) and in O∗(1.62n) in polynomial space [13].
Moreover, the problem is fixed parameter tractable when the parameter is the number of terminal k = |S|:
it is solvable in time O∗((2 + ǫ)k), for any ǫ > 0, and exponential space [20]. In the case of bounded edge
costs, these results can be improved: the problem is solvable in time O∗(1.36n) and polynomial space,
and in time O∗(2k) and polynomial space [22].

A solution of traveling salesman problem is a tour (Hamiltonian cycle) Γ on the vertices. The
cost of Γ is the sum of the cost of its edges. A lot of different versions of traveling salesman problem

have been studied, including maximization and minimization versions dealing with graphs with general
or metric costs. These four versions are NP-hard and even APX-hard, but have different behaviors in
terms of polytime approximation. In terms of exact computation, it is well known that by a dynamic
programming algorithm, all the mentioned versions of traveling salesman problem are solvable in
time and space O∗(2n) [17]. Note that though this result has not been improved so far, very recently a
major breakthrough has been obtained in [2] where the Hamiltonian cycle problem is solved in O∗(1.66n).
Dealing with polynomial space, the best running time known so far for traveling salesman problem

is O∗(4nnlogn) reached by the algorithm in [16] (see [3]).
In this article, we study in Section 2 the possibility to get ratios arbitrary close to 1 with a running

time better than the one of exact computation. We handle min steiner tree and some versions of
traveling salesman problem. In both cases, the basic idea is to find a small part of the instance
verifying some suitable properties, then to solve the instance on the remaining part and to build finally
a global solution. In Section 3, we show how one can take advantage of the possible existence of some
polytime r-approximation algorithm in order to reach interesting (though exponential) running times for
ratios slightly better than r.

In what follows, given a graph G = (V,E), we denote by n the number of its vertices (|V | = n) and
by m the number of its edges (|E| = m).

2 Obtaining ratios arbitrarily close to 1

2.1 min steiner tree

Let (G,S, c) be an instance of min steiner tree where G is the input graph, S ⊆ V is the set of terminals
and c is the edge cost function. We denote k = |S| the number of terminals. We will propose approxima-
tion algorithms that works in time smaller than exact ones. We will present the results according to the
best algorithms known so far and given in [22]: when costs are bounded we call ExactST-PARAM(G,S)
the algorithm that computes an optimum Steiner tree in time O∗(2k) and ExactST(G,S) the one with
time complexity O∗(1.36n). Since we use as subroutines these algorithms, we also make the assumption
that costs are bounded. However, it is easy to see that similar results would be obtained by considering
other exact algorithms (valid on any edge costs and/or with other time complexity).

We first show Lemma 1. Finding subtrees (of a given tree) satisfying some properties has already
been used to achieve interesting running times for min steiner tree in [13]. Here, we adapt this idea to
our moderately exponential approximation setting by showing that there exists a subtree of an optimal
solution of “small” cost but containing a “large” number of terminals. If T is a tree rooted at r and v is
a vertex in T , then T (v) is the subtree of T rooted at v (consisting of v and its descendants).

Lemma 1 Let T be a Steiner tree (with k terminals). For any p 6 k, there exists a subtree T ′ ⊆ T
containing at least p and at most 3p terminals, and whose cost is at most 3c(T)p/k.

Proof. If k 6 3p then T ′ = T works. Otherwise, root the tree at some vertex r and consider the following
procedure.

2

1. Set v ← r.

2. While there exists a son u of v such that T (u) contains at least p+ 1 terminals, set v ← u.

3. Now, there exists a subset of sons u1, . . . , ui such that the subtree rooted at v but restricted to the
sons u1, . . . , ui contains at least p+ 1 and at most 2p+ 1 terminals (or even at most 2p if v is not
terminal). Remove this subtree from the tree (but keep v if v has other sons) and go back to step 1
if the remaining tree has more than 3p terminals.

In this way, we build a set of subtrees T ′

1, . . . , T
′

z whose edge sets E1, . . . , Ez are a partition of the edges
of T , and such that each T ′

i , i = 1, . . . , z, contains at most 2p+1 and at least p+1 terminals, except for
the last one that contains at least p and at most 3p terminals. Furthermore, a subtree T ′

i has at most
one vertex (its root) which might be common with some T ′

j with j > i; hence, to each subtree, it can be
associated at least p terminals with no overlap. Thus:

• c(T) =
∑z

i=1 c(T
′

j)

• k/(3p) 6 z 6 k/p

and finally: ∃j, c(T ′

j) 6 c(T)× 3p
k . �

Remark 1 The following facts, that we will need later, hold:

1. There exists a subtree T ′ ⊆ T containing at least p and at most 3p terminals, and whose cost is at
least c(T)p/k.

2. Dealing with the total number of nodes nT in the Steiner tree, for any p 6 nT , there exists a subtree
T ′ ⊆ T containing p vertices and whose cost is at most 3c(T)p/nT .

