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Social scientists call Matthew e ect the self-reinforcing mechanisms whereby initially small advantages accrued by individuals, e.g. in reputation, capital, or access to opportunities, beget further advantage and result in growing inequality. While there is extensive literature on the Matthew e ect, the notion has not been explicitly de ned. In this paper, we take a rst step in this direction by providing a formalisation of Matthew e ects within the framework of team semantics, and by introducing a logic for analysing the properties of the dependence relations involved in Matthew e ects. We also show via an example how to use this logic to formalise a statistical analysis of a Matthew e ect.

of assignments (called teams), instead of single assignments as in the standard Tarskian semantics. Teams can be easily conceived as sets of rows in tables or data sets. The exible and multidisciplinary interpretations of teams engendered a rapid development of logics based on team semantics in recent years. Notable such logics are dependence logic [START_REF] Väänänen | Dependence Logic: A New Approach to Independence Friendly Logic[END_REF], independence logic [START_REF] Grädel | Dependence and Independence[END_REF] and inclusion logic [START_REF] Galliani | Inclusion and Exclusion in Team Semantics: On some logics of imperfect information[END_REF][START_REF] Galliani | Inclusion Logic and Fixed Point Logic[END_REF], which focus on characterising functional dependence, independence and inclusion relations among variables, respectively. In this paper we focus on the dependence relations relevant to Matthew e ects. To the best of our knowledge, these have not been formalised in the literature. We take a rst step in this direction by introducing a new logic based on team semantics, called logic of Matthew e ects (ML), and analysing basic properties of these dependence relations within the framework of ML.

Structure of the paper. In Section 2, we de ne the syntax and semantics of our logic ML. In Section 3, we formalise four distinct types of Matthew e ects and study their properties. In Section 4, we use ML to formalise an existing study on the Matthew e ect in science [START_REF] Azoulay | Matthew: E ect or fable?[END_REF].

LOGIC OF MATTHEW EFFECTS

We rst present the general framework of the logic ML, including team semantics, mathematical de nitions, and notation. We provide a brief presentation of time series regression, a common tool to analyse trends in dynamic data. For more details on this topic, the reader can refer to [START_REF] Hamilton | Time Series Analysis[END_REF]. In Section 2.2, we introduce the basic dependence relations we use as building blocks to de ne Matthew e ects. In Section 2.3, we present the syntax and semantics of ML.

General framework

We introduce the general framework to talk about data sets and regressions over data sets. In Appendix A.1, we present a toy example of a data set (Table 1) and a Matthew e ect to exemplify the team semantics. We refer to this example throughout this subsection. In this paper, we assume that the empirical context where the Matthew e ect occurs is described by a rst-order model M of some signature L that will be speci ed in the sequel. The model M is assumed to have a three-sorted domain: data sort, regression sort, and duration sort.

Three-sorted domain. Elements of the data sort are all possible values in the data sets, e.g. real numbers or names. We include the value undefined to the possible values for variables of type data sort. We use w, x, , z, . . . (possibly with subscripts) to stand for variables of this sort. Data sets can be presented as tables (e.g. Table 1), and the variables of data sort can be understood as attributes in such tables. We assume that the time attribute is present in every data set, and we reserve the letter t for the time variable. In this setting, an observation in a data set or a row of a table corresponds to an assignment s that assigns to each variable x of data sort a value a of data sort in the domain of the underlying model M. Formally, a data set D consisting of several observations is a set of assignments, which we also call team. In this paper, the terms data set and team are used interchangeably. As we explained in the introduction, the logic we introduce for Matthew e ects adopts team semantics, where formulas are evaluated on teams.

Elements of the regression sort are names of regressions, and we use r, r ′ , . . . to stand for variables of this sort. For a given model M, we call granularity the minimal time interval δ , between two observations. For instance, in Table 1 the granularity is δ = 1 ear . Di erent regressions can be performed on any data set using di erent variables. Consecutive observations for a single variable can be aggregated over time intervals that correspond to particular multiples of the granularity δ . The intervals of time (i.e., the natural numbers that correspond to the multiples of the minimal time interval) form the domain of the duration sort. We use , ′ , . . . to stand for variables of this sort.

