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Determinants of Block Matrices

John R. Silvester

1 Introduction

Let us �rst consider the 2 � 2 matrices M =

 
a b

c d

!
and N =

 
e f

g h

!
. Their sum

and product are given by

M+N =

 
a + e b + f

c+ g d+ h

!
and MN =

 
ae + bg af + bh

ce + dg cf + dh

!
:

Here the entries a; b; c; d; e; f; g; h can come from a �eld, such as the real numbers, or more
generally from a ring, commutative or not. Indeed, if F is a �eld, then the set R = nF n

of all n � n matrices over F forms a ring (non-commutative if n � 2), because its
elements can be added, subtracted and multiplied, and all the ring axioms (associativity,
distributivity, etc.) hold. If a; b; : : : ; h are taken from this ring R, then M;N can be
thought of either as members of 2R2 (2� 2 matrices over R) or as members of 2nF 2n. It
is well-known fact, which we leave the reader to investigate, that whether we compute
with these matrices as 2n� 2n matrices, or as 2� 2 \block" matrices (where the blocks
a; b; : : : are n � n matrices, i.e., elements of R) makes no di�erence as far as addition,
subtraction and multiplication of matrices is concerned. (See for example [2], p. 4, or
[6], pp. 100{106.) In symbols, the rings 2R2 and 2nF 2n can be treated as being identical:
2R2 = 2nF 2n, or 2(nF n)2 = 2nF 2n. More generally, we can partition any mn�mn matrix
as an m�m matrix of n� n blocks: m(nF n)m = mnFmn.

The main point of this article is to look at determinants of partitioned (or block)
matrices. If a; b; c; d lie in a ring R, then provided that R is commutative there is a
determinant for M, which we shall write as detR, thus: detRM = ad � bc, which of
course lies in R. If R is not commutative, then the elements ad � bc, ad � cb, da � bc,
da� cb may not be the same, and we do not then know which of them (if any) might be
a suitable candidate for detRM. This is exactly the situation if R = nF n, where F is a
�eld (or a commutative ring) and n � 2; so to avoid the di�culty we take R to be, not
the whole of the matrix ring nF n, but some commutative subring R � nF n. The usual
theory of determinants then works quite happily in 2R2, or more generally in mRm, and
for M 2 mRm we can work out detRM, which will be an element of R. But R � nF n, so
detRM is actually a matrix over F , and we can work out detF (detRM), which will be an
element of F . On the other hand, since R � nF n, we haveM 2 mRm � m(nF n)m = mnFmn,
so we can work out detF M, which will also be an element of F . Our main conclusion is
that these two calculations give the same result:

Theorem 1. Let R be a commutative subring of nF n, where F is a �eld (or a commu-
tative ring), and let M 2 mRm. Then

detF M = detF (detRM): (1)
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For example, if M =

 
A B

C D

!
where A, B, C, D are n� n matrices over F which all

commute with each other, then Theorem 1 says

detF M = detF (AD�BC): (2)

Theorem 1 will be proved later. First, in section 2 we shall restrict attention to the
case m = 2 and give some preliminary (and familiar) results about determinants of block
diagonal and block triangular matrices which, as a by-product, yield a proof by block
matrix techniques of the multiplicative property of determinants. In section 3 we shall
prove something a little more general than Theorem 1 in the case m = 2; and Theorem
1 itself, for general m, will be proved in section 4.

2 The multiplicative property

Let M =

 
A B

C D

!
, where A, B, C, D 2 nF n, so that M 2 2nF 2n. As a �rst case,

suppose B = C = O, the n � n zero matrix, so that M =

 
A O

O D

!
, a block-diagonal

matrix. It is a well-known fact that

detF

 
A O

O D

!
= detF A detF D: (3)

The keen-eyed reader will notice immediately that, since

detF A detF D = detF (AD); (4)

equation (3) is just (2) in the special case where B = C = O. However, we postpone
this step, because with care we can obtain a proof of the multiplicative property (4) as
a by-product of the main argument.