Item 2 is obtained using a similar proof as for Lemma 1. It gives the existence of such a subtree T ′ with
at least p and at most 3p vertices, but we can remove vertices in T ′ until it contains exactly p vertices.

Based upon Lemma 1, we propose an approximation algorithm, called SchemaST-PARAM, which computes
an (1 + ǫ)-approximate solution in time smaller than O∗(2k). This algorithm first identifies, thanks to
Lemma 1, a part of the instance with a partial solution of small cost, contract the graph, apply an
exact algorithm on the contracted graph, and patch the two partial solutions. SchemaST-PARAM works as
follows:

1. For any subset W ⊂ S of size at least p = ǫk/3 and at most ǫk run ExactST-PARAM(G,W). Let W0

be the subset whose Steiner tree T0 = ExactST-PARAM(G,W0) has minimum cost.

2. Build the contraction graph G′: all the nodes from T0 are replaced by a single node t0. For any
u ∈ V \ T0, c(t0, u) = minv∈T0

c(v, u).

3. Compute T1 = ExactST-PARAM(G′, S ∪ t0 \W0).

4. Build T0 ∪ T1, that means the subgraph of G that contains all the vertices and edges of T0 and
T1 \ t0 and for any edge (t0, u) from T1 contains the edge of minimum cost between u and T0.

5. Return a spanning tree of T0 ∪ T1.

Proposition 1 When costs are bounded, for any ǫ 6 1/5, SchemaST-PARAM returns a (1+ ǫ) approxima-
tion for min steiner tree with running time O∗(2(1−ǫ/3)k) and polynomial space.

Proof. First, since t0 is a terminal of T1, T0 ∪ T1 is connected, and it is clear that the computed tree
contains all the terminals. Thus, the algorithm produces a Steiner tree of (G,S).

The complexity of step 1 of the algorithm is O∗

(

(

k
ǫk

)

2ǫk
)

, while in step 3 we solve the problem on an

instance with at most k(1− ǫ/3) terminals, hence in time O∗
(

2k−kǫ/3
)

. But using Stirling’s formula, we

know that
(

k
ǫk

)

= O∗

(

1
(ǫǫ(1−ǫ)1−ǫ)k

)

. Since 2ǫ

ǫǫ(1−ǫ)1−ǫ 6 21−ǫ/3 for ǫ 6 1/5 (actually, even for a little bit

more than 1/5), we have
(

k
ǫk

)

2ǫk = O∗(2k−ǫk/3) for ǫ 6 1/5.

3

Let us now consider the approximation ratio achieved by SchemaST-PARAM. According to Lemma 1,
and since we check among other subtrees the lightest subtree of the optimal, the cost of T0 is at most
3c(opt(G,S))p/k = c(opt(G,S))ǫ. On the other hand, the optimum solution on the contraction graph
cannot be heavier than the optimal solution in the initial instance, hence c(T0) 6 c(opt(G,S)). Finally:

c (T0 ∪ T1) 6 c (T0) + c (T1) 6 c (opt(G,S)) (1 + ǫ)

that completes the proof. �

We now show that this parameterized result allows the achievement of a similar result when we seek
complexity results dealing with the total number of vertices. We will use the item 2 of Remark 1. We
consider the following algorithm Schema-ST:

1. If k 6 3n/8, then run ExactST-PARAM(G,S) and return the solution computed.

2. Otherwise:

(a) For any subset W ⊂ V of size p = ǫn/8 compute a minimum cost spanning tree on G[W].
Let W0 be the subset whose spanning tree T0 on W0 has minimum cost.

(b) Build the contraction graph G′: all the nodes from W0 are replaced by a single node t0. For
any u ∈ V \W0, c(t0, u) = minv∈W0

c(v, u).

(c) Set S′ = S ∪ t0 \W0 if W0 contains a terminal vertex, otherwise set S′ = S \W0. Compute
T1 = ExactST(G′, S′).

(d) Build T0 ∪ T1, i.e., the subgraph of G that contains all the vertices and edges of T0 and T1 \ t0
and for any edge (t0, u) from T1 (if any), T0∪T1 contains the edge of minimum cost between u
and T0.

(e) Return a tree of T0 ∪ T1 which spans all the terminals.

We denote by γ ∈ [1.35, 1.36] a constant such ExactST works in time O∗(γn).

