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NUMERICAL DETERMINATION OF ANOMALIES IN MULTIFREQUENCY

ELECTRICAL IMPEDANCE TOMOGRAPHY

HABIB AMMARI¶, FAOUZI TRIKI†, AND CHUN-HSIANG TSOU‡

Abstract. The multifrequency electrical impedance tomography consists in retrieving the conduc-
tivity distribution of a sample by injecting a finite number of currents with multiple frequencies.
In this paper we consider the case where the conductivity distribution is piecewise constant, takes
a constant value outside a single smooth anomaly, and a frequency dependent function inside the
anomaly itself. Using an original spectral decomposition of the solution of the forward conductivity
problem in terms of Poincaré variational eigenelements, we retrieve the Cauchy data corresponding
to the extreme case of a perfect conductor, and the conductivity profile. We then reconstruct the
anomaly from the Cauchy data. The numerical experiments are conducted using gradient descent
optimization algorithms.

1. The mfEIT Mathematical Model

Experimental research has found that the conductivity of many biological tissues varies strongly
with respect to the frequency of the applied electric current within certain frequency ranges [GPG].
In [AGGJS], using homogenization techniques, the authors analytically exhibit the fundamental
mechanisms underlying the fact that effective biological tissue electrical properties and their fre-
quency dependence reflect the tissue composition and physiology. The multifrequency electrical
impedance tomography (mfEIT) is a diffusive imaging modality that recovers the conductivity
distribution of the tissue by using electrodes to measure the resulting voltage on its boundary,
induced by two known injected currents and for many frequency values. The principal idea behind
the (mfEIT) is that the dependance of the effective conductivity of the tissue with respect to the
frequency of the electric current is extremely related to its state. In fact, its frequency dependence
changes with its composition, membrane characteristics, intra-and extra-cellular fluids and other
factors [AGGJS]. Therefore, the frequency dependence of the conductivity of the tissue can pro-
vide some information about the tissue microscopic structure and its physiological and pathological
conditions. In other words, the frequency dependence of the conductivity of the tissue can help to
determine if it is healthy or cancerous. The advantages of the (mfEIT) is canceling out errors due
to boundary shape, the electrode positions, and other systematic errors that appear in -the more
conventional imaging modality- electric impedance tomography (EIT) [Bor].
In the following we introduce the mathematical model of the (mfEIT). Let Ω be the open bounded
smooth domain in R2, occupied by the sample under investigation and denote by ∂Ω its boundary.
The mfEIT forward problem is to determine the potential u(·, ω) ∈ H1(Ω) := {v ∈ L2(Ω) : ∇v ∈
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L2(Ω)}, solution to  −∇ · (σ(x, ω)∇u(x, ω)) = 0 in Ω,
σ(x, ω)∂νΩu(x, ω)(x) = f(x) on ∂Ω,∫
∂Ω u(x, ω)ds = 0,

(1)

where ω denotes the frequency, νΩ(x) is the outward normal vector to ∂Ω, σ(x, ω) is the conduc-

tivity distribution, and f ∈ H−
1
2� (∂Ω) := {g ∈ H−

1
2 (∂Ω) :

∫
∂Ω g ds = 0} is the input current.

In this work we are interested in the case where the frequency dependent conductivity distribution
takes the form

σ(x, ω) = k0 + (k(ω)− k0)χD(x)(2)

with χD(x) being the characteristic function of a C2 domain D in Ω (D ⊂ Ω), k0 being a fixed
strictly positive constant, and k(ω) : R+ → C \ R−, being a continuous complex-valued function.

Here k0 represents the conductivity of the background medium, is known, and k(ω) is the con-
ductivity of the biological tissue, given by the empirical model

k(ω) := κ1 −
κ2

ω2 + iωκ3
,(3)

where κp > 0, p = 1, 2, 3, are constants that only depend on the biological tissue properties (see
for instance [AGGJS] ). The frequency profile k(ω) is somehow a meromorphic approximation with
a single pole of the graph of experimental measurements for a given biological tissue [AGGJS]. It
also appears as a homogenized model for periodically distributed biological cells in the dilute limit
[AGGJS], and is similar to Drude models that describes the frequency dependence of the electric
permittivity of a real metal within the visible frequency range [MFZ].

The mfEIT inverse problem is to determine the anomaly D and the characteristics κp, p = 1, 2, 3,
of the biological tissue from measurements of the boundary voltages u(x, ω) on ∂Ω, for ω ∈ (ω, ω),
0 ≤ ω < ω.

There have been several numerical approaches on multifrequency electrical impedance tomogra-
phy. Most of them are dealing with small-volume anomalies [ABG, ABGW, GH] and frequency-
difference imaging [JS, MSHA]. In small-volume-volume imaging, only the location and the multi-
frequency polarization tensor can be reconstructed from boundary measurements. In frequency-
difference imaging, the main idea is to compare the images for different frequencies, and consider
only the frequency dependent part. It was numerically shown that the approach can accommodate
geometrical errors, including imperfectly known boundary. This approach which seems more natu-
ral since it aims to identify the anomaly by only focusing on the changes in the resulting images for
different frequencies, is somehow simultaneously complementary and opposite to our analysis in this
paper. Taking the difference between two images associated to different frequencies will remove
the frequency independent part which is the keystone of the identification path pursued in this
paper. Our strategy is based on the plasmonic spectral decomposition derived in [AT] which splits
the electric potential on the boundary ∂Ω into two parts u = k−1

0 u0 + uf , and separate between

the frequency dependent and independent parts; see also [ADM, AMRZ]. In fact the part k−1
0 u0

corresponds to the response of the same anomaly filled with a perfect conductor, that is k−1
0 u0 is

the limit of u when k tends to infinity. Precisely, in [AT], it was proven that the convergence of u
to k−1

0 u0 is linear in 1/k. We first process algebraically the data on the boundary and recover the
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frequency dependent part in order to acquire the Cauchy data of frequency independent part u0.
Then, based on known results and approaches on the reconstruction of zero level set of harmonic
functions from Cauchy data we determine the anomaly itself. The other approach is based on
perturbation techniques, suppose that the contrast k(ω)/k0 is close to 1, and linearize the problem
around the harmonic function in the whole domain that shares the same flux on the boundary
[AAJS]. Then, the sparsity issue comes into play and help to speed up the convergence of the
iterative algorithm. In our approach, the notion of sparsity appears naturally in post-processing
the data on the boundary to recover the frequency independent part. Precisely, it seems that only
a finite number of eigenfunctions intervene in the linear inversion, and this can be completely mas-
tered by the shape of the anomaly and its distance to the boundary where the measurement are
taken. Finally, the perturbation approach is also complementary to our analysis since the higher
the frequency is the better the recovery of the frequency independent part on the boundary is.

