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The Interaction Between the ISO Tapping
Machine and Lightweight Floors

Jonas Brunskog, Per Hammer
Division of Engineering Acoustics, LTH, Lund University, Sweden. Jonas.Brunskog@acoustics.lth.se

The ISO standard tapping machine, used as an excitation source in rating the impact-sound level of a floor
structure, interacts with the floor structure during the hammer impact. Expressions for the force spectrum due to
the impact are presented. The 6 dB difference at low frequencies of the force spectrum, evident in measurements,
and reasons for it, are discussed. The interaction is investigated by use both of simplified lumped models and
arbitrary frequency-dependent models. Local effects due to indentation near the point of impact and to global
effects due to stiffeners are included in the description of the mobility involved. Numerical results are presented,
where it is concluded that both the local and the global effects of the driving-point mobility are important in
describing the force spectrum caused by the interaction between the tapping machine and the complex floor
structure.

1. Introduction

The use of lightweight building techniques has increased
during the last few years. It is well-known, however, that
structures of this type often have poor impact-sound insu-
lation. A prediction model is an important tool in develop-
ing structures that have acceptable insulation characteris-
tics and in explaining how they function. A model for pre-
dicting impact noise can be said to consist of three parts:
the excitation, the system and the response. The present
paper focuses on the excitation part. Point impact exci-
tation can be caused by e.g. footsteps or the impact of
dropped items. Excitation can also be prodused by the ISO
standard tapping machine [1], as dealt with in the present
paper. Thus, the paper aims at deriving expressions for the
force spectrum produced by the impact of a hammer on a
lightweight floor.

The system, or more specifically the representation of
the floor system in question, is important not only as a
transfer part from excitation to response, but also of de-
riving the impact force. It is important, therefore, that at-
tention be directed at the interaction between the hammer
and the floor. The system and the response are examined
in greater detail in [2], in which measurements are also
compared with predictions derived from a model. A com-
prehensive survey of the literature on prediction model ap-
proaches is presented in [3].

The ISO standard tapping machine can be used as an
excitation source for rating the impact-sound level of a

floor structure. Although the machine provides no genuine
simulation of real footsteps, the test results obtained yield
valuable information concerning the dynamic behaviour of
the floor. If the description of the tapping machine as a
source is sufficiently thorough and precise, it may be pos-
sible sometime in the future to solve the problem of the
correlation between sound disturbances by footsteps and
the impact sound level produced by the machine.

Cremer has derived the impact noise level caused by
a tapping machine for homogenous structures of high
impedance, the results being summarised by Cremer and
Heckl [4, pp. 269–271, 333–339]. In dealing with a bare
slab Cremer makes use of momentum calculations that as-
sume there to be a perfect elastic impact (described in sec-
tion 2 of the present paper) the results are quit satisfac-
tory. However, when taking into account the effects of a re-
silient floor covering, Cremer’s description of the problem
implies that the hammer becomes stuck to the floor after
impact. This leads to resonant behaviour that is not to be
found in measurements according to the ISO standard. In
fact, the hammer rebounds after impact, there being only
an initial positive force pulse present, a matter investigated
by Lindblad [5]. Also, regarding linear excitation Lind-
blad considered the effect of an energy-consuming part of
the deformation, conceived as a resistance in series with
a spring to represent the resilient covering. The resistance
can be due to local material damping or, as in the present
study, to energy being transported within the plate away
from the region of impact. For heavy slabs, as considered
in references [4, 5, 6], the resilient part is due to the floor
covering. Lindblad’s major interest, however, was in the
non-linear behaviour of coverings that interact with the
hammer. Vér [6] derived a complete and accurate descrip-



tion of the force spectrum and the impact noise level a tap-
ping machine produces on hard surfaces, including the re-
bound. The improvement in insulation achieved by use of
an elastic surface layer (floor covering) or of floating floors
with surfaces of high impedance is also considered.

