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A 1-2-3-4 result for the 1-2-3 Conjecture in 5-regular graphs

Julien Bensmaila

aUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

The 1-2-3 Conjecture, posed by Karoński, Łuczak and Thomason, asks whether every
connected graph G different from K2 can be 3-edge-weighted so that every two adjacent
vertices of G get distinct sums of incident weights. Towards that conjecture, the best-
known result to date is due to Kalkowski, Karoński and Pfender, who proved that it holds
when relaxed to 5-edge-weightings. Their proof builds upon a weighting algorithm designed
by Kalkowski for a total version of the problem.

In this work, we present new mechanisms for using Kalkowki’s algorithm in the context
of the 1-2-3 Conjecture. As a main result we prove that every 5-regular graph admit a
4-edge-weighting that permits to distinguish its adjacent vertices via their incident sums.

Keywords: 1-2-3 Conjecture; four weights; 5-regular graphs.

1. Introduction

In this paper, we deal with variants of the so-called 1-2-3 Conjecture, which is based
on the following definitions and concepts. Let G be an (undirected simple) graph, and let
w be an (improper) edge-weighting of G. For each vertex v of G, one can compute its sum

σw(v) :=
∑

u∈N(v)

w(vu)

(also denoted σ(v) when no ambiguity is possible) of incident weights by w. In case, for
this particular weighting w, we get that σw is a proper vertex-colouring of G, i.e. no
two adjacent vertices of G get the same sum, we call w sum-colouring. It can easily
be observed that every connected graph different from K2 admits sum-colouring edge-
weightings. Hence, every graph with no connected component isomorphic to K2 is nice
regarding the notion of sum-colouring edge-weighting, and it consequently makes sense
studying the least number of consecutive weights 1, 2, ..., k needed to obtain a such k-
edge-weighting for any nice graph. For a given nice graph G, we denote this least k by
χe

Σ(G).
The 1-2-3 Conjecture, addressed in 2004 by Karoński, Łuczak and Thomason [7], is

precisely about the parameter χe
Σ. More precisely, it states that χe

Σ(G) should be bounded
above by 3 for every nice graph G.

1-2-3 Conjecture (Karoński, Łuczak, Thomason). For every nice graph G, we have
χe

Σ(G) ≤ 3.

The introduction of the 1-2-3 Conjecture gave birth to active investigations dedicated
both to the original conjecture and variants of it. For more information on that wide
topic, we refer the interested reader to the survey [9] by Seamone. It has to be known,
though, that the general bound on χe

Σ proposed in the 1-2-3 Conjecture cannot be pushed
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further down, as observed notably for nice complete graphs. A more remarkable fact is
that, actually, deciding whether χe

Σ(G) ≤ 2 holds for a given nice graph G is NP-complete
in general, as first proved by Dudek and Wajc [3]. The similar fact was not known to hold
when restricted to nice bipartite graphs G, until Thomassen, Wu and Zhang have recently
shown, in [10], that those nice bipartite graphs G with χe

Σ(G) = 3 can be recognized
in polynomial time. Many more investigations dedicated to the true importance of the
weight 3 for the 1-2-3 Conjecture can be found in the literature, constituting interesting
lines of research.

The best known upper bound on χe
Σ so far is derived from a bound on another chromatic

parameter for a variant of the 1-2-3 Conjecture called the 1-2 Conjecture, which we recall
now. In 2010, Przybyło and Woźniak studied the implications on the 1-2-3 Conjecture of
being allowed to locally alter the incident sum at every vertex. This gives rise to the
following definitions and terminology. Let G be a graph, and w be a total-weighting of G.
As previously, one can compute, for every vertex v of G, its sum of incident weights by w,
being, this time,

σw(v) := w(v) +
∑

u∈N(v)

w(vu)

(or denoted, again, simply σ(v) when no ambiguity is possible). Again, we say that w
is sum-colouring if σw is a proper vertex-colouring of G, while χt

Σ(G) refers to the least
number of consecutive weights 1, 2, ..., k needed to k-total-weight G in a sum-colouring way.
Since χt

Σ(G) ≤ χe
Σ(G) clearly holds for every nice graph G, and χt

Σ(K2) = 2, all graphs
admit sum-colouring total-weightings; so no notion of niceness is required in this context.
We further note that sum-colouring total-weighting a graph is similar to sum-colouring
edge-weighting the same graph where each vertex is attached a pendant vertex.

In [8], Przybyło and Woźniak wondered whether, in the total version of the problem,
graphs can in general be weighted with less weights than they can in the edge version.
As they could not come up with easy counterexamples, they legitimately addressed the
following 1-2 Conjecture.

1-2 Conjecture (Przybyło, Woźniak). For every graph G, we have χt
Σ(G) ≤ 2.

The latest progress towards the 1-2-3 and 1-2 Conjectures, as well towards other vari-
ants, result from the introduction of a brilliant weighting algorithm due to Kalkowski [5].
In its original version, this algorithm was used to show that every graph admits a sum-
colouring 3-total-weighting, and even that such a weighting exists if we restrict all vertices
to be weighted 1 or 2. Kalkowski thus proved the following, which is close to the 1-2
Conjecture.

Theorem 1.1 (Kalkowski). For every graph G, we have χt
Σ(G) ≤ 3.

Modifications of Kalkowski’s algorithm permitted to get new upper bounds on variants
of χt

Σ. Amongst those variants that are the closest to our investigations, let us mention
the work of Gao, Wang and Wu [4], who proved, via a slight modification of Kalkowski’s
ideas, that the 1-2-3 Conjecture is true if we allow the vertices with a same incident sum to
induce a forest. More involved modifications of Kalkowski’s algorithm allowed Kalkowski,
Karoński and Pfender to prove the best known upper bound on χe

Σ so far [6].