Proposition 2 When costs are bounded, for any ǫ 6 3/5 Schema-ST returns an (1 + ǫ) approximation
for min steiner tree with running time O∗(γ(1−ǫ/8)n) 6 O∗(1.36(1−ǫ/8)n) and polynomial space.

Proof. In step 1 of Schema-ST (k 6 3n/8), the returned solution is optimal and is obtained in time
O∗(2k) = O∗(23n/8) = O∗(γ(1−ǫ/8)n) for ǫ 6 3/5. Note that a slightly better result could be obtained
using SchemaST-PARAM instead of the exact algorithm.

In step 2 (k > 3n/8), the algorithm obviously returns a feasible solution. Since computing a minimum
cost spanning tree can be done in polynomial time, the running time of step 2a is O∗(

(

n
ǫn/8

)

), while in

step 2c we solve the problem in an instance with n(1 − ǫ/8) nodes, hence in time O∗
(

γn(1−ǫ/8)
)

. But

using Stirling’s formula, we have
(

n
ǫn/8

)

= O∗(γn(1−ǫ/8)) for ǫ 6 3/5.

Dealing with approximation ratio, note that in step 2 we have k > 3n/8, hence an optimum Steiner
tree T contains n′ vertices where 3n/8 6 n′ 6 n. Using Remark 1, there exists a subtree of T with
cost at most ǫc(T) on ǫn′/3 vertices. Since ǫn/8 6 ǫn′/3, by possibly removing vertices, there exists a
subtree of T with cost at most ǫc(T) on ǫn/8 vertices. Hence T0 has cost at most ǫc(T). As previously,
the optimum solution on the contraction graph cannot be heavier than the optimal solution in the initial
instance, hence c(T0) 6 c(T) = c(opt(G,S)). Finally:

c (T0 ∪ T1) 6 c (T0) + c (T1) 6 c(opt(G,S))(1 + ǫ)

and the proof of the proposition is completed. �

2.2 Traveling salesman problems

As mentioned in Section 1, traveling salesman problem (in both minimization and maximization
versions) is solvable in time and space O∗(2n) by dynamic programming [17]. In polynomial space, the
best running time known so far is O∗(4nnlogn) reached by the algorithm in [16] (see [3]). We present in this
section two approximation algorithms SchemaTSP-ES and SchemaTSP-PS that provide for some versions of
traveling salesman problem a (1+ǫ)-approximate solution (or (1−ǫ) if we deal with a maximization

4

version). SchemaTSP-ES works in time O∗(2(1−Θ(ǫ))n) and exponential space, and SchemaTSP-PS works
in time O∗(4(1−Θ(ǫ))nnlogn) and polynomial space.

First, it is easy to see that the exact algorithms mentioned above for traveling salesman prob-

lem can be adapted to work within the same running time and space for the optimum- (minimum- or
maximum-) cost Hamitonian path problem when both endpoints are fixed. Denote by ExactHP-PS(G, s, t)
and ExactHP-ES(G, s, t) two algorithms that compute an optimum-cost Hamiltonian path between s and t,
respectively, in time O∗(4nnlogn) and polynomial space, and in time O∗(2n) and exponential space.

Let us first describe SchemaTSP-PS. It depends on a parameter p (the value of which depends on the
version of traveling salesman problem) and uses ExactHP-PS(G, s, t) as a subroutine. SchemaTSP-PS
works as follows:

1. For any subset U ⊂ S of size p, run ExacstTSP-PS(G[U], u, v) for any pair of vertices (u, v) ∈
U × U . Let U0, u

∗, v∗ be the subset and the vertices whose optimum-cost Hamiltonian path Γ0 =
ExactHP-PS(G[U0], u

∗, v∗) has optimum cost.

2. Fix G′ = G[(V \ U0) ∪ {u
∗, v∗}].

3. Compute Γ1 = ExactHP-PS(G′, u∗, v∗).

4. Return Γ0 ∪ Γ1.

Algorithm SchemaTSP-ES is similar to SchemaTSP-PS up to the following modifications:

• In Step 1, use dynamic programming to compute for any subset U ⊂ S of size p and for any two
vertices u, v ∈ U an optimal Hamiltonian path between u and v in G[U].

• In Step 3, use ExactHP-ES(G, s, t) instead of ExactHP-PS(G, s, t).

Lemma 2 The following properties hold:

• If p 6 n/5, SchemaTSP-ES produces an Hamiltonian cycle in time O∗(2n−p) (and exponential space).

• If p 6 n/4, SchemaTSP-PS produces an Hamiltonian cycle in time O∗(4n−pnlogn) and polynomial
space.

Proof. Since Γ0 and Γ1 are Hamiltonian paths between u∗ and v∗ on two subgraphs that intersect only
in the endpoints u∗ and v∗ of Γ0 and Γ1, Γ0 ∪ Γ1 is a Hamiltonian cycle on G.