The paper is organized as follows. In section 2 we provide the spectral decomposition derived
in [AT]. The linearization of the frequency independent part with respect to the shape of the
anomaly which is necessary in our identification approach is studied in section 3. Section 4 is
devoted to the retrieval of the frequency independent part on the boundary. Here, we will not
follow the theoretical approach developed in [AT] based on the unique continuation of meromorphic
functions. We solve the problem using algebraic tools under simplification assumptions inspired by
the sparsity properties of the conductivity distribution and the behavior of the eigenvalues near the
unique accumulation point 1/2. We also determine in the sequel the profile constants κi, i = 1, 2, 3.
In section 5, one we have the Cauchy data of the frequency independent part u0 on the measurement
boundary we use a conventional optimization technique to recover the anomaly. Several numerical
examples are presented in section 6. Comments on the obtained results and future directions are
given in the conclusion section 7.

2. Spectral decomposition of u(x, ω)

We first introduce an operator whose spectral decomposition will be later the corner stone of
the identification of the anomaly D. Let H1

� (Ω) be the space of functions v in H1(Ω) satisfying∫
∂Ω vds = 0.

For u ∈ H1
� (Ω), we infer from the Riesz theorem that there exists a unique function Tu ∈ H1

� (Ω)
such that for all v ∈ H1

� (Ω), ∫
Ω
∇Tu · ∇vdx =

∫
D
∇u · ∇vdx.(4)

The variational Poincaré operator T : H1
� (Ω)→ H1

� (Ω) is easily seen to be self-adjoint and bounded
with norm ‖T‖ ≤ 1.

The spectral problem for T reads as: Find (λ,w) ∈ R×H1
� (Ω), w 6= 0 such that ∀v ∈ H1

� (Ω),

λ

∫
Ω
∇w · ∇vdx =

∫
D
∇w · ∇vdx.

Integrating by parts, one immediately obtains that any eigenfunction w is harmonic in D and in
D′ = Ω \D, and satisfies the transmission and boundary conditions

w|+∂D = w|−∂D, ∂νDw|
+
∂D = (1− 1

λ
)∂νDw|

−
∂D, ∂νΩw = 0,
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where w|±∂D(x) = limt→0w(x ± tνD(x)) for x ∈ ∂D. In other words, w is a solution to (1) for

k = k0(1− 1
λ) and f = 0.

Let H� the space of harmonic functions in D and D′, with zero mean
∫
∂Ω uds(x) = 0, and zero

normal derivative ∂νΩu = 0 on ∂Ω, and with finite energy semi-norm

‖u‖H� =

∫
Ω
|∇u|2dx.

Since the functions in H� are harmonic in D′, the H� is a closed subspace of H1(Ω). Later on,
we will give a new characterization of the space H� in terms of the single layer potential on ∂D
associated with the Neumann function of Ω.

We remark that Tu = 0 for all u in H1
0 (D′), and Tu = u for all u in H1

0 (D) (the set of functions
in H1(D) with trace zero).

We also remark that TH� ⊂ H� and hence the restriction of T to H� defines a linear bounded
operator. Since we are interested in harmonic functions in D and D′ = Ω \ D, we only consider
the action of T on the closed space H�. We further keep the notation T for the restriction of T
to H�. We will prove later that T has only isolated eigenvalues with an accumulation point 1/2.
We denote by (λ−n )n≥1 the eigenvalues of T repeated according to their multiplicity, and ordered
as follows

0 < λ−1 ≤ λ
−
2 ≤ · · · <

1

2
,

in (0, 1/2] and, similarly,

1 > λ+
1 ≥ λ

+
2 ≥ · · · >

1

2
.

the eigenvalues in [1/2, 1). The eigenvalue λ∞ = 1/2 is the unique accumulation point of the spec-
trum. To ease the notation we further denote the orthogonal spectral projector on the eigenspace
associated to 1/2, by

∫
∂Ω ·w

±
∞(z)ds(z)w±∞(x). Next, we will characterize the spectrum of T via the

mini-max principle.

Proposition 2.1. The variational Poincaré operator has the following decomposition

T =
1

2
I +K,(5)

where K is a compact self-adjoint operator. Let w±n , n ≥ 1 be the eigenfunctions associated to the
eigenvalues (λ±n )n≥0. Then

λ−1 = min
06=w∈H�

∫
D |∇w(x)|2dx∫
Ω |∇w(x)|2dx

,

λ−n = min
06=w∈H�,w⊥w1,··· ,wn−1

∫
D |∇w(x)|2dx∫
Ω |∇w(x)|2dx

,

= max
Fn⊂H�, dim(Fn)=n−1

min
w∈Fn

∫
D |∇w(x)|2dx∫
Ω |∇w(x)|2dx

,
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and similarly

λ+
1 = max

06=w∈H�

∫
D |∇w(x)|2dx∫
Ω |∇w(x)|2dx

,

λ+
n = max

06=w∈H�,w⊥w1,··· ,wn−1

∫
D |∇w(x)|2dx∫
Ω |∇w(x)|2dx

,

= min
Fn⊂H�, dim(Fn)=n−1

max
w∈Fn

∫
D |∇w(x)|2dx∫
Ω |∇w(x)|2dx

.

We have the following decomposition of u(x, ω) in the basis of the eigenfunctions of the variational
Poincaré operator T .

Theorem 2.1. [AT] Let u(x, ω) be the unique solution to the system (1).