Regression functions. Each regression generates one regression function for each dependent variable under consideration. A regression function can be represented informally as:

(t) = {i 1 , ...,i k }∈X β i 1 ...i k (x i 1 ) (t-lδ ) ⋯(x i k ) (t-lδ ) + ϵ, (1) 
where {x 1 , . . . , x n } is a set of independent variables, z (t) is the value of variable z at time t, X is a non-empty downward closed subset of P({1, . . . , n}) (i.e., B ⊆ A ∈ X implies B ∈ X), the positive real number l ⋅ δ is the time interval of the regression, l is a natural number, ϵ is an error term, and each coe cient β i 1 ...i k is a real number. Most studies in the social sciences, including those on Matthew e ects, use regressions of degree two or less, for instance:

(t) = α + β 1 (x 1 ) t-lδ + β 2 (x 2 ) t-lδ + β 3 (x 3 ) t-lδ + β 4 (x 1 ) t-lδ (x 2 ) t-lδ + β 5 (x 2 ) t-lδ (x 3 ) t-lδ + ϵ. (2) 
In a data set D, if s and s ′ are two observations that respectively contain the data for time t and t-lδ (i.e., s(t) = s ′ (t)+l⋅δ ), then the above regression equation ( 2) can be formally represented as:

s( ) = α + β 1 s ′ (x 1 ) + β 2 s ′ (x 2 ) + β 3 s ′ (x 3 ) + β 4 s ′ (x 1 )s ′ (x 2 ) + β 5 s ′ (x 2 )s ′ (x 3 ) + ϵ. If x 1
and x 2 are the focal variables, we will sometimes abbreviate the expression above as:

s( ) = β 1 s ′ (x 1 ) + β 2 s ′ (x 2 ) + β 4 s ′ (x 1 )s ′ (x 2 ) + q(s ′ (x 1 ), s ′ (x 2 ), s ′ (x 3 )).
Analysed data set. We call a data set D associated with regression R 1 , . . . , R k with durations of time l 1 , . . . , l k , respectively, an analysed data set, denoted (D, R 1 , l 1 , . . . , R k , l k ). Formally, we view this analysed data set as a data set extended from D by adding 2k columns with attributes r 1 , . . . , r k , 1 , . . . , k , where each column r i has a constant value R i , and each column i has a constant value l i . For simplicity, we denote this analysed data set also by D, and write D(r i ) for the unique value of the attribute r i in D, and D( i ) for the unique value of the attribute i . Technically, we may view a name R of a regression analysis as a function mapping each dependent variable under consideration to a polynomial R( ) of the form (1).

Basic dependence relations.

We de ne basic dependence relations and atomic formulas that we later use to de ne Matthew e ects.

De nition 2.1 (Basic dependence relations and their team semantics). Let x 1 , . . . , x n , be data sort variables, r be a regression sort variable, and be a duration sort variable.

• The atomic formula x 1 , . . . , x n r characterises the notion of being positively -dependent on x 1 , . . . , x n with respect to the regression r. We say that the de ned relation is true in a data set D with an underlying model M, denoted M ⊧ D x 1 , . . . , x n r , i for all s, s ′ ∈ D,

s(t) = s ′ (t) + D( ) ⋅ δ M ⇒ s( ) = β 1 s ′ (x 1 ) + ⋅ ⋅ ⋅ + β n s ′ (x n ) + q(s ′ (⃗ x), s ′ ( ⃗ w)).
where each β i is signi cantly greater than 0 (see Appendix B.2), and D(r)( ) is the polynomial represented above. • The atomic formula x 1 , . . . , x n r characterises the notion of being negatively -dependent on x 1 , . . . , x n with respect to r, and we de ne M ⊧ D x 1 , . . . , x n r the same way as above except that we now require each β i to be signi cantly smaller than 0.

• The atomic formula x 1 ⊗ . . . ⊗ x n r characterises the notion of being positively moderated -dependent on x 1 , . . . , x n with respect to r, and we de ne

M ⊧ D x 1 ⊗ . . . ⊗ x n r i for all s, s ′ ∈ D, s(t) = s ′ (t) + D( ) ⋅ δ M ⇒ s( ) = n k =1 1≤i 1 <⋅⋅⋅<i k ≤n β i 1 ...i k s ′ (x i 1 )⋯s ′ (x i k ) + q(s ′ (⃗ x), s ′ ( ⃗ w)),
where β i ...n is signi cantly greater than 0, and D(r)( ) is the polynomial represented as above. • The atomic formula x 1 ⊗ . . . ⊗ x n r characterises the notion of being negatively moderated -dependent on x 1 , . . . , x n with respect to r, and we de ne M ⊧ D x 1 ⊗ . . . ⊗ x n r the same way as above except that we now require β i ...n to be signi cantly smaller than 0.