A lightweight floor structure can usually not be regarded
as a homogenous structure of high impedance. It consists
of thin plates of wood, chipboard, gypsum, or whatever,
and is reinforced by joist stiffeners. Thus, it cannot be as-
sumed that the force spectrum in [4, 5, 6] is applicable
generally. Nevertheless, in more recent papers on impact-
sound insulation, such as Gerretsen [7], the momentum
model of Cremer and Heckl [4] has continued to be used,
also for non-homogenous or lightweight floors. Thus, it is
common to assume the force spectrum to be invariant with
respect to the excitation system (i.e. of its being a linear
source with infinite source mobility). In the present paper
no such assumption is made. In another recent paper, by
Scholl et al. [8], the interaction between the source, the
floor covering and the floor structure is considered. How-
ever, the floor structure is represented by the mass of the
structure, not taking into account that the driving-point
impedance of a plate on average has the characteristics of a
resistance (i.e. �

p
m��B), and in general is complex. Thus,

no energy (or momentum) consuming part is included in
the model used by Scholl.

Measurements, such as those of Hall’s [9], indicates
there to be a 6 dB gap at low frequencies between the
force (or acceleration) spectrum of a hammer impacting
on a high impedance surface such as concrete and its im-
pacting on a low impedance surface such as an mdf-board.
This can easily be explained in terms of simple momen-
tum consideration in a manner comparable with the case
to which Cremer’s [4] calculations but letting the hammer
be stuck to the plate, as will be taken up in section 2.

The organisation of the paper is as follows: In order
to obtain a force spectrum of a form suitable for the so-
lution technique applied to the system described in [2],
the findings reported in [4, 5, 6] are integrated and re-
analysed in sections 2 and 3, several numerical examples
being provided there. A system of arbitrary frequency-
dependent driving-point mobilities is then added in section
4, in which different causes for the frequency-dependent
driving-point mobilities are discussed. The procedure for
evaluating these mobilities numerically is described in sec-
tion 5. The numerical results are presented in section 6, the
conclusions being summarized, finally, in section 7.

The present analysis is based on linear theory imply-
ing that the contact area during impact is constant, as dis-
cussed in section 3.2. The displacement of the receiver
structure is in addition small, and therefore assumed to be
within the linear range. It should be noted, however, that
a direct linear-system analysis is not applicable since the
system is changed when the object producing the impact
leaves the structure with which it has had contact. Thus,
the boundary condition between the object and the struc-
ture is rather being an inequality than an equation, and the
situation is not time-invariant.

2. The hammer impact force in the time
and the frequency domain

The ISO standard tapping machine [1] consists of five
hammers spaced equally along a line 40 cm in length.
As an approximation, it is assumed here, however, that
all hammer impacts act on the same position. Each ham-
mer has a mass of M � ��� kg and it is dropped from
a height h of 4 cm. The hammers strike the floor with
a rate of fr � �� times per second, giving a repetition
time of Tr � ��fr � ��� s. Consider initially, how-
ever, a single hammer impact with the force time his-
tory f��t�. The Fourier spectrum of this force pulse is
F��f� � Ftff��t�g, Ftf�g being the Fourier transform
operator (time to frequency). In the present paper, the word
spectrum is used to denote a function in the (Fourier) fre-
quency domain. The excitation caused by the tapping ma-
chine can be regarded as an array of separate force pulses
f��t�. The time history of the repeated force fR�t� is thus

fR�t� �

�X
n���

f��t� nTr�� (1)

This time history is a periodic signal. Accordingly, it can
be represented by a Fourier series, e.g. by the two-sided
complex Fourier series

fR�t� �

�X
n���

Fne
i��nt�Tr � (2)

The signal is represented by a Fourier series consisting of
an infinite number of discrete frequency components of
amplitude Fn. The Fourier spectrum for the signal is the
tonal spectrum

FR�f� � FtffR�t�g �
�X

n���

Fn��f � nfr� (3)

where FR�f� denotes the spectrum of the repeated signal.
It was used in [2] as the excitation force of the system,
whereas � denotes the Dirac delta function. Each ampli-
tude is given by

Fn �
�

Tr

Z Tr

�

f��t�e
�i��nt�Trdt (4)

where, as indicated above, f��t� is the force time history of
a single hammer impact. This integral is identical with the
Fourier transform of the individual force pulse except for
the factor ��Tr. Thus, for the tapping machine the repeated
force components Fn is 10 s�� times the force spectrum
for a single impact. If a trigonometric Fourier series is used
instead, each sine or cosine component is twice that in (4).
This is due to the two-sided representation described in
(2), which is the most suitable representation in the present
situation, since the force spectrum is used in a two-sided
model, i.e. one in which there is assumed to be an eiwt

dependence. Cremer [4] and Vér [6] used a one-sided rep-



resentation, together with a RMS and a (third) octave band
procedure.

