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Abstract. Cotterell and Rice theory (1980) on the kinking of a crack submitted to a biaxial loading 

in a homogeneous material has been recently revisited (Leguillon and Murer 2008). The mixed 

criterion for fracture which involves both an energetic and a stress condition (Leguillon 2002) 

allows defining a positive threshold of the T-stress below which no branching can occur 

(Selvarathinam and Goree 1998). This analysis enters within a more general mixed-mode analysis 

(I+II+T-stress). Despite the complex terms and the oscillations, results extend to interfacial cracks. 

The assumption of a crack jump as a consequence of the energy balance allows getting rid of the 

problem brought by the oscillations due to these complex terms. This approach brings a new insight 

on the prediction of crack kinking out of a bimaterial interface.  

Introduction 

Within the plane strain elasticity framework, the displacement field in the vicinity of a crack tip at 

the interface between two homogeneous materials can be described by the so-called Williams’ 

series made of power terms (1). The leading terms involve a complex singularity exponent 

1/ 2 iλ ε= +  associated with a complex mode u  and the conjugates. The first non singular term 

called “T-stress” corresponds to a tension acting in a direction parallel to the crack. The related 

power is 1; the associated mode is denoted t  and T  holds for the corresponding intensity factor, i.e. 

the remote tension              
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where r  and θ  are the polar coordinates, with the crack tip O  chosen as origin. The meaning of 
index 0  will be explained in the next section. The constant vector R  is for consistency only. The 

dots refer to modes with higher order real parts (3/2, 2, 5/2 ...). Oscillations are due to the terms ir ε±  

and (1)2 bring into evidence the singular behaviour in the vicinity of the crack tip. 

It is worth noting that many authors ([3], [5], [6]) emphasize on the difficulty to extract T  from a 

finite element approximation of (1), even in the real homogeneous case. They propose different 

procedures leading to quite large inaccuracies. Herein, the path-independent integral H  ([4], [9]) is 

used and proved to be a simple and accurate procedure to determine either the real intensity factor 

T  or the complex one K .  

Introducing dimensionless mix mode parameters 
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equation (1) can be rewritten as follows 
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See [2] and [10] for the r  dependency of m . The parameter M  depends on r  as well and is a 

generalisation of the so-called “stress biaxiality ratio” B  used by Leevers and Radon [6].  

The aim of this paper is to extend Leguillon’s criterion ([7], [12]) in order to include the T-stress in 

the analysis. This criterion is a combination of energy and stress conditions which avoids any 

arbitrary choice of a critical length and has proved to work well to predict crack initiation at V-

notches under symmetric [7] and complex loadings [12] in homogeneous materials. Williams’ 

expansion (1) is used to derive the stress field and a matched asymptotic expansions procedure 

provides the energy release rate due to the onset of a short crack increment.  

Matched asymptotics 

 
Figure 1. Crack kinking out of an interface. 

 

The main difference with previous works is twofold, a complex singularity holds at the crack tip and 

the T-stress is taken into account in addition to singular modes. The crucial point lies in the 

comparison between two states: one relies on the initial structure, prior to crack initiation; the other 

refers to the same structure after onset of a short crack increment (length l ) making an angle α  
with the primary crack (figure 1). The corresponding displacement fields are denoted respectively 
0
( )rU θ,  and ( )rU θ,l

. The asymptotic procedure is carried out with respect to the small crack 

increment length and matching conditions with (1) lead to  
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where /rρ = l  holds for the dimensionless radial coordinate, and where the complex function V  

and the real one W  are solutions to well-posed problems and vanish at infinity. They depend neither 

on the global geometry of the structure nor on the loading, and can be computed once and for all as 

functions of the crack initiation angleα . 

The fracture criterion 

Using the previously described matched asymptotic analysis (section 2), it has been shown [7] that 

the initiation of a crack at a V-notch in a homogeneous material can be accurately predicted using 

two conditions involving both stress and energy. Furthermore, the proposed criterion coincides with 

Griffith’s one for a pure crack. As a consequence of exponents greater than 1 2/  in the Williams’ 
expansion in the general case, this initiation process is shown to be unstable; the crack jumps a short 

length. The presence of the T-stress term leads to a similar reasoning which is carried out herein.  