De nition 2.2 (Atomic formulas for positive and negative dependency). Let X denote the set of strings X of dependent variables of the form

x 11 ⊗ ⋯ ⊗ x 1n 1 , . . . , x k 1 ⊗ ⋯ ⊗ x kn k .
For every string X ∈ X such that X = x 11 ⊗ ⋯ ⊗ x 1n 1 , . . . , x k1 ⊗ ⋯ ⊗ x kn k and for every duration of time ⋅ δ , we introduce the atomic formulas X r and X r , de ned as follows:

• M ⊧ D x 11 ⊗ ⋯ ⊗ x 1n 1 , . . . , x k 1 ⊗ ⋯ ⊗ x kn k r i for all s, s ′ ∈ D, s(t) = s ′ (t) + D( ) ⋅ δ M ⇒ s( ) = k i=1 n i m=1 1≤j 1 <⋅⋅⋅<j m ≤n i β i, j 1 ...j m s ′ (x i j 1 )⋯s ′ (x i j m ) + q(s ′ (⃗ x), s ′ ( ⃗ w)), (3) 
where each β i,1, ...,n i is signi cantly greater than 0, and D(r)( ) is the polynomial represented represented as above.

• M ⊧ D x 11 ⊗ ⋯ ⊗ x 1n 1 , . . . , x k 1 ⊗ ⋯ ⊗ x kn k r
i the same as the above holds except that each β i,1, ...,n i is now required to be signi cantly smaller than 0.

The logic for Ma hew e ects

Here, we de ne the signature, the syntax, and the semantics of ML.

De nition 2.3 (The signature L). The signature L of ML contains the constant functions 0 and δ , the unary functions {E ect ,X ∈ Var, X ∈ X}, the unary predicate Small, and the binary predicates ≫, ≪, and ≈.

The function symbols E ect ,X are used to refer to certain combinations of the coe cients in the polynomials of the regression functions. For every variables x, , every string X of dependent variables, E ect ,X (r) is a regression sort argument, whose interpretation in the intended models M under a data set D is de ned as:

• i X = x 11 ⊗ ⋯ ⊗ x 1n 1 , . . . , x k 1 ⊗ ⋯ ⊗ x kn k , and β 1 x 11 ⋯x 1n 1 , ..., β k x k 1 ⋯x kn k are terms in the polynomial D(r)( ), then for every s ∈ D, E ect M ,X (s(r)) = β 1 + ⋅ ⋅ ⋅ + β k . Otherwise, set E ect M ,X (s(r)) = undefined.
We equivalently denote E ect ,X (r) by E ect(r, , X ). The use of these terms becomes clearer in Section 4. The constant symbols 0 and δ are to be interpreted as the natural number 0 and the granularity of the data sets δ respectively. The predicate symbols Small, ≪, ≫ and ≈ are to be interpreted as "small, " "signi cantly smaller than, " "signi cantly greater than, " and "equivalent to, " respectively. De nition 2.4 (Syntax). Let Var 0 , Var 1 and Var 2 be respectively countable sets of variables of data sort, regression sort, and duration sort. The syntax of ML is de ned as follows:

Terms of data sort α ∶∶= x 0 δ E ect ,X (r) Terms of duration sort β ∶∶= Terms of regression sort γ ∶∶= r Formulas ϕ ∶∶= X r X r Small(α) α ≪ α α ≫ α α ≈ α ϕ ∧ ϕ ∃ 1 x ϕ ∃ 1 ϕ ∃ 1 r ϕ where x ∈ Var 0 , r ∈ Var 1 and ∈ Var 2 .
De nition 2.5 (Free variables). For compound formulas, the sets of free variables of each sort are de ned as usual. For atomic formulas, the sets of free variables of each sort are de ned as follows:

• The set Fv 0 (ϕ) of free variables of data sort is de ned as

-for X = x 11 ⊗ ⋯ ⊗ x 1n 1 , . . . , x k 1 ⊗ ⋯ ⊗ x kn k , Fv 0 (X r ) = Fv 0 (X r ) = {x i, j 1 ≤ i ≤ k and 1 ≤ j ≤ n i } ∪ { , t} 1 , -Fv 0 (Small(α)) = Fv 0 (α), -Fv 0 (α ≪ β) = Fv 0 (α ≫ β) = Fv 0 (α ≈ β) = Fv 0 (α) ∪ Fv 0 (β),
and the set Fv 0 (α) is de ned inductively as Fv 0 (x) = {x} and Fv 0 (0) = Fv 0 (δ ) = Fv 0 (E ect ,X (r)) = ∅.