For low-frequency components the force pulse is usu-
ally short compared with the period of interest. According-
ly, the Fourier amplitude of the force pulse train during the
effective interval of the force pulse, exp��i��nt�Tr� � �,
can be approximated by

Fnjf�� �
�

Tr

Z Tr

�

f��t�dt (5)

which is the mechanical impulse divided by Tr, the me-
chanical impulse being equal to the change in momen-
tum. The hammer hits the slab with a velocity �� �
��gh���� � ����	 m/s. If the impact is purely elastic, the
momentum of the hammer after impact is equal in mag-
nitude to that prior to impact but is of the opposite sign,
the hammer lifting from the slab with the velocity ��.
Thus, Fnjf�� � �M���Tr � ����
 N (where for a sin-
gle force pulse the corresponding low-frequency asymp-
tote is F�jf�� � �M��). Since this is the highest pos-
sible low-frequency asymptote of the impact spectrum, it
is the maximum value for the magnitude of the spectrum.
At the other extreme, if the impact is so damped that the
entire momentum is dissipated during impact, the ham-
mer does not rebound. The mechanical impulse is then
Fnjf�� � M���Tr � ����� N (F�jf�� � M��). This
is the lowest possible low-frequency asymptote of the im-
pact spectrum. Thus, these two cases constitute the upper
and lower bounds of the low-frequency asymptote of the
force spectrum, which represents a span of 4.429 N, or 6
dB. As indicated above, this span can be clearly seen in
measurements that have been made [9].

3. Impact force and lumped system

In order to include cases between the two extremes just
referred to, a lumped model can be employed, one that
provides a somewhat more realistic description than that
of momentum consideration does. The model and the so-
lution arrived at are taken from Lindblad [5], whereas the
physical situation and the analysis are new. A treatment of
general frequency-dependent impedances is found in sec-
tion 4.

3.1. A single slab, interaction between hammer and
floor

A lumped model of the impact of the hammer on a single
slab floor is shown in Figure 1. The floor consists of a re-
silient part and an energy consuming part, represented by
a spring with stiffness K and by a dashpot with resistance
R, respectively. The physical meaning of the two compo-
nents is discussed in section 3.2.

When the hammer has reached the slab, the differential
equation for the system assumed is

M���K��t
� � K��K � �R�

K��R � �K� � R��R��t (6)

M

K

R

υ
0

ξ
K

ξ
R

Figure 1. Model of hammer impact.

where �K and �R are displacements. Under the initial con-
dition ��, and assuming frequency independent K and R,
the solution is found to be [5]

f��t� �

�
��K

sinh��oct�
�oc

e�Kt��R	 KM � �R�

��K
sin��uct�

�uc
e�Kt��R	 KM 
 �R�

(7)

which of these applies depending on whether the oscilla-
tion is overcritical or not, where

oc �
p
�K��R�� �K�M

uc �
p
K�M � �K��R��

are the overcritical and the undercritical angular frequency,
respectively. In Lindblad [5] the first of these is denoted as
the ’stuck to the floor’ case and the latter as the ’rebound’
case. If an overcritical oscillation is present, a numerically
more appropriate form would be to write the expression
in terms of exponential functions instead of hyperbolics
combined with exponentials. For R � �, or if �R � �,
equation (7) is replaced by

f��t� � ��K sin�
p
K�Mt��

p
K�M (8)

which is an undamped oscillation in which fudcut �
�������K�M���� is the undamped natural frequency (and
cutoff frequency). The force starts at zero at the moment
the hammer hits the slab, and increases to a maximum, at
which point the hammer reaches its maximum depth, the
hammer then starting to return and the force decreasing.
As the force reaches the zero crossing at tcut � ����fcut�,
the hammer rebounds, takes off from the slab and is picked
up by a catching mechanism (an eccentric cam). Thus, the
force is zero after this moment,

f��t� �

�
��Kp
K�M

sin�
p
K�Mt�	 � 
 t 
 �

�fcut

�	 else�



The same conditions hold for the damped oscillations de-
scribed in (7). In the overcritical case the force will never
completely be zero. However, the force still decreases
rapidly after reaching the maximum and is approximately
zero at Tr. Each amplitude in the tonal spectrum of the
ISO tapping machine is given then by