One way of proving (3) is to use the Laplace expansion of detF M by the �rst n rows,
which gives the result immediately. A more elementary proof runs thus: generalize to
the case where A is r � r but D is still n � n. The result is now obvious if r = 1, by
expanding by the �rst row. So use induction on r, expanding by the �rst row to perform
the inductive step. (Details are left to the reader.) This result still holds if we know only
that B = O, and the proof is exactly the same: we obtain

detF

 
A O

C D

!
= detF A detF D: (5)

By taking transposes, or by repeating the proof using columns instead of rows, we also
obtain the result when C = O, namely,

detF

 
A B

O D

!
= detF A detF D: (6)
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In order to prove (4) we need to assume something about determinants, and we shall
assume that adding a multiple of one row (respectively, column) to another row (respec-
tively, column) of a matrix does not alter its determinant. Since multiplying a matrix
on the left (respectively, right) by a unitriangular matrix corresponds to performing a
number of such operations on the rows (respectively, columns), it does not alter the de-
terminant. (A unitriangular matrix is a triangular matrix with all diagonal entries equal
to 1.) We shall also assume that detF In = 1, where In is the n � n identity matrix. So
now observe that 

In �In
O In

! 
In O

In In

! 
In �In
O In

! 
A B

C D

!
=

 
�C �D

A B

!
; (7)

whence detF

 
A B

C D

!
= detF

 
�C �D

A B

!
, since the �rst three matrices on the left

of (7) are unitriangular. From (5) and (6) it follows from this that

detF

 
A B

C O

!
= detF (�C) detF B = detF

 
O B

C D

!
: (8)

But also  
A O

�In D

! 
In D

O In

!
=

 
A AD

�In O

!
:

Here the second matrix on the left is unitriangular, so taking determinants and using (5)
and the �rst part of (8), we have

detF A detF D = detF In detF (AD);

and since detF In = 1, the multiplicative law (4) for determinants in nF n follows.

3 Determinants of 2� 2 block matrices

Since we now know that detF A detF D = detF (AD), then also detF (�C) detF B =
detF B detF (�C) = detF (B(�C)) = detF (�BC). From (5), (6) and (8), we obtain:

Lemma 2. If M =

 
A B

C D

!
, then

detF M = detF (AD�BC) (9)

whenever at least one of the blocks A, B, C, D is equal to O.

(Compare this with (2).)

We shall now try to generalize somewhat. Suppose the blocks C and D commute,
that is, CD = DC. Then

 
A B

C D

! 
D O

�C In

!
=

 
AD�BC B

CD�DC D

!
=

 
AD�BC B

O D

!
: (10)
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We proved (4) in nF n for all n, so we can apply it in 2nF 2n to get, via (5) and (6),

detF M detF D = detF (AD�BC) detF D;

and so �
detF M� detF (AD�BC)

�
detF D = 0: (11)

Now if detF D is not zero (or, in the case where F is a ring rather than a �eld, if detF D is
not a divisor of zero), then (9) follows immediately from (11); but we do not actually need
this extra assumption, as we shall now show. Adjoin an indeterminate x to F , and work
in the polynomial ring F [x]. This is a(nother) commutative ring, and a typical element is
a polynomial a0x

r+a1x
r�1+: : :+ar�1x+ar, where ai 2 F , all i, and addition, subtraction

and multiplication of polynomials is done in the obvious way. Now let us add to D the
scalar matrix xIn, and for brevity write Dx = xIn +D. Since a scalar matrix necessarily
commutes with C (because it commutes with every matrix), and also D commutes with

C, it follows thatDx commutes withC. Thus, if we putMx =

 
A B

C Dx

!
, then working

over F [x] in place of F yields equation (11) for Mx, that is,�
detF Mx � detF (ADx �BC)

�
detF Dx = 0: (12)

But here we have the product of two polynomials equal to the zero polynomial. The
second polynomial detF Dx = detF (xIn +D) is certainly not the zero polynomial, but is
monic of degree n, that is, it is of the form xn + terms of lower degree. (It is in fact the
characteristic polynomial of �D.) This means that the left-hand polynomial in (12), the
bracketed expression, must be the zero polynomial. For if not, it is of the form a0x

r+terms
of lower degree, where a0 2 F and a0 6= 0. Multiplying the two polynomials, we get
a0x

r+n + terms of lower degree, which cannot be the zero polynomial, a contradiction.
(This argument works even when F is not a �eld, but merely a commutative ring possibly
with divisors of zero.) So now we have proved that detF Mx � detF (ADx � BC) = 0;
but D0 = D and M0 = M, so we just have to put x = 0 and we obtain the following
stronger version of Theorem 1:

Theorem 3. If M =

 
A B

C D

!
, where A, B, C, D 2 nF n and CD = DC, then

detF M = detF (AD�BC): (13)

Other versions of Theorem 3 hold if di�erent blocks ofM commute, so it is an exercise
for the reader to show that

if AC = CA then detF M = detF (AD�CB); (14)

if BD = DB then detF M = detF (DA�BC); (15)

if AB = BA then detF M = detF (DA�CB): (16)

Of course, if all four blocks of M commute pairwise, then all of (13), (14), (15), (16)
hold, the expressions on the right being equal. As a particular case, if R is a commutative
subring of nF n andA, B, C, D 2 R, then any of (13){(16) gives an expression for detF M,
and this gives a proof of Theorem 1 in the case m = 2.
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4 Determinants of m�m block matrices

In this section we shall prove Theorem 1, but �rst we do some preliminary calculations.
Let R be any commutative ring, and let M 2 mRm, where m � 2. We partition M as

follows: M =

 
A b

c d

!
, where A 2 m�1Rm�1, b 2 m�1R, c 2 Rm�1, and d 2 R. So here

b is a column vector, and c is a row vector. Suppose c = (c1; c2; : : : ; cm�1), and consider
the e�ect of multiplying this on the right by the scalar matrix dIm�1. We have

c(dIm�1) = (c1; c2; : : : ; cm�1)

0
BBBB@

d 0 : : : 0
0 d : : : 0
...

...
. . .

...
0 0 : : : d

1
CCCCA

= (c1d; c2d; : : : ; cm�1d)

= (dc1; dc2; : : : ; dcm�1) (because R is commutative)

= d(c1; c2; : : : ; cm�1) = dc:

In a similar way, A(dIm�1) = dA. So now we have

 
A b

c d

! 
dIm�1 0

�c 1

!
=

 
A0 b

0 d

!
(17)

whereA0 = dA�bc 2 m�1Rm�1. (Notice here that bc, being the product of an (m�1)�1
matrix and a 1 � (m � 1) matrix, is an (m � 1) � (m � 1) matrix.) Applying detR to
each side of (17), we get

(detRM)dm�1 = (detRA0)d: (18)

If we now take R to be a commutative subring of nF n, then (18) is an equation in nF n,
so we can apply detF to each side and get

detF (detRM)(detF d)m�1 = detF (detRA0)(detF d): (19)

Also, (17) is now an equation in mnFmn, so we can apply detF to each side and obtain

(detF M)(detF d)m�1 = (detF A0)(detF d): (20)

We now have everything we need ready for a proof of Theorem 1.

Proof of Theorem 1. The result is trivial if m = 1, for then detRM =M, and there
is nothing to prove. So assume m � 2, partition M as above, and use induction on m.
By the inductive hypothesis, detF (detRA0) = detF A0, since A0 2

m�1Rm�1. From (19)
and (20) we deduce

�
detF M� detF (detRM)

�
(detF d)m�1 = 0: (21)

Now if detF d is not zero (or, in the case where F is a commutative ring rather than a
�eld, if detF d is not a divisor of zero), then our result follows immediately. To deal with
other cases, we repeat our trick with polynomials in the proof of Lemma 2, in section 3.
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Adjoin an indeterminate x to F , and work in the polynomial ring F [x]. Add the scalar
matrix xIn to d to de�ne dx = xIn+ d (which may look strange, but d, being in R, really
is an n � n matrix over F ), and make the corresponding adjustment to M, by putting

Mx =

 
A b

c dx

!
. Then exactly as for M, we have

�
detF Mx � detF (detRMx)

�
(detF dx)

m�1 = 0: (22)

But detF dx is a monic polynomial of degree n, and we conclude that the other term in
(22), detF Mx � detF (detRMx), is the zero polynomial. Putting x = 0 and noting that
d0 = d and M0 =M, we obtain detF M = detF (detRM), and the proof of Theorem 1 is
complete.