For SchemaTSP-ES, Step 1 works in time O∗(
(

n
p

)

) (for p 6 n/2). Indeed, note that we do not apply

the exact exponential space algorithm on each subinstance of size p (that would lead to a complexity
O∗(

(

n
p

)

2p)) but by standard dynamic programming we compute for any subset U of size at most p and

any vertices u, v ∈ U an optimum solution in time O∗(
∑p

i=1

(

n
i

)

) = O∗(
(

n
p

)

) for p 6 n/2. Step 3 takes

time O∗(2n−p). Using Stirling’s formula, when p 6 n/5 (actually even for p a little bit greater than n/5),
this leads to the fact that the global running time is then O∗(2n−p).

The total running time of SchemaTSP-PS is O∗

(

(

n
p

)

4pplog p + 4n−pnlogn
)

. Using Stirling’s formula,

we get that
(

n
p

)

4p = O(4n−p) for p 6 n/4, hence the running time is O∗(4n−pnlogn) for p 6 n/4. �

Let Γ∗ be an optimum solution for the problem dealt with.

Lemma 3 If we deal with a minimization problem (resp., a maximization problem) then c(Γ0) 6 pc(Γ∗)/n
(resp., c(Γ0) > pc(Γ∗)/n).

Proof. Since we try any possible subsets of vertices of size p, we try in particular all the p-subsequences
of consecutive vertices from Γ∗; the lightest (resp., heaviest) of these subsequences has cost at most (resp.,
at least) pc(Γ∗)/n. �

Now, we use this algorithm to several versions of traveling salesman problem. The first one is
the famous min metric tsp, where the costs satisfy the triangle inequality: c(u, v) 6 c(u, x) + c(x, v)
for any vertices u, v, x.

Proposition 3 It is possible to compute a (1 + ǫ)-approximation for min metric tsp:

• in time O∗(2(1−ǫ/2)n), for any ǫ 6 2/5.

5

• in time O∗(4(1−ǫ/2)nnlogn) and polynomial space, for any ǫ 6 1/2.

Proof. Let ǫ 6 1, and run SchemaTSP-ES with p = nǫ/2. Then p 6 n/5 and thanks to Lemma 2 the
running time is O∗(2n−p) = O∗(2(1−ǫ/2)n).

Consider now an optimal solution Γ∗. By the triangle inequality, if Γ′ is an optimal solution for
traveling salesman problem on G′, then c(Γ′) 6 c(Γ∗).

Let u′ and v′ be the predecessors of u∗ and v∗, respectively, in Γ′ (oriented arbitrarily). Then,
removing from Γ′ the edges (u′, u∗), (v∗, v′) and adding the edge (v′, u′) builds a Hamiltonian path in G′

between u∗ and v∗ of cost c(Γ′) + c(v′, u′)− c(u′, u∗)− c(v∗, v′), hence:

c (Γ1) 6 c (Γ′) + c (v′, u′)− c (u′, u∗)− c (v∗, v′) 6 c (Γ′) + c(u∗, v∗) 6 c (Γ′) + c (Γ0)

where the last inequalities follow from the triangle inequality. Then, using Lemma 3 we get:

c (Γ0 ∪ Γ1) 6 c (Γ′) + 2c (Γ0) 6 c (Γ∗)

(

1 +
2p

n

)

= c (Γ∗) (1 + ǫ)

For the result in polynomial space, the proof of the ratio is the same. The running time follows from
Lemma 2 since, for ǫ 6 1/2, p 6 n/4. �

We now show that a similar result holds for the traveling salesman problem when costs are
restricted to be integers between 1 and a fixed integer k > 2, both in min tsp-k and in max tsp-k. Note
that these versions are APX-hard even for k = 2 [23].

Proposition 4 It is possible to compute a (1 + ǫ)-approximation for min tsp-k:

• in time O∗(2(1−ǫ/(k−1))n), for any ǫ 6 (k − 1)/5.

• in time O∗(4(1−ǫ/(k−1))nnlogn) and polynomial space, for any ǫ 6 (k − 1)/4.

Proof. Let ǫ 6 (k− 1)/5, and run SchemaTSP-ES with p = (ǫn− k)/(k− 1). Then p 6 ǫn/(k− 1) 6 n/5
and thanks to Lemma 2 the running time is O∗(2n−p). Since p > nǫ/(k − 1) − 2, we get the claimed
running time.