Then, the following decomposition holds:

u(x, ω) = k−1
0 u0(x) +

∞∑
n=1

∫
∂Ω f(z)w±n (z)ds(z)

k0 + λ±n (k(ω)− k0)
w±n (x), x ∈ Ω,(6)

where u0(x) ∈ H1
� (Ω) depends only on f and D, and is the unique solution to ∆v = 0 in D′,

∇v = 0 in D,
∂νΩv = f on ∂Ω.

(7)

Proof. In order to have a self-contained document we give the proof of the theorem.

We first observe that frequency dependent part

uf = u− k−1
0 u0,

lies in H�. Since the eigenfunctions w±(x) form an orthonormal basis of H�, the frequency part uf
posses the following spectral decomposition:

uf (x) =

∞∑
n=1

∫
Ω
∇uf (z)∇w±n (z)dzw±n (x), x ∈ Ω.

A forward computation leads to∫
Ω
∇uf (z)∇w±n (z)dz =

∫
Ω
∇u(z)∇w±n (z)dz.

On the other hand, since u ∈ H1
� (Ω), we obtain∫

Ω
∇u(z)∇w±n (z)dz = λ±n

∫
D
∇u(z)∇w±n (z)dz

=
k0

k(ω)
λ±n

∫
∂D

∂νDu(z)|+w±n (z)ds(z)

=
k0

k(ω)
λ±n

∫
D′
∇u(z)∇w±n (z)dz − k0

k(ω)
λ±n

∫
∂Ω
f(z)w±n (z)ds(z).
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Using the simple fact that∫
Ω
∇u(z)∇w±n (z)dz =

∫
D
∇u(z)∇w±n (z)dz +

∫
D′
∇u(z)∇w±n (z)dz,

we obtain the desired decomposition.
�

In [AT], assuming that the profile k(ω) is given, the spectral decomposition (6) of the solution
of the forward conductivity problem has been used to retrieve the Cauchy data corresponding to
the extreme case of perfect conductor u0. Based on unique continuation techniques, the uniqueness
of the mfEIT problem, and rigorous stability estimates have been obtained from the knowledge of
u0|∂Ω, in the case where the anomaly is within a class of star shaped domains.

Assume that X0 ∈ Ω, and let d1 = dist(X0, ∂Ω) and let d0 < d1. For δ > 0 small enough, and
m > 0 large enough, define the set of anomalies:

D :=

{
D =

{
X0 + Υ(θ)

(
cos θ
sin θ

)
, θ ∈ [0; 2π)

}
; Υ ∈ Π

}
,

where

Π := {d0 < Υ(θ) < d1 − δ; Υ(2π) = Υ(0); ‖Υ‖Cβ ≤ m, β ≥ 2} .

In this paper we consider the reconstruction of the profile function k(ω) defined in (2), and
anomalies D within the set D. At first glance, the numerical reconstruction of the inclusion in the
mfEIT problem does not need to follow the path of the theoretical results derived in [AT], that is,
to determine first u0|∂Ω, and then find the high conductor anomaly D that produces the recovered
Cauchy data of u0. In fact preliminary numerical calculations show that a blind minimization
approach that searches the anomaly D and the profile k(ω) using boundary multifrequency data
does not converge in most cases, and if it happens to converge the rate turns out to be very slow.
These difficulties are well known in inverse conductivity problem, usually it is very hard to distin-
guish between the conductivity value and the size of the anomaly [AK]. On the other hand the
numerical identification of a high conductor anomaly is a well known inverse problem, and many
works have been done on it (see for instance [KS, LL]). We can cite for example quasi-reversibility
type based methods [KS, LL]. Here, we will consider the parameterization type based methods
[CK, ACLZ, Ru]. Since the problem is ill-posed we will use a cut-off regularization approach
that consists on taking into account in the computation only the important Fourier modes of the
parametrization function Υ(θ). Then, the identification is transformed into an optimization prob-
lem with a finite number of degree of freedom. The problem is still strongly nonlinear we propose
here to solve it using the gradient adjoint method.

The algorithm we propose in this paper for identifying numerically the anomaly and the fre-
quency conductivity profile is inspired by the theoretical approach developed in[AT], and it can be
summarized as follows:

(i)To recover u0(x)|∂Ω and κp, p = 1, 2, 3, from the knowledge of u(x, ω)|∂Ω, ω ∈ (ω, ω). Here, we
will use an linear algebraic approach based on the understanding of the behavior of the spectrum of
Neumann-Poincaré operator near its unique accumulation point, and the sparsity of the considered
conductivity distribution.
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(ii) To identify the anomaly D from the Cauchy data (u0(x), f(x)) on the boundary ∂Ω using a
cut-off parameterization/Fourier approach. Here to further stabilize and speed up the convergence
of the iterative gradient based method we will use two linearly independent boundary currents
(f1, f2).

3. The linearized map

We shall use gradient methods to identify the anomaly from the Cauchy data (u0(x), f(x)) on
the boundary ∂Ω. In this section, we determine uh, the derivative of u0 with respect to a shape
perturbation in the direction h(x)νD(x), where h(x) is a scalar function defined on ∂D. We will
follow the analysis in [AKLZ] for a non-degenerate conductivity inside the anomaly, based on inte-
gral equations techniques.

Let D ∈ D be a given anomaly. We define X(t) : [a, b] → R2 to be a smooth clockwise
parametrization of ∂D, where a, b ∈ R, a < b. We assume that X ∈ Cβ([a, b]) and |X ′(t)| = 1 for
all t ∈ [a, b]. Then

(8) ∂D = {x = X(t), t ∈ [a, b]}.
Let h ∈ C2(∂D), and define the boundary of the perturbed anomaly Dε by

(9) ∂Dε = {x̃ = X̃(t) := X(t) + εh(X(t))νD(X(t)), t ∈ [a, b]}.
Define uε to be the unique solution to the system (7) associated to the perturbed anomaly Dε,

that is

(10)


4v = 0 in Ω \Dε,
∇v = 0 in Dε,
∂ν̃v = f on ∂Ω,∫
∂Ω vdσ = 0,

where ν̃ is the outward normal vector on ∂Dε.

The objective of this section is to derive a linear correction uh of uε, such that

uε = u0 + εuh +O(ε2), as ε→ 0.