• The set Fv 1 (ϕ) of free variables of regression sort is de ned as

-Fv 1 (X r ) = Fv 1 (X r ) = {r}, -Fv 1 (Small(α)) = Fv 1 (α) and Fv 1 (α ≪ β) = Fv 1 (α ≫ β) = Fv 1 (α ≈ β) = Fv 1 (α) ∪ Fv 1 (β), and 
-the set Fv 1 (α) is de ned inductively as Fv 1 (x) = Fv 1 (0) = Fv 1 (δ ) = ∅ and Fv 1 (E ect ,X (r)) = {r}. • The set Fv 2 (ϕ) of free variables of duration sort is de ned as -Fv 2 (X r ) = Fv 2 (X r ) = { } and -Fv 2 (ϕ) = ∅ for any other atomic formula.
Formulas with sets Var 0 , Var 1 , Var 2 of free variables of data sort, regression sort, and duration sort are evaluated on a model M with respect to teams over

V 0 ∪ V 1 ∪ V 2 , i.e., sets D of assignments s ∶ V 0 ∪ V 1 ∪ V 2 → M.
De nition 2.6 (Semantics). We de ne inductively the satisfaction relation M ⊧ D ϕ as follows:

• See Theorem 2.2 for the team semantics of the atomic formulas X r k and X r k .

• For the other atomic formula θ , M ⊧ D θ i M ⊧ s θ in the usual sense for all s ∈ D.

• M ⊧ D ϕ ∧ ψ i M ⊧ D ϕ and M ⊧ D ψ . • M ⊧ D ∃ 1 x ϕ i M ⊧ D(a x ) ϕ
for some element a ∈ M of data sort, where D(a x) = {s(a x) s ∈ D}.

• M ⊧ D ∃1 r ϕ and M ⊧ D ∃ 1 ϕ are de ned as above respecting the sorts of the variables.

For any set Γ ∪ {ϕ} of formulas, we write Γ ⊧ ϕ if for all models M and teams D, M ⊧ D γ for all γ ∈ Γ implies M ⊧ D ϕ. We write ϕ ⊧ ψ for {ϕ} ⊧ ψ .

FORMALISING MATTHEW EFFECTS

In this section, we formalise four distinct types of Matthew e ects in ML and we investigate the properties of the dependence relations and Matthew e ects.

De nition 3.1 (Matthew e ects). We de ne the following notions:

• being subject to a positive direct -Ma hew e ect with respect to r (see also Table 2

(b)): DME r ∶∶= r .
• being subject to a positive x-mediated -Ma hew e ect with respect to r (see also Table 2

(c)): MME r (x) ∶∶= x r ∧ r x .
• being subject to a positive x-complete -Ma hew e ect with respect to r (see also Table 2

(d)): CME r (x) ∶∶= MME r (x) ∧ DME r .
• x and being subjects to a positive complete -Ma hew e ect with respect to r (see also Table 2(e)):

CME r (x, ) ∶∶= MME r (x) ∧ DME r x ∧ DME r .
Properties. It is not hard to verify that the dependence relation X r satis es the following properties:

• (Re exivity) ⊧ x r 0 x • (Enhancing) x r x ⊧ ∃ 1 r x r k x • (Commutativity) X 1 , ⋯, X n r ⊧ X i 1 , ⋯, X i n r and W , x 1 ⊗ ⋯ ⊗ x n , Z r ⊧ W , x i 1 ⊗ ⋯ ⊗ x i n , Z r , where i 1 , . . . , i n is any permutation of 1, . . . , n • (Duplication) X 1 , . . . , X n r ⊧ X i , X 1 , . . . , X n r , where X i ∈ {X 1 , . . . , X n } • (Projection) X 1 , . . . , X n r ⊧ X i 1 , . . . , X i k r , where X i 1 , . . . , X i k is any subsequence of X 1 , . . . , X n • (Regrouping) (X r ), (Z r ) ⊧ X , Z r • (Transitivity) (X r ), ( r k z) ⊧ ∃ 1 r X r ( 
k+1) z As a consequence of the transitivity of the dependence relation, mediated and direct Matthew e ects satisfy the following properties:

• (Transitivity) MME r x( ), MME r (z) ⊧ ∃ 1 r MME r 2 x(z) • (Scaling) MME r (x) ⊧ ∃ 1 r 0 DME r 0 2 x ∧ ∃ 1 r 1 DME r 1 2
Moreover, a direct Matthew e ect of a variable x is clearly a mediated Matthew e ect where x itself is the mediator, namely, DME r ⊧ MME r ( ), and a mediated Matthew e ect is reciprocal for the two variables involved, namely MME r (x) ⊧ MME r x( ).

CASE STUDY

In Section 4.1, we informally present the results of Azoulay, Stuart, and Wang (henceforth: ASW) reported in [START_REF] Azoulay | Matthew: E ect or fable?[END_REF] about the Matthew e ect in science. In Section 4.2, we formalise their analysis.

Informal presentation

ASW propose an empirical test for the following proposition: scientists of higher status will have even higher status in the future. According to the de nitions presented in Section 2, this is equivalent to saying that a direct Matthew e ect exists with regard to a scientist's status. The empirical test revolves around the conferral to medical scientists of the prestigious title of Howard Hughes Medical Investigator (HHMI). ASW examine how the yearly number of citations for an article published by a HHMI-appointed scientist before the appointment changes as a result of the appointment. ASW assume that both the HHMI appointment and an article's yearly number of citations re ect the scientist's status.