Fn �
�

Tr

Z Tr��

�

f��t�e
�i��nt�Tr dt (9)

in the case of overcritical damping, and by

Fn �
�

Tr

Z tcut

�

f��t�e
�i��nt�Tr dt (10)

in the case of undercritical damping. These integrals can
be expressed in closed form, but are likewise well suited
for numerical integration. The Fourier transforms of a sin-
gle impact are given below, where the cutoff frequencies
are also determined. For the over-critical case, the inequal-
ity K��R � oc holds, giving a Fourier transform over
time to angular frequency � � ��f of equation (7),

F��oc � Ftff��t�joc�t�g
�

��KM

K � ��M � i�KM�R
(11)

where �t� is the unit step function. The low-frequency
asymptote of (11) is

F��ocjf�� � ��M

as expected. In the undercritical case, a Fourier transform
over time of equation (7) yields, taking into account the
time interval of interest

F��uc � Ftff��t�juc
�
�t�� �t� tcut�

�g
�

��KM�� � e�tcut�i��K��R��

K � ��M � i�KM�R
(12)

where

tcut � ��uc � ���fcut

is the time of zero-crossing. The low-frequency asymptote
is

F��ucjf�� � ��M
�
� � e�Ktcut��R

�
which has two extremes depending on the resistance R,

F��uc �

�
���M	 f � � and R��
��M	 f � � and R� �

�

p
KM

which agrees with the asymptotes schematically derived in
section 2 on the basis of the mechanical impulse and the
change in momentum.

In both the overcritical and the undercritical case, the
Fourier series components are then found to be Fn �

F��nfr�fr, and the complex cutoff angular frequency (i.e.
the poles) is

�cut � iK��R�
p
K�M �K����R�� (13)

If the negative sign is chosen, the absolute value of the
complex cutoff angular frequency yields the point of inter-
est on the real axis,

j�cutj �
�

K
�R �

q
K�

��R�� � K
M 	 KM � �R�q

K
M 	 KM 
 �R�

(14)

The cutoff frequency then is

fcut � j�cutj���	 (15a)

whereas in the undercritical case the undamped cutoff fre-
quency,

fudcut � ������
p
K�M (15b)

is employed, this being the frequency at which the phase
equals ����.

3.2. Choice of the frequency independent stiffness
and resistance

In Figure 1 the impedance at the position where the ham-
mer hits the floor is represented by a spring and a dashpot
in series. Thus, a suitable stiffness K and a resistance R
need to be found in order to achieve an adequate approxi-
mation of what occurs at impact. The resilient part is often
the result of there being an elastic surface layer on an oth-
erwise bending stiff slab. The stiffness of the elastic layer
is then K � EAh�d, c.f. Vér [6], where E is Young’s
modulus, d is the thickness of the elastic layer, and Ah is
the area of the hammer. The resistance is then related to the
local dissipation, R � ��KM����, � being the loss factor
for the material. In the lightweight floor structures consid-
ered in this paper, however, the hammer hits a rather thin
plate made of gypsum or of wooden material. It can thus be
assumed that the resilient part is due to local deformation
of the plate, and the resistive part to energy transportation
within the plate. As a first approximation, the stiffness of
the local deformation can be found, as in [10, 11], by

K � �GDh���� �� � EDh���� ��� (16)

where G is the shear modulus, � is Poisson’s ratio and
Dh � ��Ah���

��� is the diameter of the hammer. The lo-
cal stiffness here is found for a static deformation caused
by a rigid stamp on a semi-infinite elastic solid, the so-
called Bossinesq deformation. If the area of contact be-
tween the hammer and the floor can be regarded as involv-
ing contact between two elastic bodies of different radii,
a geometric non-linearity will occur, a so-called Hertz de-
formation [10]. The hammers of the tapping machine are
actually not entirely flat, but since after a few impacts the
material in the impact zone becomes somewhat plastically
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Figure 2. Time history of hammer impact. Solid line (—) denotes
the interrupted force, dashed line (- - -) denotes the oscillating
force. The parameters are K � f� �� �� �� ��g � ��� N/m,
R � � � ��� Ns/m.

deformed by the hammer it is assumed that the Hertz de-
formation effect will not be dominant in the steady-state
vibrational phase.