The main result of this section is the following.

Theorem 3.1. Let h ∈ C2(∂D) be fixed. Then, uh is the unique solution to the system

(11)


4v = 0 in Ω \D,
∇v = 0 in D,
u|+ − u|− = −h∂νDu0|+ on ∂D,
∂ν̃v = 0 on ∂Ω,∫
∂Ω vdσ = 0.

Proof. We first derive an integral equation representation of the field.

Let G(x, z) = 1
2π log(|x− y|) be the Green function for the Laplacian in R2, and define the single

layer potentials respectively on ∂D, and ∂Ω by

SD : H−
1
2 (∂D)→ H

1
2 (∂D),

SDϕ(x) =

∫
∂D

G(x, z)ϕ(z)ds(z),
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and

SΩ : H−
1
2 (∂Ω)→ H

1
2 (∂Ω),

SΩψ(x) =

∫
∂Ω
G(x, z)ψ(z)ds(z),

They satisfy the following jump relations through the boundary of respectively D and Ω [AK]

∂νDSDϕ(x)|± = ±1

2
ϕ(x) +K∗Dϕ(x), for x ∈ ∂D,

∂νΩSΩϕ(x)|± = ±1

2
ϕ(x) +K∗Ωϕ(x), for x ∈ ∂Ω,

where

K∗D : H−
1
2 (∂D)→ H−

1
2 (∂D)

K∗Dϕ(x) =

∫
∂D

∂νD(x)G(x, z)ϕ(z)ds(z),

and

K∗Ω : H−
1
2 (∂Ω)→ H−

1
2 (∂Ω)

K∗Ωψ(x) =

∫
∂Ω
∂νΩ(x)G(x, z)ψ(z)ds(z),

are compact operators.

Since G(x, z) is harmonic in R2\{z}, SΩψ has a unique harmonic extension in R2\∂Ω. Similarly,
SDϕ has a unique harmonic extension in R2 \ ∂D. In addition, we have

SDϕ|+ = SDϕ|− on ∂D,

SΩψ|+ = SΩψ| − on ∂Ω.

We also define the double layer potential DD

DD : H−
1
2 (∂D)→ H

1
2
loc(R

2 \ ∂D),

DDϕ(x) =

∫
∂D

∂DG(x, z)ϕ(z)ds(z).

It satisfies the following jump relations

∂νDDDϕ(x)|+ = ∂νDDDϕ(x)|− for x ∈ ∂D,

DDϕ(x)|± = ±1

2
ϕ(x) +KDϕ(x), for x ∈ ∂D,

where

KD : H−
1
2 (∂D)→ H−

1
2 (∂D)

KDϕ(x) =

∫
∂D

∂νD(z)G(x, z)ϕ(z)ds(z),

is the L2(∂D)-adjoint of K∗D.

The solution u0 can be written as

(12) u0(x) = SDφ(x) + SΩψ(x) x ∈ Ω,
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where φ = ∂νDu0|+ ∈ H
− 1

2� (∂D) and ψ ∈ H−
1
2 (∂Ω).

Similarly, we have

(13) uε(x) = SDεφε(x) + SΩψε(x), x ∈ Ω,

where φε = ∂ν̃uε|+ ∈ H
− 1

2� (∂Dε) and ψε ∈ H−
1
2 (∂Ω).

Using the jump relations and the facts that ∂νDu0|− = 0 on ∂D, and ∂νΩu0|− = f on ∂Ω, the
densities φ and ψ satisfy the following system

(−1

2
I +K∗D)φ(x) + ∂νDSΩψ(x) = 0 on ∂D,(14)

∂νΩSDφ(x) + (−1

2
I +K∗Ω)ψ(x) = f on ∂Ω.(15)

This system can be also represented in a matrix form

M

(
φ
ψ

)
:=

(
−1

2I +K∗D ∂νDSΩ

∂νΩSD −1
2I +K∗Ω

)(
φ
ψ

)
=

(
0
f

)
.(16)

The same analysis leads to the system

(17) Mε

(
φε
ψε

)
:=

(
−1

2I +K∗Dε ∂ν̃SΩ

∂νΩSDε −1
2I +K∗Ω

)(
φε
ψε

)
=

(
0
f

)
.

From the parameterization of ∂D, we deduce that the outward unit normal vector νD(x) is given
by νD(X(t)) = R−π

2
T (X(t)), where R−π

2
is the rotation with the angle −π

2 , and T (X(t)) = X ′(t)

is the tangential normal vector. Let γ(X(t)) be the curvature, it satisfies

(18) X ′′(t) = γ(X(t))ν(X(t)).

Using the parameterization of ∂Dε, we deduce the following asymptotic expansion

(19) ν̃(x̃) = ν(x)− εh′(t)T (x) +O(ε2), for x̃ ∈ ∂Dε,

where h′(t) = d
dth(X(t)) (we also use h′(x) to denote this quantity). In the same way obtain the

asymptotic expansion of the length element

(20) dsε(z̃) = ds(z)(1− εγ(y)h(z) +O(ε2)).

Let Ψε be the diffeomorphism from ∂D onto ∂Dε given by Ψε(x) = x+ εh(x)ν(x). From [AKLZ],
we deduce the asymptotic expansion of K∗Dε
(21) (K∗Dε φ̃) ◦Ψε = K∗Dφ+ εK(1)

D φ+O(ε2),

where φ̃ = φ ◦Ψ−1
ε , and the operator K(1)

D is defined by

K(1)
D φ(x) =

1

2π

∫
∂D

[(
1

|x− y|2
− 2〈x− y, νD(x)〉2

|x− y|4
)h(x)− 〈x− y, T (x)〉

|x− y|2
h′(x)

− 〈νD(x), νD(y)〉
|x− y|2

h(y) +
2〈x− y, νD(x)〉〈x− y, νD(y)〉

|x− y|4
h(y)

− 〈x− y, νD(x)〉
|x− y|2

γ(y)h(y)]φ(y)ds(y)(22)

Now, we calculate the asymptotic expansion of the operators ∂ν̃SΩ on ∂Dε and ∂νΩSD on ∂Ω.
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Let ψ ∈ H−
1
2 (∂Ω) be fixed. Using the relation x̃ = x+ εh(x)ν(x) ∈ ∂Dε for x ∈ ∂D, we obtain