Consider now an optimal solution Γ∗. This solution contains 2x 6 2p edges with one endpoint in U0

and one in V \U0. If we remove from Γ∗ all the vertices in U0 (and their adjacent edges), we get x paths
(possibly consisting of one unique vertex) in V \ U0. We build a Hamiltonian path on vertices in V \ U0

by adding x − 1 edges between these paths, and then by adding two more edges we get a Hamiltonian
path Γ′ between u∗ and v∗ in G′. To build Γ′ from Γ∗, at least 2x edges have been removed, and x + 1
edges have been added. Since costs are between 1 and k, and using the fact that c(Γ∗) > n, we get:

c (Γ1) 6 c (Γ′) 6 c (Γ∗) + (x + 1)k − 2x 6 c (Γ∗)

(

1 +
pk − 2p+ k

n

)

Using Lemma 3, we get:

c (Γ0 ∪ Γ1) 6 c (Γ∗)

(

1 +
pk − p+ k

n

)

= c (Γ∗) (1 + ǫ)

For the result in polynomial space, the proof of the ratio is the same. The running time follows from
Lemma 2 since for ǫ 6 (k − 1)/4, p 6 n/4. �

The case of max tsp-k is similar to the previous one.

Proposition 5 It is possible to compute a (1 − ǫ)-approximation for max tsp-k:

• in time O∗(2(1−ǫ/(2(k−1)))n), for any ǫ 6 2(k − 1)/5.

• in time O∗(4(1−ǫ/(2(k−1)))nnlogn) and polynomial space, for any ǫ 6 (k − 1)/2.

Proof. Let ǫ 6 2(k− 1)/5, and run SchemaTSP-ES with p = ǫn/(2(k− 1)). Then p 6 n/5 and thanks to
Lemma 2 the running time is O∗(2n−p) which is the claimed running time.

Consider an optimal solution Γ∗. This solution contains 2x 6 2p edges with one endpoint in U0 and
one in V \ U0 and contains y edges with both endpoints in U0, with x + y = p. If we remove from Γ∗

6

all the vertices in U0 we get x paths (possibly consisting of one unique vertex) in V \ U0. We build a
Hamiltonian path Γ′ between u∗ and v∗ in G′ by linking these paths, u∗ and v∗ by adding x + 1 edges.
In all, 2x + y edges of cost at most k have been removed while x + 1 have been added, for a total cost
difference of at most (2x+ y)k − x− 1 6 2pk − p. Hence:

c (Γ1) > c (Γ′) > c (Γ∗)− p(2k − 1) > c (Γ∗)

(

1−
p(2k − 1)

n

)

c (Γ0 ∪ Γ1) > c (Γ∗)

(

1−
p(2k − 1)

n

)

+
c (Γ∗) p

n
= c (Γ∗) (1− ǫ)

For the result in polynomial space, the proof of the ratio is the same. The running time follows from
Lemma 2 since for ǫ 6 (k − 1)/2, p 6 n/4. �

3 Improving ratios obtained with polytime algorithms

In this section, we try to take advantage of the existence for min steiner tree and for some versions
of traveling salesman problem of polytime approximation algorithms. If there exists a polytime
r-approximation algorithm, we try to get ratios r− ǫ in time O∗(γn

ǫ) (or O∗(γk
ǫ) for min steiner tree)

where γǫ → 1 when ǫ → 0. A first idea is to modify the algorithms in the previous sections in order to
use an approximation algorithm instead of an exact one when computing a solution on the big part of
the instance. We will see that this simple idea works for min steiner tree. However, this generally
does not lead to interesting results for traveling salesman problem because in many cases better
ratios are known for traveling salesman problem than for minimum-cost Hamiltonian path when
both endpoints are fixed.

3.1 min steiner tree

min steiner tree is approximable in polynomial time within ratio rst = 1 + ln(3)/2 [24]. Denote
by ApxST the algorithm reaching this ratio. Recall that ExactST-PARAM returns an optimal solution in
time O∗(2k) when costs are bounded. Let us consider the following algorithm, called ExpApxST.

1. For any subset W ⊂ S of size at least p = ǫk/3 and at most ǫk:

(a) Compute T0 =ExactST-PARAM(G,W).

(b) Build the contraction graph G′: all the nodes from T0 are replaced by a single node t0. For
any u ∈ V \ T0, c(t0, u) = minv∈T0

c(v, u).

(c) Compute T1 = ApxST(G′, S ∪ t0 \W).

(d) Build T0 ∪ T1, that means the subgraph of G that contains all the vertices and edges of T and
T1 \ t0 and for any edge (t0, u) from T1 contains the edge of minimum cost between u and T0.

(e) Consider a spanning tree TW of T0 ∪ T1.

2. Output the best among the solutions TW computed.

Proposition 6 When costs are bounded, ExpApxST returns a (rst− (rst− 1)ǫ/3)-approximate solution in
time O∗(

(

k
ǫk

)

2ǫk) and polynomial space.