Energy condition. The first condition results from an energy balance between two states of the 

structure prior and after the onset of a short crack increment. It states that the incremental energy 

release rate pG W Sδ δ= − /  has to exceed the toughness cG  of the material, pWδ  being the elastic 

potential energy change and Sδ  the newly created crack surface. In plane elasticity, using equations 

(3) and (4) and asymptotic expansions with respect to the crack increment length l  ( S dδ = ×l , 

where d  holds for the specimen thickness), the energy condition leads to  

      ( , ( ), ( )) ... cG KK X m M Gα= + ≥l l                                                                                               (5) 
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where X  is a coefficient depending on the crack initiation angle α . It derives directly from the 
functions V  and W  and can be computed using the path-independent integral H  ([4], [9]).  

Stress condition. The second condition is based on the maximum tension that a material can sustain 

before failure. It states that fracture can occur only if the opening stress along the expected crack 

path (defined above by the angle α  and the length l ) exceeds the material strength cσ . Due to the 
oscillations, the forthcoming reasoning can be carried out using only an analogy with the approach 

used in the real case [8]. The stress condition cθθσ σ≥  leads to the relation  

     
2 ( ( ), ( )) cKK Y m M σ=l l l      with 

2
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where the index θθ  stands for the hoop component of the tensors  and s τ .  

Mix criterion. The compatibility between (5) and (6) gives an equation for the crack initiation 

length cl  as a function of  α  
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Finally eq. (5) with c=l l  gives a condition on K  for crack initiation in the direction α :  
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The critical value Kα  depends on α  and the actual kink angle fα  maximizes the denominator, i.e. 

minimizes Kα  giving fK  (i.e. K  at failure).  

Discussion 

 
Figure 2. 3-point bending test, / 0.25F L = , / 0.2H L =  (1/2 specimen). 

 

The kink of a crack in a homogeneous material has been widely studied in the literature, but it is 

difficult to find experiments to corroborate the predictions for a bimaterial. Many data are involved 

in the results: the elastic (Young’s modulus E  and Poisson’s ratio ν ) and fracture parameters 
(strength cσ  and toughness cG ) of the two materials. Simulations are carried out on a bimaterial in 

flexion (figure 2), the stiffer material being alternatively in the upper ( 1R > ) and lower ( 1R < ) 
position, R  is the Young’s modulus ratio, 0.3ν =  in both materials. Two cases are analysed: a 

weak and a strong contrast 1E =300 GPa, 1cσ = 400 MPa and 1cG =0.05 MPa.mm ( IcK = 4.06 

MPa.m
1/2
), and either 2E = 150 GPa, 1cσ = 200 MPa and 1cG =0.025 MPa.mm ( IcK = 2.03 

MPa.m
1/2
) or 2E = 6 GPa, 1cσ = 75 MPa and 1cG =0.35 MPa.mm ( IcK = 1.52 MPa.m1/2). The stiffer 

material looks roughly like Alumina while the other looks either like a porous Alumina (weak 

contrast) or a polymer (strong contrast). 

Results are in table 1. The presence of complex terms makes the interpretation quite entangled. A 

complete sensibility analysis is now in progress for a better understanding of the influence of the 

various parameters mentioned above. As already observed in the real case [8], fK  defined in (8) 
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decreases as T  increases (not illustrated herein). The particular case 1R =  (no contrast) is given for 

comparison taking i I IIK K K= + . It is worth noting that the sign of ε  is a convention since both + 
and – occur in eq. (1). 

Table 1. 

R  ε  Im( ) / Re( )K K  / Re( )T K  
fα  (°) fK  (MPa.m

1/2
) cl  (µm) 

1 0 0.93 1.29 60 2.27 17 

2 0.03 1.32 2.79 50 1.39 16 

0.5 -0.03 0.89 1.33 60 0.88 18 

50 0.09 0.41 1.20 90 0.48 51 

0.02 -0.09 1.58 0.38 70 0.81 68 

Conclusion 

The T-stress together with the mix criterion defines an initiation length that allows getting rid of the 

oscillation terms in the prediction of the critical load and the deflection angle of a crack kinking out 

of an interface. For a complete analysis the competition between the deflection mechanism and the 

delamination growth must be analysed. It requires in addition the knowledge of the interface 

toughness, which determination is difficult, since it depends in particular on the modes mix. 
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