Theorem 1.2 (Kalkowski, Karoński, Pfender). For every nice graph G, we have χe
Σ(G) ≤

5.
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In this paper, we focus on the 1-2-3 Conjecture in 5-regular graphs. One main motiva-
tion for this is that nice regular graphs can, intuitively, be considered as being among the
most complicated graphs for the 1-2-3 Conjecture. This is because all vertices in a regular
graph have the same set of possible sums by an edge-weighting. Due to Theorem 1.2, we
know that, for every nice regular graph G, we have χe

Σ(G) ≤ 5. Still in the context of
regular graphs, this upper bound can sometimes be reduced further down. As indicated
by Seamone in [9], it is known that χe

Σ(G) ≤ χ(G) holds whenever χ(G) = 2k + 1 or
χ(G) = 4k, where χ refers to the usual chromatic number parameter. Hence, since the
1-2-3 Conjecture holds for nice complete graphs and cycles, the upper bound 5 can be
reduced down to 3 for 3-regular graphs, and down to 4 for 4-regular graphs. The 1-2-3
Conjecture was also verified for regular graphs with large degree, see [1, 2].

Our goal in this paper is to improve the bound on the parameter χe
Σ for 5-regular graphs

(which are obviously all nice), by showing that their index is bounded above by 4.

Theorem 1.3. For every 5-regular graph G, we have χe
Σ(G) ≤ 4.

In light of the previous explanations, one first point for considering 5-regular graphs
is that they form, in a sense, the class of regular graphs with smallest degree for which
the upper bound of 4 on χe

Σ is not known to hold. Another more important point lies in
the method we use. Namely, to prove Theorem 1.3, we introduce another modification of
Kalkowski’s algorithm that is rather different from those designed so far. We believe this
is of interest, as Kalkowski’s algorithm remains, to date, one of the main methods used
to deal with the 1-2-3 Conjecture. Lastly, although one may regard 5-regular graphs as a
rather restricted class of graphs, our method actually also applies to less natural classes of
graphs. We also believe that our method could potentially be generalized to regular graphs
with larger degree. These points will be discussed further in the concluding section.

This paper is organized as follows. As our proof of Theorem 1.3 highly relies on
Kalkowski’s algorithm from [5], we first recall it in Section 2. We voluntarily do so by
employing a modified terminology that suits our needs better. Our proof of Theorem 1.3
is then given in Section 3.

2. Kalkowski’s algorithm

The proof of Theorem 1.1 by Kalkowski in [5] relies on the fact that every graph admits
a 3-edge-weighting which is almost sum-colouring, in the following sense.

Lemma 2.1 (Kalkowski). For every graph G, there is a proper vertex-colouring φ : V (G)→
N∗ such that G admits a 3-edge-weighting w verifying

σ(v) ∈ Φ(v) := (φ(v)− 1, φ(v))

for every vertex v of G.

The proof of Theorem 1.1 essentially consists in 1) deducing a 3-edge-weighting w of
G as guaranteed by Lemma 2.1, then 2) assigning weight 1 to every vertex v verifying
σw(v) = φ(v), and 3) assigning weight 2 to every vertex v verifying σw(v) = φ(v) − 1.
This results in a sum-colouring 3-total-weighting of G as, for every vertex v, the obtained
incident sum is φ(v) + 1 with φ being a proper vertex-colouring of G.

Our proof of Theorem 1.3 being based on a refinement of Kalkowski’s algorithmic proof
of Theorem 1.1, we recall Kalkowski’s arguments (using our terminology and notation).
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vj
�2→ 1

2

�2→ 1

2

Φ 7 | 8 Φ 6 | 7 Φ 8 | 9 Φ 5 | 6 Φ undef. | undef.

↑ ��↑ ↑ ↑ ��↑ ↑

Figure 1: Performing valid adjustments in the proof of Lemma 2.1. Vertex vj has initial incident sum 8,
while its backward neighbours will eventually have final incident sums 7, 8, 9. We perform valid adjustments
backward so that σ(vj) = 6, which is an available final incident sum for vj . Then we set Φ(vj) = (5, 6).

Proof of Lemma 2.1. We may assume that G is connected as otherwise we may argue
component-wise. Let v1, ..., vn be the vertices of G ordered in an arbitrary way. The
original proof of Kalkowski, which is purely algorithmic, consists in starting from an original
3-edge-weighting w of G, then processing the vi’s one after another, following the order
over their indexes, without coming back at any point, and, whenever treating a new vertex
vi, modifying the weights incident to vi so that Φ(vi) can be chosen conveniently, and σ(vi)
belongs to Φ(vi). In other words, the Φ(vi)’s are determined on the fly, while w is being
modified at any step to guarantee its existence. Hence, once the algorithm is over, both Φ
and w are obtained.

More precisely, the algorithm goes as follows. We start from w assigning weight 2
to every edge of G, and from φ(vi) (and thus Φ(vi)) being undefined for every vi. The
algorithm will respect, during its course, i.e. at every step, a certain number of properties,
which are the following:

1. For every already-treated vertex vi, the pair Φ(vi) := (φ(vi)− 1, φ(vi)) is defined, i.e.
φ(vi) was chosen and we have σ(vi) ∈ Φ(vi).