The hypothesis that a direct Matthew e ect exists with regard to a scientist's status is accepted if the articles published by HHMI appointees receive more citations after the appointment, compared to articles of similar quality published by non-appointees. The results of the analysis show that:

• The citation boost is small and it a ects only the articles published up to 1 year before the HHMI appointment.

Older articles do not witness a change in citations received as a result of the appointment. • The citation boost is larger for articles published in journals with low impact factor, articles that use more novel keywords, and articles that cite a greater number of studies from other elds (i.e., that are recombinant). ASW argue that this is because the quality of these articles is more di cult to assess; therefore, the HHMI appointment acts as a signal of quality and more strongly a ects the yearly citations these articles receive. • The citation boost is larger for articles published by scientists who have a smaller total number of citations attached to their name or who are younger at the time of the HHMI appointment. On the basis of these results, ASW conclude that there is a Matthew e ect with regard to scientists' status, but the extent to which this is observable depends on the age of the articles published by scientists and on how easily the quality of these articles can be assessed. In addition, they conclude that the Matthew e ect more strongly a ects scientists who have lower status at the time they are appointed.

Formalisation

ASW perform a complex empirical test involving multiple variables and regression models. These are presented in detail in Appendix B. In this subsection, we rst formalise ASW's statements in isolation, then we analyse the reasoning they use to draw their conclusions.

Statements. Each statement is presented in natural language (text in italic) and then formalised using ML. ASW aim at proving that there is a direct Matthew e ect with regard to a scientist's status. This can be formalised by the formula:

∃ 1 ∃ 1 r a DME r a Status. (4) 
ASW observe (regression r 1 ) that ACitAF positively depends on HHMI, but the e ect is small [2, page 21], which can be formalised by the formula:

HHMI r 1 ear ACitAF ∧ Small(r 1 , ACitAF, {HHMI}). (5) 
In addition, they observe (regressions r 2 , r 3 , and r 4 ) that this positive dependency only a ects the articles published up to 1 year before the HHMI appointment:

HHMI r 2 ear ACitAF (6) 
∧ E ect(r 2 , ACitAF, {HHMI}) ≫ E ect(r 1 , ACitAF, {HHMI})

∧ E ect(r 3 , ACitAF, {HHMI}) ≈ 0 ∧ E ect(r 4 , ACitAF, {HHMI}) ≈ 0.

Recall that the regressions r 2 , r 3 and r 4 are respectively based on articles published up to 1 year, 2 years, and 3 to 10 years before the HHMI appointment (see Table 4). ASW also observe (regression r 5 ) that there is a stronger increase in citations after the HHMI appointment if the article is published in a journal with low impact factor: HHMI ⊗ LIF r 5 ear ACitAF

Furthermore, they observe that there is a stronger increase in citations if the article is novel (regression r 6 ):

HHMI ⊗ Novel r 6 ear ACitAF, (10) 
or if it is recombinant (regression r 7 ):

HHMI ⊗ Recombinant r 7 ear ACitAF . ( 11 
)
ASW assume that the quality of articles is more uncertain if they are published in journals with low impact factor, if they are novel, or if they are recombinant:

∃ 1 ∃ 1 r b {LIF, Novel, Recombinant} r b UArtQ . (12) 
The assumption [START_REF] R K Merton | The Matthew e ect in science[END_REF] and the observations ( 9), ( 10) and [START_REF] Kontinen | Axiomatizing rst-order consequences in dependence logic[END_REF] suggest that the positive dependency of ACitAF on HHMI more strongly a ects articles of uncertain quality:

∃ 1 ∃ 1 r c HHMI r c ACitAF ∧ HHMI ⊗ UArtQ r c ACitAF . (13) 
Moreover, ASW observe that there is a stronger increase in the number of citations after the HHMI appointment if the article is published by a scientist who is less cited at the time of the appointment (regression r 8 ):

HHMI ⊗ Hnotwellcited r 8 ear ACitAF . ( 14 
)
or who is younger at the time of the appointment (regression r 9 ):

HHMI ⊗ Hyoung r 9 ear ACitAF . ( 15 
)
The assumption that the variables Hnotwellcited and Hyoung have a negative e ect on Status,

∃ 1 ∃ 1 r d {Hnotwellcited, Hyoung} r d Status , (16) 
leads to the conclusion that the positive dependency of ACitAF on HHMI more strongly a ects scientists who have lower status at the time of the HHMI appointment than it a ects scientists who have higher status:

∃ 1 ∃ 1 r e HHMI r e ACitAF ∧ HHMI ⊗ Status r e ACitAF . ( 17 
)
Reasoning. The observations ( 5), ( 6), ( 7), (8) ( 9), ( 10), ( 11), ( 14) and ( 15) and the assumptions ( 12) and ( 16) are considered as axioms. Here we list the deduction steps ASW use to deduce (4), ( 13) and (17). To deduce [START_REF] R K Merton | The Matthew e ect in science, II: Cumulative advantage and the symbolism of Intellectual Property[END_REF], ASW use the following reasoning: if ACitAF is subject to a positively moderated ear -dependency on HHMI ⊗ LIF (resp. HHMI ⊗ Novel or HHMI ⊗ Recombinant) witnessed by the regression r, and if UArtQ is subject to a positive LIF (resp. Novel or Recombinant) dependency, then there is an hypothetical regression r ′ that witnesses the fact that ACitAF is subject to a positively moderated ′ -dependency on HHMI ⊗ UArtQ. This reasoning is captured by the following deduction step:

h ⊗ n r c ∃ 1 ∃ 1 r n r u ∃ 1 ′ ∃ 1 r ′ h ⊗ u r ′ ′ c
.

To deduce (17), ASW use the following reasoning: if ACitAF is subject to a positively moderated ear -dependency on HHMI ⊗ Hnotwellcited (resp. HHMI ⊗ Hyoung) witnessed by the regression r 8 (resp. r 9 ), and if Hnotwellcited (resp. Hyoung) has a negative e ect on Status, then there is an hypothetical regression r ′ that witnesses the fact that ACitAF is subject to a positively moderated ′ -dependency on HHMI ⊗ Status. This reasoning is captured by the following deduction step:

h ⊗ n r c ∃ 1 ∃ 1 r n r s ∃ 1 ′ ∃ 1 r ′ h ⊗ s ′ r ′ c .
To deduce (4), one rst need to express the assumption that HHMI is positively dependent on Status:

∃ 1 ∃ 1 r f Status r f HHMI . ( 18 
)
Based on this, ASW use the following reasoning: if HHMI is positively dependent on Status, if ACitAF is positively dependent on HHMI as witnessed by the regression r 1 , then Status is positively dependent on Status, which means that Status is subject to a direct Matthew e ect. This reasoning is captured by the following deduction steps:

∃ 1 ∃ 1 r s r h h r 1 ear c ∃ 1 ∃ 1 r s r c and ∃ 1 ∃ 1 r s r c ∃ 1 ∃ 1 r c r s ∃ 1 ∃ 1 r DME r s.

CONCLUSION AND FURTHER RESEARCH

Conclusion. While there is a great deal of literature in the social sciences invoking the Matthew e ect to explain important phenomena, from career dynamics to economic inequality, the concept of Matthew e ect has never been properly formalised. This makes it di cult to compare and synthesise the results of di erent studies. This paper o ers a rst formalisation of the Matthew e ect via a logic based on team semantics.

An original contribution of this paper is that our formalisation allows for a clear distinction between di erent types of Matthew e ects: direct, mediated, and complete. This shows just how complicated self-reinforcing phenomena can be, because an observed Matthew e ect can actually result from the interplay of direct and mediated Matthew e ects. In addition, our formalisation serves a number of interrelated purposes: rst, as shown in our case study, it can be used to better understand the import of empirical research and to make explicit the assumptions needed to support the researchers' conclusions; second, it can be used to compare and relate the results of di erent studies to one another, and thereby develop new theory on a rmer foundation; third, it allows empirical scientists to ask new research questions and formulate more precise hypotheses.

This study is only a rst step in exploring logical formalisms that address the intricate phenomena concerning the Matthew e ect. Further work will expand the logical analysis in the following directions:

Studying properties of ML. The logic ML, we introduced is de ned on the basis of team semantics. A team or a data set is essentially a relation of the model, which is a second-order object. As a consequence, logics based on team semantics are usually second-order in expressive power. Indeed, the two major team-based logics, dependence logic and independence logic, are expressibly equivalent to existential second-order logic [START_REF] Galliani | Inclusion and Exclusion in Team Semantics: On some logics of imperfect information[END_REF][START_REF] Väänänen | Dependence Logic: A New Approach to Independence Friendly Logic[END_REF]. The atomic dependency notions formalised in ML are more involved than the functional dependency, independence, and other dependency notions studied so far in team-based logics. Yet the language of our ML is very simple, as the only complex formulas are the conjunctions and the existentially quanti ed statements with weak existential quanti ers of team semantics. One natural conjecture would be that this logic is strictly weaker in expressive power than existential second-order or even rst-order logic.