The resistance is taken to be the real driving-point
impedance of a thin plate,

R � �
p
m��B	 (17)

its being taken into account that energy is transported away
from the excitation point by bending wave motion. Here
m�� is the mass per unit area and B � EI � is the bending
stiffness of the plate.

Both of these lumped parameters are frequency inde-
pendent, a necessary condition for the solution technique
described in section 3.1.

3.3. Numerical examples

Various numerical examples will be presented now to il-
lustrate certain features of the lumped two-parameter de-
scription of the impact force of the tapping machine. The
examples will come from a specific combination of R and
K, where R � � � ��	 Ns/m and K � � � ��
 N/m.
These values correspond roughly to an infinite 22 mm
thick wooden plate, use being made of equations (16) and
(17), respectively. The parameters are varied one at the
time.

In Figures 2 to 4 the stiffness is varied as K �
f� �� �� �� ��g���
 N/m. Figure 2 shows the time history
of the impact force. The first three impact forces are under-
critical, as indicated by the dashed line (- - -), since they
should oscillate if uninterrupted. The increase in stiffness
results in a narrower pulse, and thus a somewhat broader
frequency range, as can be seen in Figure 3.
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Figure 3. Hammer impact spectrum, showing magnitudes. The
parameters are K � f� �� �� �� ��g � ��� N/m and R �

� � ��� Ns/m.
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Figure 4. Hammer impact spectrum, showing the phases. The
parameters are K � f� �� �� �� ��g � ��� N/m and R �

� � ��� Ns/m.

Figure 3 shows the magnitude of the force spectrum,
as derived from equation (11) or (12). The undamped cut-
off frequency (15b) is indicated by circles (o) and the ac-
tual cutoff frequency (15a) by pluses (+). The extremes of
the low-frequency asymptotes are indicated by two stars
on the ordinata (	). The undercritical behaviour of the
first three pulses manifests itself as oscillation in the high-
frequency range. The overcritical force pulses are close to
the lower extreme of the low-frequency asymptotes.

The behaviour of the cutoff frequency when the stiff-
ness increases can be described as follows: The cutoff
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Figure 5. Hammer impact time history. Solid line (—) denotes
the interrupted force, dashed line (- - -) denotes the oscillating
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Figure 6. Hammer impact spectrum: magnitudes. The parameters
are R � f��� � � � �g � ��� Ns/m and K � �� � ��� N/m.

frequency increases with increasing stiffness up to the
point where critical damping occurs, where K � �R��M .
Thereafter the cutoff frequency decreases as the stiffness
increases further. The undamped cutoff frequency always
increases with increasing stiffness.

Figure 4 shows the phase of the force spectrum. The
undamped cutoff frequency (15b) is marked by circles (o).
As a reference to the phases, the time of impact is taken,
giving a low-frequency asymptote of zero.

In Figure 5 to 7 the resistance is varied as R �
f��� � � � �g � ��	 Ns/m. Figure 5 shows the time history
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Figure 7. Hammer impact spectrum: phases. The parameters are
R � f��� � � � �g � ��� Ns/m and K � �� � ��� N/m.

of the impact force. The two final impact forces are under-
critical. The dashed line (- - -) indicates how they would
have continued if uninterrupted. An increase in resistance
results in the pulse becoming narrower, and thus in the fre-
quency range becoming somewhat broader, as can be seen
in Figure 6. The undamped cutoff frequency remains un-
changed, however.

Figure 6 displays the magnitude of the force spectrum,
as derived from equation (11) or (12). The undamped cut-
off frequency (15b) is indicated by circles (o) and the ac-
tual cutoff frequency (15a) by pluses (+). The extremes of
the low-frequency asymptote are indicated by two stars on
the ordinata (	). The last spectrum (R � � � ��	 Ns/m)
is not much affected by dissipation, the low-frequency
asymptote consequently having increased. For the over-
critical pulses, the spectrum starts to decrease at the actual
(lower) cutoff frequency, not at the undamped one.

Figure 7 shows the phase of the force spectrum in-
volved. The reference to the phases is taken at the time
of impact, giving a low-frequency asymptote of zero. The
undamped cutoff frequency (15b) is indicated by circles
(o).