2. For every two already-treated adjacent vertices vi and vj , we have φ(vi) 6= φ(vj).

3. For every edge vivj with i < j, the weight w(vivj) can only be modified when treating
vj .

We note that Property 2 allows Φ(vi) ∩ Φ(vj) to be non-empty, provided φ(vi) and
φ(vj) are different. Furthermore, Property 3 implies 1) that every edge weight is modified
at most once during the algorithm’s course, and 2) that, whenever treating a new vertex
vj , all backward edges incident to vj , i.e. those edges of the form vivj with i < j, are still
assigned weight 2 by w.

We now describe the general behaviour of the algorithm (see Figure 1 for an illustra-
tion). Assume all vertices v1, ..., vj−1 have already been treated during the algorithm’s
course, with Properties 1 to 3 being maintained, and that the next vertex, vj , is considered
(we have j = 0 at the very first step). Let b ≤ d(vj) denote the number of backward
neighbours of vj (i.e. vertices vi, with i < j, neighbouring vj), and arbitrarily denote these
vertices by u1, ..., ub. As said above, remind that we have w(u1vj) = ... = w(ubvj) = 2
at this point of the algorithm. In order to define φ(vj), and so Φ(vj), with maintaining
Property 1, and so that vj itself satisfies Properties 1 and 2 (once it is treated), we will
alter some of the weights of the backward edges incident to vj . Note that we have to be
careful, as, when doing so, one of the ui’s may not fulfil the second part of Property 1
any more. However, since, for every ui, we have σ(ui) ∈ Φ(ui) and w(uivj) = 2, we note
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that the weight 2 on uivj can be either incremented or decremented with preserving the
fact that σ(ui) ∈ Φ(ui). We call a valid adjustment the operation of changing the value of
w(uivj) by applying the correct one of these two operations. Hence, by performing valid
adjustments to the backward edges incident to vj , we can modify σ(vj) without having any
of the ui’s violating Property 1.

We hence just have to show that there is a set of valid adjustments to the backward
edges incident to vj which makes σ(vj) belonging to Φ(vj), so that Property 1 is fully met,
for some Φ(vj) = (φ(vj)−1, φ(vj)) verifying Property 2. As our proof of Theorem 1.3 partly
depends on the existence of such valid adjustments, we prove their existence formally in
the following proposition.

Proposition 2.2. Assume all of vertices u1, ..., ub have been treated by the algorithm,
i.e. the ui’s verify Property 1, and that vj is being considered. Then there is a set of
valid adjustments to the backward edges incident to vj for which σ(vj) ∈ Φ(vj), for some
Φ(vj) = (φ(vj)− 1, φ(vj)) verifying Property 2.

Proof. When performing a valid adjustment to a backward edge incident to vj , the value
of σ(vj) changes. We only need to show that, by performing some such valid adjustments,
we can make σ(vj) or σ(vj) + 1 reach a value not among {φ(u1), ..., φ(uk)}. Such a value
will be our φ(vj).

Assume s of the valid adjustments to the backward edges incident to vj are decrements,
while t of the valid adjustments are increments. So we have b = s+ t. By performing one,
two, ..., s decrements, we make σ(vj) decrease by 1, ..., s. Conversely, by performing one,
two, ..., t increments, we make σ(vj) increase by 1, ..., t. Hence, by performing some valid
adjustments to the backward edges incident to vj , we can modify σ(vj) to any value among
S := {σ(vj)−s, ..., σ(vj), ..., σ(vj)+t}, which includes s+t+1 = b+1 elements. Hence, the
set S \ {φ(u1), ..., φ(ub)} is non-empty, and we can just choose φ(vj) as being any element
of this difference, and set Φ(vj) = (φ(vj)− 1, φ(vj)). The claimed valid adjustments hence
exist. �

Hence, when considering vj , we can, according to Proposition 2.2, perform valid adjust-
ments to the backward edges incident to vj yielding a Φ(vj) verifying Properties 1 and 2,
while the ui’s still verify Property 1. Besides, since valid adjustments concern backward
edges of vj only, Property 3 is still respected. The algorithm can hence pursue its course,
hence obtain the claimed edge-weighting, concluding the proof. �

3. Proof of Theorem 1.3

Adapting Kalkowski’s algorithm in the context where only the edges are weighted is a
tricky task. The strategy proposed, in [6], by Kalkowski, Karoński and Pfender in order
to prove Theorem 1.2, relies on several modifications of the algorithm which we describe
roughly. First, all Φ(vi)’s are now of the form (φ(vi) − 2, φ(vi)). Then, since, in the edge
version, it is not able to locally adjust a vertex weight to modify the incident sum, it is
required, at any point of their algorithm, that Φ(vi)∩Φ(vj) is empty for every two adjacent
vertices vi and vj . Since the latter condition is much stronger than in Kalkowski’s original
algorithm, an analogue of Proposition 2.2 does not immediately hold. To offset this point,
their algorithm is now allowed to adjust the weight of a forward edge (so the ordering
v1, ..., vn must guarantee that every vi (but vn) has a forward neighbour). The price for
Kalkowski, Karoński and Pfender’s algorithm to work, i.e. to have properties analogous to
Properties 1 to 3 to be maintained during its course, is the use of more edge weights.
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Our proof of Theorem 1.3 is, essentially, another modification of Kalkowski’s algorithm
that is, in some sense, closer to the original algorithm than is the approach imagined
by Kalkowski, Karoński and Pfender. Instead of just describing a sum-colouring 4-edge-
weighting of any 5-regular graph, we below rather describe our approach step by step, so
that the reader gets a better intuition on why the resulting weighting is designed in this
particular way.