As an application, we can obtain the formula for the determinant of a tensor product

of matrices rather easily. For example, if P =

 
p11 p12
p21 p22

!
2 2F 2 and Q 2 nF n, the

tensor product P 
 Q is de�ned to be the 2n � 2n matrix

 
p11Q p12Q

p21Q p22Q

!
. Here the

blocks, all being scalar multiples of Q, commute pairwise; one could in fact take R to be
the subring of nF n generated by Q, that is, the set F [Q] of all polynomial expressions
a0Q

r + a1Q
r�1 + : : : + ar�1Q + arIn, where r � 0 and ai 2 F , all i. This is certainly a

commutative subring of nF n and contains all four blocks pijQ. Applying Theorem 1, or
Theorem 3, we have

detF (P
Q) = detF
�
(p11Q)(p22Q)� (p12Q)(p21Q)

�
= detF

�
p11p22Q

2 � p12p21Q
2
�

= detF
�
(p11p22 � p12p21)Q

2
�

= detF
�
(detF P)Q

2
�

= (detF P)
n(detF Q)

2:

More generally:

Corollary. Let P 2 mFm and Q 2 nF n. Then

detF (P
Q) = (detF P)
n(detF Q)

m:

Proof. Take R = F [Q], as above. If P = (pij), then by de�nition

P
Q =

0
BBBB@

p11Q p12Q : : : p1mQ

p21Q p22Q : : : p2mQ
...

...
. . .

...
pm1Q pm2Q : : : pmmQ

1
CCCCA 2 mRm:

Then detR(P
Q) is a sum of m! terms each of the form

�(p1i1Q)(p2i2Q) : : : (pmimQ) = �p1i1p2i2 : : : pmimQ
m
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for some permutation i1; i2; : : : ; im of 1; 2; : : : ; m. Thus

detR(P
Q) = (detF P)Q
m:

Then, by Theorem 1,

detF (P
Q) = detF (detR(P
Q))

= detF ((detF P)Q
m)

= (detF P)
n(detF Q

m)

= (detF P)
n(detF Q)

m:

5 Acknowledgements

This paper began when I set my linear algebra class the following exercise: if A, B, C,
D 2 nF n and D is invertible, show that

det

 
A B

C D

!
= det(AD�BD�1CD):

(The intended proof was via the equation

 
A B

C D

! 
In O

�D�1C In

!
=

 
A�BD�1C B

O D

!
;

and the exercise took its inspiration from the theory of Dieudonn�e determinants for
matrices over skew �elds. See, for example, [1], chapter IV.) It was a small step to
notice that, if also CD = DC, then (13) holds; but (13) does not mention D�1, and so
the natural question to ask was whether (13) would hold even if D were not invertible
(but still CD = DC). I eventually found a proof of this, when F is a �eld, by using
the principle of the irrelevance of algebraic inequalities. (See [3], chapter 6.) I passed
this around friends and colleagues, and Dr W. Stephenson showed me how to use monic
polynomials to shorten the argument, and extend it from �elds to rings. At the same
time, Dr A. D. Barnard suggested it might be possible to extend the result to the m�m

case by assuming all the pairs of blocks commute. I am grateful to both of them for their
help, and their interest. I also wish to thank the referee for directing my attention to
some of the early literature on this subject, mentioned below.

Theorem 1 is not, I think, a new result, and I have seen what appears to be an abstract
version of it (without proof) at a much more advanced level. I have not been able to
�nd an elementary statement and proof, as given above, in the literature. The block
matrix proof of the multiplicative property of determinants is essentially that given in
[2], chapter 4. The formula for the determinant of a tensor product �rst appears in the
case m = 4, n = 2 in [11], and indeed is referred to in [7] as Zehfuss' theorem. The �rst
proof of the general case is probably that in [8], p. 117, though in [5], p. 82, the proof is
attributed to [4], [9] and [10]. See also the references to these articles in [7], volume 2,
pp. 102{104, and volume 4, pp. 42, 62 and 216.
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