A richer language with a good proof calculus. Although we demonstrated in the case study that the simple language ML can already express interesting facts about Matthew e ects, in future work we will introduce stronger logics by expanding the language to include disjunction, negation, implication, and strong quanti ers. We also want to introduce proof calculi for these extensions or their su ciently strong fragments.

Re ecting the complexity of empirical tests. Our formalisation suggests that empirical ndings about Matthew e ects are contingent on particular statistical analyses, performed on particular data, where particular variables are observed over particular time intervals. Choices related to research design can thus a ect the empirical evidence researchers nd about Matthew e ects. For example, choosing to observe the variables yearly rather than monthly, weekly, or daily can determine whether a direct Matthew e ect is found in the place of a mediated one. Moreover, the fact that some variables like quality and uncertainty about quality remain unobserved can conceal important dependencies; as a result, a Matthew e ect may appear to be mediated by a certain (observed) variable whereas in fact it is mediated by another (unobserved) one, which depends or is dependent on the apparent mediator. In formalising Matthew e ects, or indeed any dependency tested via statistical analysis, one must be able to express these details within the syntax of the logic.

A APPENDIX -MATTHEW EFFECTS A.1 Toy example of a Ma hew e ect

Matthew e ects are often detected by researchers while analyzing empirical data. In the statistical literature, these represent a form of autocorrelation [START_REF] Hamilton | Time Series Analysis[END_REF]. Table 1 presents a hypothetical dataset that shows prima facie evidence of a Matthew e ect. This data concerns the careers of visual artists: each row contains information about an artist during a given year. The rst column includes the artist ID; the second column includes the number of artworks sold by the artist during the observation year; the third column includes the number of times the artist or her work were reviewed by the media during the observation year; the fourth column speci es the observation year. Assume that all artists started their career in 2010 and that they were equally productive during the study period. The data suggests that Artist A started accumulating reviews from the very beginning, and sales quickly followed. A similar pattern can be observed for Artist B, though with some delay. In the case of Artist C, however, this trend never began.

We may presume that both sales and reviews are subject to a Matthew e ect because selling more artworks leads to greater odds of selling artwork in the future. Similarly, being reviewed increases the odds of future reviews. However, it is also possible-and indeed highly likely-that being reviewed increases the odds of future sales, and that selling artwork increase the odds of future reviews. The fact that these dependencies occur at the same time makes the individual e ects di cult to isolate. 

(t) = α + βx (t-lδ ) + γ 1 w 1 (t-lδ ) + ⋅ ⋅ ⋅ + γ 1 w 1 (t-lδ ) + ϵ,
where β is signi cantly greater than 0. Since we also have

(t-lδ ) = α + βx (t-2lδ ) + γ 1 w 1 (t-2lδ ) + ⋅ ⋅ ⋅ + γ 1 w 1 (t-2lδ ) + ϵ,
when all the independent variables except x are held constant, we obtain

(t) -(t-lδ ) = β(x (t-lδ ) -x (t-2lδ ) ),
meaning that the value of increases as the value of x increases (see also O O : :
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Variables

The key variables used by ASW to analyze the Matthew e ect among scientists in [START_REF] Azoulay | Matthew: E ect or fable?[END_REF] is reported in Table 3. Some of these variables measure relevant characteristics of a scientist, including Author, HHMI, Hdate, Hage, and Hcit. Other variables measure characteristics related to the article published by the scientist, including Article, ArtY, Journal, NbAut, Apos, ACitAF, ACitBF, IF, Novelty, and Recombination.

In [START_REF] Azoulay | Matthew: E ect or fable?[END_REF], the variables Hage, Hcit, IF, Novelty, and Recombination are split along the median value observed in the data, giving rise to the following boolean variables: Hyoung, which is true if the scientist is younger than the median at the time of the HHMI appointment; Hwellcited, which is true if the scientist has a greater number of total citations than the median at the time of the HHMI appointment; HIF, which is true if the journal where the article is published has higher impact factor than the median; Novel, which is true if the keywords associated with the article are more novel than the median; and Recombinant, which is true if the proportion of out-of-eld literature cited by the article is greater than the median.

In addition to these variables, which are measured and actually used in ASW's statistical analysis, the claims made in [START_REF] Azoulay | Matthew: E ect or fable?[END_REF] about the Matthew e ect involve a number of additional variables, which cannot be measured directly but are assumed to depend on some of the observed variables. These include Status, i.e., the status of the focal scientist, as well as ArtQ and UArtQ, which represent the quality of the scientist's article and the uncertainty about the quality of the scientist's article, respectively.