3.1. Rough ideas
The very basic idea behind our proof is to apply Kalkowski’s algorithm in the edge

context by simulating vertex weights with edge weights. Assume G is a graph we want
to edge-weight in a sum-colouring way, and let W ∪ H be a partition of V (G) such that
every vertex of H has at least one neighbour in W . According to that property, every
vertex u ∈ H has some incident edges going to W . We call those edges the private edges
of u. We note, now, that a sum-colouring total-weighting w of H naturally yields a partial
edge-weighting w′ of G which sum-colours the vertices of H only (that is, adjacent vertices
of H get different incident sums). One can indeed can just start from w′ being w, and then
simulate every vertex weight w(u) by setting w′(uv) = w(u), where uv is a private edge of
u.

Of course, this idea, as roughly stated above, suffers many issues which need to be
pointed out. One issue is that not all edges of G get weighted by w′; this is in particular
the case for the private edges not chosen in the last stage. Another issue is that G[H]
may consist in several connected components, some of which, in particular the ones with
no edges, must be treated differently. Another one main issue is that, by a sum-colouring
edge-weighting of G, not only the adjacent vertices of H must receive different sums. In
particular, we also have to guarantee that σ(u) 6= σ(v) for 1) adjacent u, v ∈ W , and 2)
adjacent u ∈ H and v ∈ W . The first of these cases is easy to handle, as we may just
require W to be an independent set. For that, we will just make use of the folklore fact
that, in any graph, a maximal independent set is also dominating.

Observation 3.1. Let W be a maximal independent set of a graph G. Then every vertex
in V (G) \W has at least one neighbour in W .

Dealing with the second case above is a bit more complicated, and this is particularly
where we will take advantage of the fact that all vertices of G have the same (small)
degree. In few words, our edge-weighting will have the property that most edges incident
to the vertices in H have “small” weights, namely weights among {1, 2, 3}, while most edges
incident to the vertices in W have “big” weights, namely weights among {3, 4}. With a
careful case analysis, we will make sure that no two adjacent vertices u ∈ H and v ∈ W
have all their incident edges weighted with weight 3, which is basically the only issue which
may occur when the weighting conventions above are fulfilled.

3.2. Definitions and terminology
Let G be a 5-regular graph, which we can assume is connected (otherwise we can argue

component-wise). Let W be a maximal independent set of G, and set H := V (G)\W . We
note that the graph G[H] may consist of several components, which we call H-components
throughout. In the proof, we need to treat differently those H-components which have
edges, and thoseH-components which consist of an isolated vertex. We call these two types
of H-components good and bad, respectively. For every vertex in a good H-component,
there are incident edges going to W . These are precisely the edges we call private. For
u ∈ H and v ∈ W such that u and v are adjacent in G, the edge uv is thus private, and
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Figure 2: Illustration of the concepts introduced in the proof of Theorem 1.3, for a cubic graph. Black
vertices are vertices of H, while white vertices are vertices of W . Diamond vertices of W are external
vertices, while circle vertices of W are internal vertices. Good H-components are highlighted in blue.
Type-1 components are highlighted in yellow, type-2 components are highlighted in green, while type-3
components are highlighted in red.

we call v a private neighbour of u. In particular, the edges incident to the vertex of a bad
H-component are not regarded as private. The other way around, a vertex in W might
have none to all of its incident edges being private.

Before pursuing, we need to introduce some more terminology (refer to Figure 2 for
an illustration of the upcoming concepts). We say that a vertex in W is internal if all its
neighbours, which are all in H, belong to bad H-components. In particular, an internal
vertex of W is not a private neighbour of any vertex in H. All other vertices of W are
said external, meaning that they are adjacent to vertices in good H-components. In the
proof, the edges of G inside/incident to the good H-components will be weighted using a
modification of Kalkowski’s algorithm. To weight the other edges ofG, we will mainly argue
depending of the nature of some induced subgraphs of G. Let hence H := Hg ∪Hb, where
Hg and Hb denote the vertices of H being in good and bad H-components, respectively.
More precisely, we will have to look at the components of G′ := G[Hb∪W ]. The connected
components of G′ can be of three main types. First, there are those components of G′,
which are said to be of type-1, which consist of only one isolated vertex (in W ). Since
W dominates Hb, we note that every other component of G′ has edges. More precisely,
all other components of G′ are bipartite graphs in which all vertices in Hb have degree
exactly 5, while all vertices in W have degree at most 5. In particular, if such a vertex
v of W has degree strictly less than 5, then v is external. To conclude the classification
of the remaining components of G′, we say that such a component is of type-2 whenever
it includes at least one internal vertex, while it is said to be of type-3 otherwise, i.e. if it
includes external vertices only.

3.3. A sum-colouring 4-edge-weighting scheme
We are now ready to describe how to obtain a sum-colouring 4-edge-weighting w of G.

This weighting w is mainly obtained though several successive modification stages. The
description is done step by step, so that the reader gets aware of all consequences of our
weight modifications.

We start by assigning weight 3 to all private edges, i.e. edges uv where u ∈ Hg and
v ∈W . These weights might be altered later on, so no incident sum is final so far.

We then weight the edges of the good H-components using Kalkowski’s algorithm so
that, for every two adjacent vertices u and v in a good H-component, we have σ(u) 6= σ(v).
To that aim, the private edges will basically simulate vertex weights. Note that this is
possible since, at this point, we have w(uv) = 3 for some private edge uv, so for every
u ∈ Hg we have the possibility to increment the incident sum of u by setting w(uv) = 4.
For every private edge, only this move will potentially be applied, so, eventually, every
private edge will be weighted with weight 3 (unchanged) or 4 (incremented).