To conclude: increasing the stiffness gives a lower
low-frequency asymptote and a higher cutoff frequency,
whereas increasing the resistance gives a higher low-
frequency asymptote and an unchanged undamped cutoff
frequency (15b) and a lower actual cutoff frequency (15a).

3.4. Floating floors, a discussion

A floating floor can be described with two infinite plates
connected by a resilient layer [4, 12]. To simplify the sit-
uation, it can be assumed that the plates are thin and that
the resilient layer is point-reacting and massless. To sim-
plify the situation still further, two different cases can be
distinguished such that in the first case the impedance of



the excited plate is so high that the impact situation is the
same as described in section 3.1–3.2, whereas in the sec-
ond case the impedance of the excited plate is so low that
the secondary (non-excited) plate can be regarded as rigid.
In this second case the plate system can be simplified to
a Winkler foundation, involving a plate resting on a lo-
cally reacting resilient layer. The bending wave-number is
k�B � �m���� � K��B, where m�� is the mass per unit
area of the plate, K is the stiffness of the foundation and
B is the bending stiffness of the plate. The driving-point
mobility then is

Y �
�

��B���i
p
K �m����

	

where the square-root in the denominator yield as a con-
sequence that no lumped model can be used, even for this
simple case. Thus, a more general description is needed.

4. Impact force and the general system

In section 3 the impact force spectrum was derived for
frequency-independent parameters K and R in a me-
chanical series. The spectrum was given explicit expres-
sions (11–12). However, the floor system cannot gener-
ally be described in terms of frequency-independent pa-
rameters. The lumped description of the driving-point
impedance/mobility is basically an ad hoc approximation
of the actual situation. A more accurate description would
be to calculate the driving-point mobility from the system
description. The driving-point mobility is defined as the
complex ratio of velocity to applied force, where the ve-
locity is measured at the point of application of the force,
c.f. [13].

Since the methods employed in section 3 cannot be used
for frequency-dependent mobility, however, an approach
to finding the force spectrum for an arbitrary driving-point
mobility needs to be found. A suitable approach is to solve
the differential equations in the frequency domain, inverse
transform the result obtained in order to find the time of
rebound, and to then transform the remaining force into
the frequency range.

4.1. The interaction between the hammer and the
floor

Figure 8 shows the generalised impact situation and the
procedure employed. Figure 8 a) presents a general model
of the impact. The hammer, of mass M , strikes the floor
with the velocity ��. The floor can be described in terms of
the general driving-point mobility Y (or impedance Z �
��Y ). The desired force, f��t�, is shown in Figure 8 b).

The mobility is frequency-dependent, implying that the
equations of motion can easily be solved in the frequency
domain. On the other hand, the impact history is inter-
rupted after the first zero crossing of the force. Thus the
system is not time-invariant and therefore is best treated
in the time domain. To deal with this problem, consider
Figure 8 c), in which the mass M is now fixed on top of
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Figure 8. Modified impact description, impedance Z � ��Y .

the impedance Z. The entire system is driven by a force
F���t�. This modified form of the problem is both linear
and time-invariant. The equation of motion and the floor
reaction force, if taken in the frequency domain, are

F� � F �� � i�Mv	 F �� � v�Y	 (18)

where v � Ftf��t�g is the velocity spectrum of the floor
and F �� is the spectrum of the continuing impact force,
i.e. the floor reaction force between the mass and the
impedance, as shown in Figure 8 c-d), F �� � Ftff ���t�g.
One solves then for F �� and v,

F �� � F���� � i�MY �	 (19a)

v � Y F ��� (19b)

The magnitude of the force F� needs to be selected so that
the velocity at t � �� equals the velocity of the falling
hammer. At t � �� the velocity should be zero,

����� � ��	 ����� � �� (20)

In evaluating ����, however, account needs to be taken of
the fact that the Dirac ��t� that excites the floor at time t �
� is only at half inside the infinitesimal region from t � �
to t � ��. This is compensated for if a value halfway
between ����� and ����� is employed,

����jDirac � ����� (21)

The velocity of the floor at t � � is evaluated as the inte-
gral over all the frequencies,

���� �
�

��

Z
�

��

v���d�

�
F�
��

Z
�

��

d�

i�M � ��Y ���

 F�I�	 (22)

where equation (19b) is used in next-to-the-last equality,
and the last equality is the definition of the integral I�.