B.2 Regressions

A regression is performed via the application of an algorithm, i.e., an estimator, to the observed data. The algorithm yields a set of coe cients, which correspond to the β mentioned in Section 2. Each coe cient represents an e ect, i.e., a change in the value of the dependent variable that results from a one-unit increase in the value of the independent variable x. Each coe cient is associated with a level of statistical signi cance, i.e., a value between 0 and 1 that represents the probability of observing the estimated e ect in the data. The lower this value, the greater the probability of observing the e ect. A coe cient with a level of statistical signi cance below some predetermined threshold is said to be signi cantly greater than 0 if the coe cient is positive, and signi cantly smaller than 0 if the coe cient is negative. If the level of statistical signi cance is above the predetermined threshold, the coe cient is said to be non-signi cant or equivalent to zero. In [START_REF] Azoulay | Matthew: E ect or fable?[END_REF], the chosen signi cance threshold is 0.05, as is conventional in the social sciences.

Table 4 reports the full list of the regressions performed by ASW in [START_REF] Azoulay | Matthew: E ect or fable?[END_REF]. These are indexed by numbers 1-9. These regressions concern the observed variables listed in Table 3. In addition, Table 4 reports a list regressions that are not actually performed by ASW in [START_REF] Azoulay | Matthew: E ect or fable?[END_REF], but their results are nonetheless relevant to ASW's analysis. We call these hypothetical regressions. These are not actually performed because they concern the unobserved variables listed in Table 3. However, they could be performed if it were possible to observe these variables. These hypothetical regressions are indexed by letters a-e. In every regression, the dependent variable is ACitAF. Based on the full sample. Independent variables include all the observed variables listed in Table 3 r 2 Like r 1 , but the sample includes only articles published up to 1 year before the HHMI appointment r 3

Like r 1 , but the sample includes only articles published 2 years before the HHMI appointment r 4

Like r 1 , but the sample includes only articles published 3 to 10 years before the HHMI appointment r 5

Like r 2 , but estimating a di erent e ect of HHMI when HIF is true or false r 6

Like r 2 , but estimating a di erent e ect of HHMI when Novel is true or false r 7

Like r 2 , but estimating a di erent e ect of HHMI when Recombinant is true or false r 8

Like r 2 , but estimating a di erent e ect of HHMI when Hwellcited is true or false Like r 2 , but estimating a di erent e ect of HHMI when Hyoung is true or false 

  r a Hypothetical regression where the direct Matthew e ect on Status is estimated r b Hypothetical regression where the e ects of HIF, Novel, and Recombinant on UArtQ are estimated r c Hypothetical regression where the e ect of UArtQ on ACitAF is estimated r d Hypothetical regression where the e ects of Hwellcited and Hyoung on Status are estimated r e Hypothetical regression where the e ect of Status on ACitAF is estimated r f Hypothetical regression where the e ect of Status on HHMI is estimated

Table 1 .

 1 A data set (or a team)

	Artist Sales Reviews Time . . .	Artist Sales Reviews Time . . .	Artist Sales Reviews Time . . .
	A	0	1	2010 . . .	B	0	0	2010 . . .	C	0	0	2010 . . .
	A	1	2	2011 . . .	B	0	0	2011 . . .	C	1	1	2011 . . .
	A	1	1	2012 . . .	B	0	1	2012 . . .	C	0	0	2012 . . .
	A	2	4	2013 . . .	B	0	2	2013 . . .	C	0	1	2013 . . .
	A	4	7	2014 . . .	B	2	5	2014 . . .	C	1	2	2014 . . .
	A	7	9	2015 . . .	B	4	8	2015 . . .	C	0	1	2015 . . .
	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮
	A.2 Di erent Ma hew e ects								

Table 2

 2 contains a graphic representation of the de nitions of the positive dependency introduced in Theorem 2.1 and of the Matthew e ects de ned in Section 3. To help understand the de nitions of the di erent Matthew e ects and Table2, we present a simple example of positive dependency.Example A.1. Consider a very simple dependence relation x r with a linear regression function

Table 2

 2 

(a)).

Table 2 .

 2 Types of Ma hew e ect

	(a) Dependence relation
		(t)
	x (t-l)	(t-l)

Table 3 .

 3 List of variables

		Variable	Meaning	Type	Time
					dependent
		Author	Scientist ID	N
		HHMI	Author is appointed HHMI	0 1
		Hdate	Date of the HHMI appointment	N
		Hage	Age of the author	N
			at HHMI appointment	
		Hyoung	Author was young	0 1
	Observed		at HHMI appointment	
		Hold	Author was old	0 1
	Author related	Hcit	at HHMI appointment Author's total citations at HHMI appointment	N
		Hwellcited	Author was well cited	0 1
			at HHMI appointment	
		Hnotwellcited		

Table 4 .

 4 List of regressions

	Regression Description
	r 1

Notice that we assume the variable t to be always present in these atoms, although for simplicity we do not explicitly write the variable in the formulas. Cf. the team semantics given in (3).