∂ν̃SΩψ(x̃) =
1

2π

∫
∂Ω

〈x̃− y, ν̃(x̃)〉
|x̃− y|2

ψ(y)ds(y),

=
1

2π

∫
∂Ω

〈x+ εh(x)νD(x)− y, νD(x)− εh′(x)T (x)〉
|x+ εh(x)ν(x)− y|2

ψ(y)ds(y) +O(ε2),

= ∂νDSΩψ(x) + ε(−h′(x)∂TSΩψ(x) + h(x)S(1)
Ω ψ(x)) +O(ε2),

where ∂T denotes the tangential derivative, and S(1)
Ω is defined by

(23) S(1)
Ω ψ(x) =

1

2π

∫
∂Ω

[
1

|x− y|2
− 2〈x− y, ν(x)〉2

|x− y|4
]ψ(y)ds(y),

for x ∈ ∂D.

We further determine the asymptotic expansion of ∂νΩSDε on ∂Ω. Let φ ∈ H−
1
2 (∂D), and

x ∈ ∂Ω, we have

∂νΩSDε φ̃(x) =
1

2π

∫
Dε

〈x− ỹ, νΩ(x)〉
|x− ỹ|2

φ̃(ỹ)dsε(ỹ),

=
1

2π

∫
D

〈x− y − εh(y)νD(y), νΩ(x)〉
|x− y − εh(y)νD(y)|2

φ(y))(1− εγ(y)h(y))ds+O(ε2),

= ∂νΩSDφ(x) + ε{ 1

2π

∫
∂D

[−〈νD(y), νΩ(x)〉
|x− y|2

+ 2
〈x− y, νΩ(x)〉〈x− y, νD(y)〉

|x− y|4
]h(y)φ(y)ds(y)

− 1

2π

∫
∂D

〈x− y, νΩ(x)〉
|x− y|2

γ(y)h(y)φ(y)ds(y)}+O(ε2),

= ∂νΩSDφ(x) + ε∂νΩ (DD(hφ)− SD(γhφ)) (x) +O(ε2).(24)

Consequently

Mε = M + εMh +O(ε2),

where the operator Mh on H
− 1

2� (∂D)×H−
1
2 (∂Ω) is defined by

(25) Mh :=

(
K(1)
D −h′∂TSΩ + hS(1)

Ω
∂νΩ [DD(h·)− SD(γh·)] 0

)
.

So, the systems (16) and (17) imply

(26)

(
φε
ψε

)
=

(
φ
ψ

)
+ ε

(
φh
ψh

)
+O(ε2),

where

(
φh
ψh

)
is given by

(27)

(
φh
ψh

)
= −M−1Mh

(
φ
ψ

)
.

Thus, using the representation formula and following the same calculus, we determine the asymp-
totic expansion of the solution uε|∂Ω

(28) uε(x) = u0(x) + ε(SDφh(x) + SΩψh(x) +DD(hφ)(x)− SD(γhφ)(x)) +O(ε2).
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We further denote

ũh = SDφh + SΩψh,

uh = ũh +DD(hφ)− SD(γhφ).

We deduce from (27)

(29) ∂νD ũh|− +K(1)
D φ− h′∂TSΩψ + hS(1)

Ω ψ = 0,

on ∂D, and

(30) ∂νΩ ũh|− + ∂νΩ [DD(hφ)− SD(γhφ)] = 0,

on ∂Ω, and hence

(31) ∂νΩuh|− = 0 on ∂Ω.

The equality (12) and the fact that ∂Tu0 = 0 on ∂D, lead to

0 = ∂T (h∂Tu0(x)) ,

= ∂T (h∂TSDφ(x)) + h′(x)∂TSΩψ(x) + h(x)∂2
TSΩψ(x),

= ∂T (h∂TSDφ(x)) + h′(x)∂TSΩψ(x)

+ h(x)
1

2π

∫
∂Ω

[
−1

|x− y|2
+ 2
〈x− y, νD(x)〉2

|x− y|4
+ γ(x)

〈x− y, νD(x)〉
|x− y|2

]ψ(y)ds(y),

= ∂T (h∂TSDφ(x)) + h′(x)∂TSΩψ(x)− h(x)S(1)
Ω ψ(x) + γ(x)h(x)∂νDSΩψ(x),

which implies

−h′∂TSΩψ + hS(1)
Ω ψ = ∂T (h∂TSDφ) + γh(

1

2
I −K∗D)φ.

A similar calculus gives

∂T (h∂TSDφ(x))

=
1

2π

∫
∂D

[h′(x)
〈x− y, T (x)〉
|x− y|2

+ h(x)(
−1

|x− y|2
+

2〈x− y, νD(x)〉2

|x− y|4
+ 2γ(x)

〈x− y, νD(x)〉
|x− y|2

)]φ(y)ds(y),

for x ∈ ∂D.

Thus

K(1)
D φ(x)− h′∂TSΩψ(x) + hS(1)

Ω ψ(x)

=
1

2π

∫
∂D

[−〈νD(x), νD(y)〉
|x− y|2

+
〈x− y, νD(x)〉〈x− y, νD(y)〉

|x− y|4
]h(y)φ(y)ds(y)

− 1

2π

∫
∂D

〈x− y, νD(x)〉
|x− y|2

γ(y)h(y)φ(y)ds(y) +
1

2
γ(x)h(x)φ(x).(32)
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By the continuity of the normal derivative of double layer potentials and the jump relation, we
have, for x ∈ ∂D,

∂νD [DD(hφ)− SD(γhφ)](x)|−

=
1

2π

∫
∂D

[−〈νD(x), νD(y)〉
|x− y|2

+ 2
〈x− y, νD(x)〉〈x− y, νD(y)〉

|x− y|4
]h(y)φ(y)ds(y)

+
1

2
γ(x)h(x)φ(x)− 1

2π

∫
∂D

〈x− y, νD(x)〉
|x− y|2

γ(y)h(y)φ(y)ds(y).(33)

Using (29), (32) and (33), we have,

∂νDuh|− = ∂νD ũh|− + ∂νD[DD(hφ)− SD(γhφ)]|− = 0,

which gives the desired result. �

4. Reconstruction of u0(x)|∂Ω and k(ω)

In this section we construct u0|∂Ω from the knowledge of u(x, ω)|∂Ω, ω ∈ (ω, ω). Here we
recall the spectral decomposition (6), also valid on the boundary ∂Ω, which is the keystone of our
approach.

u(x, ω) = k−1
0 u0(x) +

∞∑
n=1

∫
∂Ω f(z)w±n (z)ds(z)

k0 + λ±n (k(ω)− k0)
w±n (x), x ∈ ∂Ω.