Proof. The running time of the algorithm is O∗(
(

k
ǫk

)

2ǫk) = O∗
(

(2ǫ/ǫǫ(1 − ǫ)1−ǫ)k
)

. Consider an opti-
mum solution T . Thanks to Remark 1 after Lemma 1, there is a subtree T ′ ⊆ T containing at least p
and at most 3p terminals, and whose cost is at least c(T)p/k. When W is the set of terminals of T ′,
we have c(T0) 6 c(T ′). But contracting T ′ in a single vertex in T gives a feasible solution of the con-
tracted graph G′, whose cost is c(T) − c(T ′). It follows that ApxST returns a solution T1 such that
c(T1) 6 rst(c(T)− c(T ′)). Finally, we get:

c (T0 ∪ T1) 6 c (T0) + c (T1) 6 c (T ′) + rst(c(T)− c (T ′))

6 rstc(T)− (rst − 1) c(T)
p

k
=

(

rst − (rst − 1)
ǫ

3

)

c(T)

as claimed. �

Setting ǫ′ = (rst− 1)ǫ/3, this is a (rst− ǫ′) approximation in time O∗(γk
ǫ′), where γǫ′ goes to 1 when ǫ′

goes to 0. For instance, this gives a 1.547-approximation (rst ∼ 1.5493) in time O∗(1.08k).

7

3.2 Traveling salesman problems

As mentioned before, the same simple idea does not lead to interesting results for traveling salesman
problems since, in order to patch partial solutions, we need to solve minimum-cost Hamiltonian path
problems, and in many cases better ratios are known for min traveling salesman problem than for
minimum-cost Hamiltonian path when both endpoints are fixed. Indeed, the famous min metric tsp is
approximable within ratio 3/2 [9], but for the min metric hamiltonian path (when both endpoints are
fixed) the best known ratio achievable in polynomial time is 5/3 [18]. For maximization versions, max tsp

and max metric tsp are approximable with asymptotic ratios of 61/81 and 17/20, respectively, [18],
while only a 1/2-approximation algorithm is known for the corresponding versions of maximum-cost
Hamiltonian path when both endpoints are fixed [21].

So, the idea is to use an approximation algorithm for traveling salesman problem to get a
Hamiltonian cycle Γ1 on G′, and then to somehow combine Γ0 and Γ1 to get a Hamiltonian cycle on G.

Suppose that PolyAPP is a polytime r-approximation algorithm for a traveling salesman problem. We
consider the following algorithm MExpAPP-PS that works for maximization versions.

• For any subset U ⊂ S of size p = ǫn and for any two vertices u, v ∈ U :

– Compute Γ0 =ExactHP-PS(G[U], u, v).

– Fix G′ = G[V \ U].

– Compute Γ1 = PolyAPP(G′).

– Let Γ′

1 be the path obtained from Γ1 by removing the lightest edge (z, t) of Γ1 and adding
edges (u, z) and (t, v).

– Consider the solution Γ0 ∪ Γ′

1.

• Return the best solution computed.

We also consider the exponential space version MExpAPP-ES where we first compute by dynamic program-
ming for any subset U ⊂ S of size p = ǫn and for any two vertices u, v ∈ U , an optimum-cost Hamiltonian
path between s and t in G[U].

Proposition 7 If PolyAPP is an r-approximation algorithm, then both MExpAPP-PS and MExpAPP-ES

are (r + ǫ(1 − r) − O(1/n))-approximation algorithms. MExpAPP-PS runs in time O∗(
(

n
ǫn

)

4ǫnnlogn) and

polynomial space. MExpAPP-ES runs in time O∗(
(

n
ǫn

)

) (and exponential space).

Proof. It is easy to see that the running time of MExpAPP-PS is O∗(
(

n
p

)

4pplog p), while dynamic program-

ming leads to a running time of O∗(
(

n
p

)

) for MExpAPP-ES.

Let Γ∗ be an optimum solution for the problem dealt. Consider all the n sequences (u′, u, . . . , v, v′)
of p+ 2 consecutive vertices in Γ∗ (oriented arbitrarily), and let us denote by Γ∗

u,v the path from u to v
in Γ∗. Then:

∑

u

c(Γ∗

u,v) = pc(Γ∗)

∑

u

(c(u′, u) + c(v, v′)) = 2c(Γ∗)

Then, by an average based argument, for any nonnegative µ, ν, there exist u, v such that:

µc
(

Γ∗

u,v

)

− ν (c (u′, u) + c (v′, v)) > µ
p

n
c (Γ∗)− ν

2

n
c (Γ∗) =

(

ǫµ− 2
ν

n

)

c (Γ∗)