7



So that some upcoming arguments are valid, we need to apply Kalkowski’s algorithm
so that the sums of weights incident to the vertices in Hg range in a particular set of small
values. Namely, we need the following result:

Lemma 3.2. Let C be a good H-component of G, and let GC be the subgraph of G con-
taining C and all private edges of G incident to vertices in C. Then GC admits a 4-edge-
weighting w such that:

1. for every u ∈ V (C), we have σ(u) < 15,

2. for every two adjacent vertices u, v ∈ V (C), we have σ(u) 6= σ(v),

3. for every private edge uv of GC , we have w(uv) ∈ {3, 4}.

Proof. We use a proof scheme that is reminiscent of that of Lemma 2.1. Let v1, ..., vn
denote the vertices of C ordered in an arbitrary way. Recall that all vi’s have degree 5 in
GC , and every vi is incident to at least one private edge. For every vi, there are, in GC ,
three types of incident edges, namely:

• b ≤ 4 backward edges (i.e. edges vjvi with j < i),

• f ≤ 4 forward edges (i.e. edges vivj with i < j),

• p ≥ 1 private edges (i.e. edges viu where u ∈W ).

We start from w assigning weight 3 to all private edges of GC . We then give an initial
weight by w to the edges of C. To that aim, we consider every vj in turn (and its specific
values of b and f), and weight its backward edges as follows:

• in case f ≥ 1, we set w(vivj) = 2 for every edge vivj with i < j;

• in case f = 0, let u1, ..., ub denote the backward neighbours of vj . Then:

– if b = 4, then we set w(u1vj) = 1 and w(u2vj) = w(u3vj) = w(u4vj) = 2;

– if b = 3, then we set w(u1vj) = w(u2vj) = 1 and w(u3vj) = 2;

– if b = 2, then we set w(u1vj) = w(u2vj) = 1;

– if b = 1, then we set w(u1vj) = 1.

All edges incident to the vi’s in GC are now assigned an initial weight by w, so each vi
has an initial incident sum σ(vi). Similarly as in Kalkowski’s algorithm, we now process
the vi’s from first to last, and define, for every vi, the set Φ(vi) := (φ(vi)−1, φ(vi)) so that
φ(vi) 6= φ(vj) for every two adjacent vertices vi, vj of C. We claim that, from the initial
4-edge-weighting of C we have defined, this is possible in such a way that φ(vi) < 15 (so
that the third item of the statement is met).

Consider a vertex vj such that the previous vi’s have been treated. Recall that vj
has b backward neighbours u1, ..., ub, f forward neighbours, and p ≥ 1 private neighbours
w1, ..., wp. Similarly as in the proof of Proposition 2.2, we can make valid adjustments
backwards. The difference, though, is that some edges uivj have been weighted 1 and
cannot be decremented. More precisely, the valid adjustments backwards are as follows:

• uivj is an edge with w(uivj) = 2 and σ(ui) = φ(ui) − 1: the weight w(uivj) can be
incremented;
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• uivj is an edge with w(uivj) = 1 and σ(ui) = φ(ui) − 1: the weight w(uivj) can be
incremented;

• uivj is an edge with w(uivj) = 2 and σ(ui) = φ(ui): the weight w(uivj) can be
decremented.

We denote by s the number of possible valid decrements backwards, and by t the
number of possible valid increments backwards. Clearly, s + t ≤ 4 since p ≥ 1. By the
remarks above, we might have s+ t < b when f = 0.

First assume f ≥ 1. Then all backward edges incident to vj have weight 2, meaning
that s+ t = b. Then Proposition 2.2 can be applied directly. Furthermore, because f ≥ 1,
there is a sequence of valid adjustments such that Φ(vj) ≤ 14. To see this holds, note that,
by performing valid adjustments backwards, we can make σ(vj) take any value among
{σ(vj)− s, ..., σ(vj), ..., σ(vj) + t}, meaning that we can choose, as φ(vj), any element in

{σ(vj)− s, ..., σ(vj), ..., σ(vj) + t+ 1} \
b⋃

i=1

{φ(ui)},

which includes at least two values, one of which is strictly smaller than 15.
Now assume that f = 0. Since there are no forward edges incident to vj , we here do not

have to care about the set Φ(vj), and we can just perform valid adjustments so that σ(vj)
gets different from φ(ui) for every backward edge uivj . Remind that some backward edges
are here weighted 1, hence that it may be that some backward edges cannot be adjusted.
We note, however, that the number of such backward edges is always smaller or equal
to p, the number of private edges incident to vj . So, although we cannot perform b valid
adjustments onto the backward edges incident to vj , we have to take into account that p
valid increments can be performed onto the private edges (and these edges do not prevent
vj from having a particular incident sum).

We distinguish the possible values of b:

• If b = 4, then σ(vj) is currently equal to 10, and only φ(u1), φ(u2), φ(u3), φ(u4) have
to be avoided as σ(vj). Since at least four valid adjustments (at least three from the
backward edges weighted 2, one from the private edge) can be performed, there is a
sequence of at most four valid adjustments which yields a satisfying value of σ(vj).
In the worst-case scenario, we have to perform four increments. So there is a correct
sequence yielding σ(vj) ≤ 14.