The first observation is that the functions w±n (x) do not need to be orthogonal on the boundary
∂Ω. Then, varying the frequency, and so the coefficients of the expansion above do not guarantee
the complete separation between the frequency and the non frequency parts. The second observa-
tion is that the simultaneous determination of the plasmonic resonances λ±n , n ≥ 1, the frequency
profile k(ω), and u0|∂Ω is strongly nonlinear while if we assume that k(ω) and λ±n , n ≥ 1 are given
the problem becomes a linear one.

We further consider M ≥ 2 frequencies ω1, · · · , ωM in (ω, ω), and their associated solutions
u(x, ω1), · · · , u(x, ωM ). Since 1/2 is the unique accumulation point of the eigenvalues (λ±n )n≥1, we
only consider the Nf ≥ 0 first eigenvalues as unknown variables, and we approximate the others

eigenvalues by the limiting value 1/2. In fact it has been shown in [MS] that if D is Cβ with β ≥ 2
then for any α > −2β + 3, we have

|λ±n − 1/2| = o(nα), n→ +∞.

Thus the boundary regularity is essential to the decay rate of eigenvalues. Consequently if the
boundary is C∞ smooth, then the plasmonic eigenvalues will decay faster than any power order.
Recently H. Kang and his collaborators have proved the exponential convergence of the eigenvalues
in the case of analytic anomalies [AKM]. This theoretical work justifies the exponential decay
behavior that has been observed numerically [PP], and checked for sample geometries like ellipses.
If α > 0 is the modified maximal Grauert radius of ∂D, then

|λ±n − 1/2| = O(e−nα), n→ +∞.

These asymptotic properties of the spectrum of the Neumann-Poincaré operator suggest to consider
only a finite number of them in the spectral decomposition (6). We further make the following
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approximation for x ∈ Ω, 1 ≤ p ≤M :

u(x, ωp) ≈
2

k(ωp) + k0
v1(x), if Nf = 0,(34)

u(x, ωp) ≈ k−1
0 u0(x) +

Nf∑
n=1

1

k0 + λ±n (k(ωp)− k0)
v±n (x) +

2

k(ωp) + k0
vNf+1(x), if Nf ≥ 1,

where

v±n (x) =

∫
∂Ω
f(z)w±n (z)ds(z)w±n (x), vNf+1(x) =

∑
n>Nf

∫
∂Ω
f(z)w±n (z)ds(z)w±n (x).

A simple integration by parts, leads for all n ≥ 1

(35)

∫
∂Ω
f(z)w±n (z)ds(z) =

∫
Ω
∇f(x)∇w±n (x)dx,

where f is the unique solution in H1
� (Ω) to

(36)

{
4f = 0 in Ω,
∂νf = f on ∂Ω.

Consequently, the function

P0f =

Nf+1∑
n=1

v±n (x),

where P0 is the orthogonal projection onto the space H�. On the other hand, u0 satisfies∫
Ω
∇u0(x)∇w±n (x)dx =

∫
Ω\D
∇u0(x)∇w±n (x)dx

=

∫
∂Ω
u0(x)∂νΩw

±
n (x)ds(x)−

∫
∂D

u0(x)∂νDw
±
n (x)ds(x) = 0,

for all n ≥ 1.

Since P0u0 = 0, and f− u0 ∈ H� the orthogonal projection of f onto the space H� is f− u0, that
is f− u0 = P0(f− u0) = P0f.

Therefore, the formula (34) becomes

u(x, ωp) ≈
k(ωp)− k0

k0(k(ωp) + k0)
u0(x) +

2

k(ωp) + k0
f(x),

if Nf = 0,

≈ k(ωp)− k0

k0(k(ωp) + k0)
u0(x) +

2

k(ωp) + k0
f(x) +

Nf∑
n=1

(
1

k0 + λ±n (k(ωp)− k0)
− 2

k(ωp) + k0
)v±n (x),

if Nf ≥ 1.(37)

Next, we reconstruct κ1, κ2, κ3 and u0(x) by an optimization algorithm. In order to do so, we need

an apriori estimation of the eigenvalues λ̃±n ∈ [0, 1] for n = 1, · · · , Nf . Since the eigenvalues λ±n are
within a relative narrow interval, preliminary calculations showed that the reconstruction of u0 is
indeed not very sensitive to the choice of those eigenvalues. In the rest of this section, we assume
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that we have we fix λ̃±n ∈ [0, 1] for n = 1, · · · , Nf .

Let (xj)1≤j≤Nd ∈ ∂Ω a discretization of the boundary ∂Ω, and define, for n = 1, · · · , Nf the
scalar functionals

Fj(U
(j)
0 , V

±(j)
1 , · · · , V ±(j)

Nf
, ω, κ1, κ2, κ3) :=

k(ω, κ1, κ2, κ3)− k0

k0(k(ω, κ1, κ2, κ3) + k0)
U

(j)
0 +

2

k(ω, κ1, κ2, κ3) + k0
f(xj)

+

Nf∑
n=1

(
1

k0 + λ̃±n (k(ω, κ1, κ2, κ3)− k0)
− 2

k(ω, κ1, κ2, κ3) + k0
)V ±(j)
n .(38)

where (U
(j)
0 )1≤j≤Nd and (V

±(j)
n )1≤j≤Nd are vectors in RNd , that approximate respectively (u0(xj))1≤j≤Nd

and (vn(xj))1≤j≤Nd .