Note that ν > 0 for n large enough (n > 1/(1− ǫ)). We consider in the sequel these vertices u and v for
the following values of µ and ν:

µ = 1− r

(

1−
1

(1 − ǫ)n

)

ν = r

(

1−
1

(1 − ǫ)n

)

8

Obviously c(Γ∗) = c(Γ∗

u,v) + c(Γ∗

v,u). If U0 denotes the vertices in Γ∗

u,v, we consider the solution built
by the MExpAPP-PS (or MExpAPP-ES) for (U0, u, v). Of course, c(Γ0) = c(Γ∗

u,v). Moreover, since we have
removed the lightest edge in Γ1 (among the (1− ǫ)n edges in Γ1), we have:

c (Γ′

1) >

(

1−
1

(1− ǫ)n

)

c (Γ1) >

(

1−
1

(1− ǫ)n

)

rc (Γ∗

1) = νc (Γ∗

1)

where c(Γ∗

1) is an optimum-cost Hamiltonian cycle in G′. Finally the returned solution S satisfies:

c(S) > c (Γ0) + c (Γ′

1) > c
(

Γ∗

u,v

)

+ νc (Γ∗

1)

Now, removing edges (u, u′) and (v, v′) and adding (u′, v′) in Γ∗

v,u results in a Hamiltonian cycle in G′,
hence:

c (Γ∗

1) > c
(

Γ∗

v,u

)

− c (u, u′)− c (v, v′) = c (Γ∗)− c
(

Γ∗

u,v

)

− c (u, u′)− c (v, v′)

Finally:

c(S) > νc (Γ∗) + µc
(

Γ∗

u,v

)

− ν (c (u′, u) + c (v′, v))

> νc (Γ∗) +

(

ǫµ−
2ν

n

)

c (Γ∗) = (r + ǫ(1− r) −O(1/n)) c (Γ∗)

that completes the proof. �

Apply Proposition 7 using the results of [8]: max tsp and max metric tsp are approximable in
polynomial time with (asymptotic) ratios 61/81 and 17/20 respectively. In Tables 1 and 2 numerical
results derived from Proposition 7 are given.

Ratio 0.753 0.76 0.77 0.8 0.85
Running time (exponential space) Polynomial 1.14n 1.29n 1.63n 1.96n

Running time (polynomial space) Polynomial 1.42n 1.65n 2.12n 3.37n

Table 1: Approximation of max tsp.

Ratio 0.85 0.86 0.87 0.9
Running time (exponential space) Polynomial 1.28n 1.49n 1.89n

Running time (polynomial space) Polynomial 1.42n 1.79n 3.00n

Table 2: Approximation of max metric tsp.

We conclude this section by handling min asymmetric tsp, the directed version of the (symmetric)
min metric tsp. A (1 + log(n))-approximation algorithm has been proposed in [14] (recently improved
down to 0.842 log(n) in [19]). We show that the algorithm of [14] can be straightforwardly adapted to
get interesting tradeoffs between running time and approximation.

Proposition 8 For any integer k > 1, it is possible to compute a (1 + k)-approximation of min asym-

metric tsp:

• in time O∗(2n/k) and exponential space

• in time O∗(4n/k
(

n
k

)logn
) and polynomial space

Proof. The algorithm in [14] works as follows. Starting from G0 = G, it computes in polynomial time
a minimum-cost 2-factor C0 of the graph, i.e., a minimum-cost collection of cycles such that each vertex
is in exactly one cycle. Obviously, an optimum-cost Hamiltonian cycle Γ∗

0 in G0 is a particular 2-factor,
hence c(Γ∗

0) > c(C0). If C0 contains only one cycle, we are done; otherwise, we choose one arbitrary
vertex in each cycle of C0, and build the subgraph G1 of G0 induced by these vertices. We iterate the
same process, and get a 2-factor C1 of cost c(C1) 6 c(Γ∗

1), where Γ∗

1 is an optimum-cost Hamiltonian
cycle on G1. The process ends at some step t, when Ct has only one cycle.

9

The union of all the cycles in all the 2-factors C0, . . . , Ct is a strongly connected graph where all
vertices have even in-degree and even out-degree, so by taking shortcuts, using the triangle inequality we
get a Hamiltonian cycle Γ such that: c(Γ) 6

∑t
i=0 c(Ci) 6

∑t
i=0 c(Γ

∗

i). Also, by the triangle inequality,
c(Γ∗

i) 6 c(Γ∗

0); hence, c(Γ) 6 (1 + t)c(Γ∗

0).
Now, since each cycle has at least 2 vertices, the number ni of vertices in Gi satisfies ni 6 ⌊ni−1/2⌋,

and this leads to ni 6 n0/2
i.