• If b = 3, then σ(vj) is currently equal to 10, and only φ(u1), φ(u2), φ(u3) have to
be avoided as σ(vj). Since at least three valid adjustments (at least one from the
backward edges weighted 2, two from the private edges) can be performed, there is a
sequence of at most three valid adjustments which yields a satisfying value of σ(vj).
In the worst-case scenario, we have to perform three increments. So there is a correct
sequence yielding σ(vj) ≤ 13.

• If b = 2, then σ(vj) is currently equal to 11, and only φ(u1), φ(u2) have to be
avoided as σ(vj). Since at least two valid adjustments (from the private edges) can
be performed, there is a sequence of at most two valid adjustments which yields
a satisfying value of σ(vj). In the worst-case scenario, we have to perform two
increments. So there is a correct sequence yielding σ(vj) ≤ 13.
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• If b = 1, then σ(vj) is currently equal to 13, and only φ(u1) has to be avoided as
σ(vj). Since at least one valid adjustment (from the private edges) can be performed,
there is a sequence of at most one valid adjustment which yields a satisfying value of
σ(vj). In the worst-case scenario, we have to perform one increment. So there is a
correct sequence yielding σ(vj) ≤ 14.

We have now modified w so that:

• For every vi with f ≥ 1, we have σ(vi) ∈ (φ(vi)− 1, φ(vi)) and φ(vi) < 15;

• For every vi with f = 0, we have σ(vi) < 15;

• For every edge vivj such that φ(vi), φ(vj) are defined, we have φ(vi) 6= φ(vj);

• For every edge vivj such that φ(vj) is not defined, we have σ(vj) 6= φ(vi);

• All private edges incident to a vi with f ≥ 1 are weighted 3.

To finish off the edge-weighting of GC , we consider every vertex vi with f ≥ 1. If
σ(vi) = φ(vi), then we do nothing. Otherwise, i.e. σ(vi) = φ(vi)− 1, we consider a private
edge viu incident to vi, and set w(viu) = 4 so that σ(vi) = φ(vi). Since φ(vi) 6= φ(vj)
for every edge vivj where vi and vj have their f being non-zero, and σ(vj) was chosen so
that σ(vj) 6= φ(vi) for every edge vivj with vj having its f being zero, we get that w is
sum-colouring. Furthermore, all additional requirements are met. �

Back to the proof of Theorem 1.3, let us now assume that all edges inside/incident to
the good H-components of G are weighted as stated in Lemma 3.2. That is, every two
adjacent vertices in Hg have different incident sums strictly smaller than 15, and every
private edge is weighted with weight 3 or 4. Recall that the type-1 components of G are
vertices of W whose all incident edges go to Hg. Since all private edges are weighted with
weight 3 or 4, every vertex v being a type-1 component verifies σ(v) ≥ 15, which is strictly
greater than the sum of weights incident to any vertex in Hg. Thus, no sum conflict can
involve vertex from a type-1 component, and this will remain true since we will not modify
the weights assigned to the private edges.

It now remains to weight the edges of the type-2 and type-3 components of G. This will
be done in such a way that the majority of the edges incident to the external vertices are
weighted 3 or 4, to make sure that almost all these vertices have incident sum at least 15
(so that no sum conflict can involve an external vertex and a vertex of Hg). Note that an
external vertex belongs to only one type-2 or type-3 component. So we can edge-weight all
type-2 and type-3 components one after another. In the next result, we prove that, indeed,
we can wait the edges of these components correctly.

Lemma 3.3. Let C = (W,H) be a type-2 or type-3 component of G, and assume each
vertex v of W is associated a possibly null bias γ(v) ≥ 3 · (5 − dC(v)), and a list of
5 − dC(v) forbidden values L(v) as σ(v) + γ(v) with value at most 14. Then C admits a
4-edge-weighting w where 1) σ(u) 6= σ(v) + γ(v) for every two adjacent vertices u ∈ H and
v ∈W , and 2) σ(v) + γ(v) 6∈ L(v) for every external vertex v ∈W .

Proof. Throughout this proof, when speaking of the incident sum of a vertex v ∈ W , we
mean σ(v) + γ(v) (i.e. with taking the bias into account). To make sure that σ(v) + γ(v)
is not in L(v), we will, most of the time, just ensure that this sum has value at least 15.
We start from w assigning weight 4 to all edges of C. If no sum conflict arises, then we are
done. Otherwise, it means that pairs of adjacent vertices of C have the same incident sum.
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Note that w has the property that σ(u) is even for every u ∈ H, while, for any v ∈W , the
parity of σ(v) + γ(v) depends on the parity of γ(v).

Let v1, v2 be two distinct vertices of W , and let P be a path of C with end-vertices v1

and v2 (which exists by the connectedness of C). It is easy to see that, along P , turning
3’s into 4’s and vice-versa results in a new 4-edge-weighting where only the parities of the
incident sums of v1 and v2 have been changed. Using this fact, we note that if W includes
an even number of vertices with even bias, then we can modify w by switching 3’s and 4’s
along paths joining pairs of these vertices with even bias, until we get to the point where
σ(v) + γ(v) is odd for every v ∈W and σ(u) is even for every v ∈ H.

We may thus assume that the number of vertices in W with even bias is odd. If C is a
type-3 component, i.e. W includes a vertex v∗ with dC(v∗) = 5 (and thus γ(v∗) = 0), then
we proceed as follows. Using similar arguments as above, we can switch 3’s and 4’s along
some paths of C until we get to the point where, by w, the vertex v∗ is the only vertex
of W for which σ(v∗) + γ(v∗) is even. Let u1, ..., u5 denote the five neighbours of v∗ in C.
Then we decrease each weight w(v∗ui) by 2. In the resulting w, we note that v∗ is the only
vertex in W being incident to edges assigned weight 1 or 2, while all σ(ui)’s remain even.
Furthermore, each one of these sums has value at least 1 + 4 · 3 = 13, while σ(v∗) is at
most 2 · 5 = 10. So w fulfils all required conditions.