The scheme consists in minimizing the scalar functional

Jm(U0, V
±

1 , · · · , V ±Nf , κ1, κ2, κ3) :=

1

2

M∑
p=1

Nd∑
j=1

|u(xj , ωp)− Fj(U (j)
0 , V

±(j)
1 , · · · , V ±(j)

Nf
, ωp, κ1, κ2, κ3)|2.(39)

So, we can easily calculate its gradient from (38) and (3), for i = 1, 2, 3, 1 ≤ l ≤ Nd and 1 ≤ n ≤ Nf ,

∂Jm
∂κi

=
M∑
p=1

Nd∑
j=1

(u(xj , ωp)− Fj(·, ωp))
∂Fj
∂κi

(·, ωp),(40)

∂Jm

∂U
(l)
0

=

M∑
p=1

(u(xj , ωp)− Fl(·, ωp))
∂Fl

∂U
(l)
0

(·, ωp),(41)

∂Jm

∂V
±(l)
n

=
M∑
p=1

(u(xj , ωp)− Fl(·, ωp))
∂Fl

∂V
±(l)
n

(·, ωp),(42)

we denote here Fj(U
(j)
0 , V

±(j)
1 , · · · , V ±(j)

Nf
, ωp, κ1, κ2, κ3) by Fj(·, ωp) in order to simplify the nota-

tions.

Then, the algorithm follows the standard gradient method for 3 +Nd(1 + 2Nf ) variables. Once
we have reconstructed the conductivity profile, i.e. the approximate values of κ1, κ2, κ3, we can

use (37) again to calculate the approximate conductivity k̃(ω) by (3) and the approximate u0 by
the following matrix formula, let x ∈ ∂Ω,

(43)


ũ(x, ω1)
ũ(x, ω2)

...
ũ(x, ωM )


︸ ︷︷ ︸
=Ũ(x,ω1,...,ωM )

≈


q0(ω1) q(λ̃+

1 , ω1) q(λ̃−1 , ω1) · · · q(λ̃−Nf , ω1)

q0(ω2) q(λ̃+
1 , ω2) q(λ̃−1 , ω2) · · · q(λ̃−Nf , ω2)

...
...

...
. . .

...

q0(ωM ) q(λ̃+
1 , ωM ) q(λ̃−1 , ωM ) · · · q(λ̃−Nf , ωM )


︸ ︷︷ ︸

=L(λ̃±1 ,...,λ̃
±
Nf
,ω1,...ωM )


u0(x)
v+

1 (x)
v−1 (x)

...
v−Nf (x)


︸ ︷︷ ︸

=V (x)

,
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where ũ(x, ω) = u(x, ω)− 2

k̃(ω)+k0
f(x), q0(ω) = k̃(ω)−k0

k0(k̃(ω)+k0)
, and q(λ̃, ω) = 1

k0+λ̃(k̃(ω)−k0)
− 2

k̃(ω)+k0
.

Then, the vector V can be obtained by the formula

(44) V (x) ≈ (LTL)†LT Ũ(x, ω1, · · ·ωM ),

where (LTL)† is the pseudo-inverse of the matrix LTL. The conditioning of the matrix LTL de-
pends in fact on the distance between the sampling values ωj , j = 1 · · · ,M, and the frequency
profile (3). The approximate u0(x) is then recovered by taking the first coefficient of the vector
V (x).

Finally, the algorithm to reconstruct u0, can be summarized in the following steps:

(1) Give an apriori estimation λ̃±n , n = 1, · · · , Nf , of the eigenvalues λ±n , n = 1, · · · , Nf .
(2) Choose a step length αm > 0 for the gradient descent.
(3) Initialize the vectors U0|0, V1|0, · · · , Vn|0 and the coefficients κ1|0, κ2|0, κ3|0.
(4) While |∇Jm| is larger then a given threshold, we do

(a) Calculate the values of the functions Fj by (38), and ∇Jm by (40), (41), (42).

(b) Update the parameters κi|k+1 = κi|k − αm
∂Jm
∂κi

, U
(l)
0 |k+1 = U

(l)
0 |k − αm

∂Jm

∂U
(l)
0

, and

V
±(l)
n |k+1 = V

±(l)
n |k − αm ∂Jm

∂V
±(l)
n

.

(5) When |∇Jm| is smaller then the threshold, we stop the iterations.
(6) Use (44) with the approximate coefficients κi obtained in the previous step to calculate the

approximate value of u0(x) for every x ∈ ∂Ω.

5. Reconstruction of the anomaly from u0

In this section, we propose a numerical method to identify the anomaly D from a finite number
of Cauchy data of (u0(fi), fi), i = 1, · · · , P, on ∂Ω, where P ≥ 1. We further assume that the
anomaly is located within an open subdomain Ω0 ⊂ Ω with dist(∂Ω0, ∂Ω) ≥ δ0 > 0 The scheme is
based on the minimizing of a non convex functional

J(u) =
1

2

∫
∂Ω

P∑
i=1

|u− u(i)
meas|2ds,

where u
(i)
meas are the measured Dirichlet data corresponding to the i-th Neumann data and where

u is the solution to (1) associated to the current domain D ⊂ Ω0. In our numerical simulations we
take P = 2 with f1 = 〈e1, νΩ〉 and f2 = 〈e2, νΩ〉, where (e1, e2) is the canonical base of R2.

We further assume that D is within the class D, that is, it is star shaped and its boundary ∂D
can be described by the Fourier series:

(45) ∂D =

{
X0 + r(θ)

(
cos θ
sin θ

)
|θ ∈ [0; 2π)

}
, r =

N∑
n=−N

cnfn,
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where C =


c−N
c−N+1

...
cN

 ∈ R2N+1, fn(θ) = cos(nθ) for 0 ≤ n ≤ N and fn(θ) = sin(nθ) for

−N ≤ n < 0.

Using (11) in Theorem 3.1, and integration by parts, we have the expressions of the shape
derivative corresponding to each Fourier coefficient cn

(46)
∂J

∂cn
=

∫
Ω\D
∇w∇uhdX,

for −N ≤ n ≤ N , where h(θ) = fn(θ)〈
(

cos θ
sin θ

)
, νD〉, and w is the solution of the following equation

(47)


4w = 0 in Ω \D,
∂w

∂ν
= 0 on ∂D,

∂w

∂ν
= u− umeas on ∂Ω.