Here, instead of repeating this process until Ci has only one cycle, we repeat it k steps (of course
unless the algorithm has stopped before), and then we compute an exact solution on Gk in time O∗(2nk).
Since nk 6 n0/2

k = n/2k, the claimed running time follows. Furthermore:

c(Γ) 6

k−1
∑

i=0

c (Ci) + c (Γ∗

k) 6 kc (Γ∗

0) + c (Γ∗

k) = (1 + k)c (Γ∗

0)

The time bound follows from the fact that the optimum-cost asymmetric Hamiltonian path is solvable in
time O∗(2n) (and exponential space), or in time O∗(4nnlogn) and polynomial space. �

References

[1] M. W. Bern and P. E. Plassmann. The Steiner problem with edge lengths 1 and 2. Information
Processing Letters, 32(4):171–176, 1989.

[2] A. Björklund. Determinant sums for undirected Hamiltonicity. In Proc. FOCS, pages 173–182. IEEE
Computer Society, 2010.

[3] A. Björklund and T. Husfeldt. Exact algorithms for exact satisfiability and number of perfect
matchings. Algorithmica, 52(2):226–249, 2008.

[4] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Efficient approximation of combinatorial problems
by moderately exponential algorithms. In Proc. WADS, volume 5664 of Lecture Notes in Computer
Science, pages 507–518. Springer, 2009.

[5] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Efficient approximation of min coloring by
moderately exponential algorithms. Information Processing Letters, 109(16):950–954, 2009.

[6] N. Bourgeois, B. Escoffier, and V. Th. Paschos. Efficient approximation of min set cover by
moderately exponential algorithms. Theoretical Computer Science, 410(21-23):2184–2195, 2009.

[7] L. Cai and X. Huang. Fixed-parameter approximation: conceptual framework and approximability
results. In Proc. IWPEC, volume 4169 of Lecture Notes in Computer Science, pages 96–108. Springer,
2006.

[8] Z.-Z. Chen, Y. Okamoto, and L. Wang. Improved deterministic approximation algorithms for max

tsp. Information Processing Letters, 95(2):333–342, 2005.

[9] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Technical
report 338, Grad. School of Industrial Administration, CMU, 1976.

[10] M. Cygan, L. Kowalik, and M. Wykurz. Exponential-time approximation of weighted set cover.
Information Processing Letters, 109(16):957–961, 2009.

[11] M. Cygan and M. Pilipczuk. Exact and approximate bandwidth. Theoretical Computer Science,
411(40-42):3701–3713, 2010.

[12] R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation problems. In Proc.
IWPEC, volume 4169 of Lecture Notes in Computer Science, pages 121–129. Springer, 2006.

[13] F. V. Fomin, F. Grandoni, and D. Kratsch. Faster Steiner tree computation in polynomial-space. In
Proc. ESA, volume 5193 of Lecture Notes in Computer Science, pages 430–441. Springer, 2008.

[14] A. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some algorithms for the
asymmetric traveling salesman problem. Networks, 12:23–39, 1982.

10

[15] M. Fürer, S. Gaspers, and S. P. Kasiviswanathan. An exponential time 2-approximation algorithm
for bandwidth. In Proc. IWPEC, volume 5917 of Lecture Notes in Computer Science, pages 173–184.
Springer, 2009.

[16] Y. Gurevich and S. Shelah. Expected computation time for Hamiltonian path problem. SIAM
Journal of Computing, 16(3):486–502, 1987.

[17] M. Held and R. M. Karp. A dynamic programming approach to sequencing problems. SIAM Journal,
10(1):196–210, 1962.

[18] J.A. Hoogeveen. Analysis of christofides’ heuristic: Some paths are more difficult than cycles.
Operations Research Letters, 10:291–295, 1991.

[19] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algorithms for asymmetric
tsp by decomposing directed regular multigraphs. Journal of the ACM, 52(4):602–626, 2005.

[20] D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm for the Steiner tree problem. In Proc.
STACS, volume 3884 of Lecture Notes in Computer Science, pages 561–570. Springer, 2006.

[21] J. Monnot. Approximation algorithms for the maximum hamiltonian path problem with specified
endpoint(s). European Journal of Operational Research, 161(3):721–735, 2005.

[22] J. Nederlof. Fast polynomial-space algorithms using Möbius inversion: improving on Steiner tree
and related problems. In Proc. ICALP, volume 5555 of Lecture Notes in Computer Science, pages
713–725. Springer, 2009.

[23] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and
two. Mathematics of Operations Research, 18:1–11, 1993.

[24] G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In Proc. SODA, pages
770–779, 2000.

11

	cah303
	SteinerTSPcah.pdf