We may lastly also suppose that C is a type-2 component, i.e. all vertices of W are
external, and thus have positive bias. Because assigning weight 4 to all edges of C created
sum conflicts, it means that a vertex v∗ ∈ W has even bias γ(v∗) = 4 · (5 − dC(v∗)). So
v∗ is part of the odd number of vertices in W having even bias. As previously, we switch
3’s and 4’s along paths of C until we get to the point where, in W , only v∗ verifies that
σ(v∗) + γ(v∗) is even. Let u1, ..., ud ∈ H denote the neighbours of v∗ in C. To make sure
that σ(v∗) + γ(v∗) is eventually different from the σ(ui)’s, we decrease some edge weights
depending on the value of dC(v) :

• If dC(v∗) = 1, then γ(v∗) = 4 · 4 = 16 and w(v∗u1) = 4 since σ(v∗) + γ(v∗) is even.
Therefore, σ(v∗) = σ(u1) = 20, and all five edges of C incident to u1 have weight 4.
Let v ∈W be another neighbour of u1. Because w(u1v) = 4 and σ(v) + γ(v) is odd,
we have σ(v)+γ(v) ≥ 17. We here decrease w(u1v) down by 2. Then σ(u1) decreases
down to 18, which is still even and now different from σ(v∗) + γ(v∗) = 20. On the
other hand, σ(v) + γ(v) remains odd, and of value at least 15.

• If dC(v∗) = 2, then γ(v∗) = 4 · 3 = 12, and, since w(v∗u1), w(v∗u2) ∈ {3, 4} and
σ(v∗) + γ(v∗) is even, we have σ(v∗) + γ(v∗) ≥ 18.

If σ(v∗)+γ(v∗) = 20, then, when decreasing by 2 one or two of w(v∗u1) and w(v∗u2),
note that the sum incident to v∗ remains at least 16. If both σ(u1) and σ(u2) are equal
to 20, then we decrease both w(v∗u1) and w(v∗u2) down by 2 so that σ(v∗) + γ(v∗)
gets equal to 16 while both σ(u1) and σ(u2) remain even and equal to 18. Now,
if, say, σ(u1) = 20 while σ(u2) ≤ 18 then we decrease w(v∗u2) down by 2 so that
σ(v∗) + γ(v∗) = 18, σ(u1) = 20 and σ(u2) ≤ 16.

When σ(v∗)+γ(v∗) = 18, we are allowed to decrease only one of w(v∗u1) and w(v∗u2)
(as otherwise σ(v∗) + γ(v∗) would become strictly smaller than 15). If only one of
σ(u1) and σ(u2) is equal to 18, then the same strategy as in the previous case applies.
So assume σ(u1) = σ(u2) = 18. Since all edges of C have been weighted with weights
among {3, 4}, this means there is a vertex v ∈ W different from v∗ that is adjacent
to u1, and such that w(u1v) = 4. Since σ(v) + γ(v) is odd and w(u1v) = 4, we have
σ(v) ≥ 17. So we can freely decrease w(u1v) by 2. When doing so, we still have that
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σ(v) ≥ 15 is odd, while σ(u1) is now different from σ(v∗) + γ(v∗). So we are back in
the previous case, and the same arguments apply.

• If dC(v∗) = 3, then γ(v∗) = 4 · 2 = 8, and, since w(v∗u1), w(v∗u2), w(v∗u3) ∈ {3, 4}
and σ(v∗) + γ(v∗) is even, we again have σ(v∗) + γ(v∗) ≥ 18.

We use arguments that are quite similar to those used in the previous case. The
important thing to notice is that if σ(ui) = σ(v∗) + γ(v∗), then, in C, there are at
least two edges, different from uiv

∗, incident to ui being weighted 4 by w. The second
ends of these edges have odd incident sum at least 17, so we can decrease by 2 the
weight of one of those edges to decrease σ(ui) by 2.

If only one of the σ(ui)’s, say σ(u1), is equal to σ(v∗) + γ(v∗), then we consider
an edge u1v with v 6= v∗ weighted 4 by w, and decrease w(u1v) by 2 to get rid
of the sum conflict between v∗ and u1. If two of the σ(ui)’s, say σ(u1) and σ(u2),
are equal to σ(v∗) + γ(v∗), then we decrease w(u3v

∗) by 2 so that σ(v∗) + γ(v∗)
gets different from σ(u1) and σ(u2), and remains different from σ(u3). Finally, if
σ(u1) = σ(u2) = σ(u3) = σ(v∗) + γ(v∗), then we again consider an edge u1v with
v 6= v∗ weighted 4 by w, and decrease w(u1v) by 2 so that the previous case applies.

• If dC(v∗) = 4, then γ(v∗) = 4, and, since w(v∗u1), w(v∗u2), w(v∗u3), w(v∗u4) ∈ {3, 4}
and σ(v∗)+γ(v∗) is even, we have σ(v∗)+γ(v∗) ≥ 16. This time, it might be that we
cannot decrease by 2 any of the weights of the v∗ui’s so that σ(v∗) + γ(v∗) remains
of value at least 15. However, for every ui in conflict with v∗ there is at least one
incident edge uiv different from uiv

∗ being weighted 4, and σ(v) ≥ 17 is odd.