Formula (46) is also valid for the shape derivative corresponding to the displacement of X0, in these
cases, h = 〈ei, νD〉, i = 1, 2.
Those expressions are the basis of the following iterative algorithm:

(1) Choose an initial domain D0.
(2) For each iteration, i > 0:

(a) Calculate the solution ui to (1), associated to the domain Di for which the boundary
∂Di is calculated by (45).

(b) Calculate the shape derivatives ∂J
∂x1

, ∂J
∂x2

and ∂J
∂cn

for all −N ≤ n ≤ N .

(c) Choose a step length α > 0 for the gradient descent.
(d) Update the parameters of the domain Xi+1 = Xi − α∇X0J(Xi, Ci) and Ci+1 = Ci −

α∇CJ(Xi, Ci) with α > 0.
(e) If the updated domain is not entirely in Ω0 or if R becomes negative, reduce the size

of α.
(3) When J(Xi, Ci) becomes smaller than a fixed threshold, we stop.

6. Numerical examples

The numerical tests follow the steps presented here. All the numerical experiments are done
using FreeFem++ [FreeFem].

(1) Ω is a centered ellipse defined by the equation:
x2

1
42 +

x2
2

32 ≤ 1.
(2) We use two linearly independent Neumann data: f1 = 〈e1, νΩ〉 and f2 = 〈e2, νΩ〉, where

(e1, e2) is the canonical base of R2.
(3) The multifrequence conductivity follows the model (3) with κ1 = 3, κ2 = 2, κ3 = 1 and ω

are integers from 1 to 8.
(4) Only the first two eigenvalues are taken into consideration, and they are fixed as follows

λ+
1 = 3

4 , λ−1 = 1
4 respectively in all cases.

(5) In the algorithm to reconstruct u0 and the conductivity profile, the initial guess of u0 is the
function f.
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• ellipse square near-boundary small-central
f = f1 0.04707 0.11973 0.00956 0.00502
f = f2 0.01583 0.09905 0.02436 0.00893

Table 1. Errors between u0reconstruct and u0.

• real value ellipse square near-boundary small-central
κ1 3 2.80971 3.36482 3.00287 6.65418
κ2 2 1.79063 2.34197 1.96926 5.14671
κ3 1 1.00212 0.987247 0.999658 1.13223

Table 2. Reconstructed constants in the frequency profile.

• ellipse square near-boundary small-central
|Di 4Dtarget|/|Dtarget| 0.07055 0.12187 0.24299 0.19471

Table 3. Relative symmetric difference.

(6) The initial estimation of domain D is a centered disk with a radius 1
2 .

(7) We consider the first 15 Fourier coefficients: N = 15.
(8) We use P1 finite elements for the numerical resolution of the PDEs.
(9) At each iteration, we remesh the domain to adapt to the new predicted position and shape

of the domain.
(10) The algorithms stop if J < 10−5 or the number of iterations exceed 500. All the tests have

executed 500 iterations.

We present here several numerical simulations of the proposed algorithm. We first give the errors
in the reconstruction method of u0 in Table (1), and the errors in the reconstructed coefficients κ1,
κ2, κ3 in Table (2). The errors are computed using the L2-norm of the difference

u0reconstruct − u0 = error(u0reconstruct) :=

√∫
∂Ω
|u0reconstruct − u0|2dx.

We show in the following figures the targets and the reconstruction result. We calculate also the
relative symmetric difference |Di4Dtarget|/|Dtarget| during the iterations, and we draw the curves
of the symmetric difference with respect to log(ui). We finally give the relative symmetric difference
of each shape in Table 3. Finally, we test a reconstruction in domain Ω that has shape different
from an ellipse in Figure (5).

7. Concluding remarks

In this paper, by combining the spectral decomposition derived in [AT] and the linearization
of the frequency independent part with respect to the shape of the anomaly, we have provided
a new and efficient approach for reconstructing both the shape and conductivity parameter of a
conductivity anomaly from multifrequency boundary voltage measurements. The approach and
results of this paper can be extended in several directions: (i) to reconstruct multiple anomalies
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Figure 1. Exemple 1: ellipse
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Figure 2. Exemple 2: a square.
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Figure 3. Exemple 3: a near boundary concave domain.
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Figure 4. Exemple 4: a centered small domain.
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Figure 5. Exemple 5: A non-ellptical shaped anomaly.

from multifrequency boundary measurements; (ii) to investigate the reconstruction of anisotropic
conductivity anomalies from multifrequency boundary measurements, and (iii) to study elastogra-
phy imaging of visco-elastic anomalies. These new developments will be reported in forthcoming
works.
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estimates for the conductivity equation with complex coefficients. J. London Math. Soc. 93 (2016), 519–545.
[KS] M. V. Klibanov and F. Santosa. A computational quasi-reversibility method for Cauchy problems for

Laplace’s equation, SIAM J. Appl. Math., 51 (1991), 1653–1675.
[LL] R. Lattés, J.L. Lions. The Method of Quasi-reversibility. Applications to Partial Differential Equations,

American Elsevier, New York (1969).
[MSHA] E. Malone, G. Sato dos Santos, D. Holder, and S. Arridge. Multifrequency electrical impedance

tomography using spectral constraints. IEEE Trans. Med. Imag. 33 (2014), 340–350.
[MS] Y. Miyanishi and T. Suzuki,Eigenvalues and eigenfunctions of double layer potentials, arXiv:1501.03627,

Trans. Amer. Math, to appear (2017).
[MFZ] I.D. Mayergoyz, D.R. Fredkin, Z. Zhang,Electrostatic (plasmon) resonances in nanoparticles, Phys. Rev.

B 72 (2005), 155412.
[MN] G.W. Milton and N.-A.P. Nicorovici,On the cloaking effects associated with anomalous localized resonance,

Proc. R. Soc., A 462 (2006), 3027–3059.
[PP] K.-M. Perfekt and M. Putinar, Spectral bounds for the Neumann-Poincaré operator on planar domains
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