When σ(v∗)+γ(v∗) = 16, note that by decreasing by 2 any of the w(v∗ui)’s, the sum
σ(v∗)+γ(v∗) gets strictly smaller than 15. In this situation, we do allow σ(v∗)+γ(v∗)
to be smaller than 15, provided it is different from the only value s ∈ L(v) and from
the σ(v∗ui)’s. In the case distinction below, we denote by α the initial value of
σ(v∗) + γ(v∗).

– If only σ(u1) is equal to α, then we decrease by 2 the weight of an edge weighted 4
different from u1v

∗ incident to u1, so that σ(u1) gets different from α, and the
other incident sums remain unchanged.

– If only σ(u1), σ(u2) are equal to α, then we distinguish two cases. If s 6= α− 2,
then, if possible, we decrease one of w(v∗u3), w(v∗u4) by 2 so that σ(v∗)+γ(v∗)
gets equal to α − 2 and both of σ(v∗u3), σ(v∗u4) are different from α − 2. If
this is not possible, it means that σ(v∗u3) = σ(v∗u4) = α − 2. In that case,
we decrease by 2 three or four of w(v∗u1), w(v∗u2), w(v∗u3), w(v∗u4) including
w(v∗u3), w(v∗u4), so that σ(v∗) + γ(v∗) 6= s. Note that no sum conflict may
involve v∗ and the ui’s, since we get σ(v∗) + γ(v∗) ≤ α− 6, and σ(u1), σ(u2) ≥
α− 2 and σ(u3), σ(u4) = α− 4.
Now assume s = α−2. If we are not done when decreasing both w(v∗u1), w(v∗u2)
by 2, it means that, say, σ(u3) = α−4. Now, if we are not done when decreasing
both w(v∗u1), w(v∗u3) down by 2, then σ(u4) = α− 4. Then we are done when
decreasing both w(v∗u3), w(v∗u4) down by 2. In the latter case, we eventually
get σ(u1) = σ(u2) = α, and σ(u3) = σ(u4) = α − 6, while σ(v∗) = α − 4 and
s = α− 2.

– If only σ(u1), σ(u2), σ(u3) are equal to α, then we reduce down by 2 two or
three of w(v∗u1), w(v∗u2), w(v∗u3) so that σ(v∗) + γ(v∗) 6= s. Note that no
conflict involving v∗ and u1, u2, u3 can arise, since we get σ(v∗) + γ(v∗) ≤ α− 4
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and σ(u1), σ(u2), σ(u3) ≥ α − 2. If the resulting σ(v∗) + γ(v∗) is also different
from σ(u4), we are done. Otherwise, we reduce down by 2 the same number of
w(v∗ui)’s, including w(v∗u4), so that we also get σ(v∗) + γ(v∗) 6= σ(u4).

– If σ(u1) = σ(u2) = σ(u3) = σ(u4) = α, then we reduce down by 2 two
or three of w(v∗u1), w(v∗u2), w(v∗u3) so that σ(v∗) + γ(v∗) 6= s. Note that
σ(u1), σ(u2), σ(u3) remain of value at least α−2, we still have σ(u4) = α, while
σ(v∗) + γ(v∗) 6= s and we get σ(v∗) + γ(v∗) ≤ α− 4.

In each of these cases, it can be checked that w meets all required properties. �

We finish off the proof of Theorem 1.3. According to Lemma 3.2, we can weight all
edges inside/incident to the good H-components in a sum-colouring way, yielding a partial
4-edge-weighting w of G. As pointed out, this edge-weighting w is already sum-colouring
from the point of view of the type-1 components of G. Then, for every external vertex v of
G, we define its bias γ(v) as the current value of σ(v), and its list L(v) of forbidden values
as ∪u∈Hg∩N(u)σ(u). In particular, γ(v) is a sum of 3’s and 4’s, since w assigns weights
among {3, 4} to private edges. Then, according to Lemma 3.3, we can extend w to the
edges of the type-2 and type-3 components of G, in such a way that it is sum-colouring
from the point of view of these components. Since the resulting w verifies that σ(v) 6∈ L(v)
for every external vertex v, we get that w is a sum-colouring 4-edge-weighting of G.

4. Concluding remarks

In this paper, we have provided a weighting strategy for 4-edge-weighting 5-regular
graphs in a sum-colouring way. Although this does not prove the 1-2-3 Conjecture for this
class of graphs, we believe the method we have used remains of interest, as it stands as a
new way of adapting Kalkowski’s algorithm to the edge-weighting context.

The most important argument behind the correctness of our weighting scheme is that
all vertices of the dominating independent set W are of largest degree in G. This is the
key argument which, provided we use the set of weights correctly, guarantees that we can
edge-weight the good H-components and the type-2 and type-3 components somewhat
independently. It is actually easy to check that, more generally, our weighting scheme can
be applied in every graph G with ∆(G) = 5 that admits a dominating independent set
whose all vertices have degree 5.

We believe our proof scheme could be adapted to regular graphs with slightly greater
degree. Unfortunately, it does not seem obvious to us how to generalize our weighting
scheme to general regular graphs. It seems possible to generalize Lemma 3.2 to graphs
with maximum degree d, i.e. to show that we can 4-edge-weight GC in such a way that
the incident sums in C are smaller than 3d. However, we believe Lemma 3.3, for which we
did not manage to come up with an easy proof, is hardly generalizable, and it is likely that
another type of result is needed here.
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