One then inserts (21) in (22) to obtain the magnitude of
the driving force in the modified system,

F� � ����I�	 (23)

where the integral I� (mostly) needs to be calculated nu-
merically. Equation (19a) then becomes

F �� �
����I�

� � i�MY ���
� (24)

The time history of this force can be found by means of
the inverse Fourier transform, f ���t� � F��t fF ��g, imple-
mented numerically as a fast digital inverse transform. The
moment in time of the first zero crossing of the force is ob-
tained then as

tcut � minftjt � �	 f ���t� � �g� (25)

The actual, interrupted, excitation impact force then is

f��t� � f ���t��tcut � t�	 (26)

the corresponding force spectrum being found by means of
a Fourier transformF� � Ftff��t�g, implemented numer-
ically as a fast digital transform. The Fourier series com-
ponents of (4) are Fn � F��nfr�fr, where fr � ��Tr is
the repetition frequency of the tapping machine.

4.2. The driving-point mobility

In the lumped system description presented in section 3,
which made use of frequency-independent components,
both the stiffness and the resistance were important for the
solution. For a general mobility, this implies that both the
real and the imaginary part of the mobility are important.

For an infinite homogenous plate, the imaginary part
of the mobility, or the finite stiffness, can only be due to
local effects. In section 3, the stiffness was chosen to be
the stiffness due to deformation near the impact zone on a
semi-infinite elastic solid, the Bossinesq expression (16).
It would be more realistic to determine the local stiffness
of a plate of finite thickness, i.e. to treat the plate as an elas-
tic continuum. The force excites the plate asymmetrically
on its upper surface. Thus, the excitation force produces a
complicated displacement field under and near the point of
excitation.

However, the description of the elastic continuum has
too high a level of complexity to be appropriate for the en-
tire system, including the reinforcing beams, for example.
To this end, it is better to use thin plate theory, assuming
plane sections to remain plane in the plate, which implies
the excitation force to be constrained to produce a uni-
form displacement field in the thickness direction. Thus,
no local deformation can be attained in terms of thin plate
theory.

A heuristic description of the driving-point mobility
could be to combine the mobility as determined for the
global system, YG, with the mobility as determined for
the detailed description near the excitation point, YL. Note
that both YG and YL are in general complex. The parts of

the mobilities that overlap need to be subtracted, i.e. the
mobility of an infinitely thin plate. The total mobility is
expressed as a correction of the global mobility,

Y � YG ��Y	 �Y � YL � ���
p
m��B	 (27)

where m�� is the mass per unit area and B is the bending
stiffness of the excited plate. This is quite an elaborate de-
scription of the driving-point mobility. The mobilities YL
and YG need to be determined then.

One can also use measured mobilities as an alternative
to the theoretically derived mobilities, provided the fre-
quency resolution is sufficiently high.

4.3. Local effects on the mobility

The mobility YL due to local effects needs to be deter-
mined, the global parts of the system being excluded. The
mobility of a plate of finite thickness and infinite extent
excited on its upper surface by an indenter, is described
in the literature. The indenter is assumed to be circular,
weightless and stiff as compared with the plate, and to be
small as compared with the wavelengths of the bending
and quasi-longitudinal waves of the plate. A rigid indenter,
such as the case of a metal hammer acting on a wooden or
a gypsum plate, can be assumed to provide a better approx-
imation of the actual situation than a soft indenter would.
Use of a rigid indenter is also more reasonable than use
of a soft one (assuming the pressure distribution to be uni-
form), since it allows the pressure distribution under the
indenter to change as the frequency increases.

In all analyses describing the motion of ’thin’ structures,
such as in the Kirchoff and the Mindlin theories, it is as-
sumed that the two sides of the structure have exactly the
same displacement at each point. This is an approxima-
tion, and both additional weakness and inertia effects can
occur. Thus, simplified ’thin’ theories are not sufficient for
the case at hand.

More detailed three-dimensional analyses have been
carried out, such as by Ljunggren [14] for a rigid indenter
and by Heckl [15] for a soft indenter. Petersson and Heckl
[11] have investigated the influence of different choices of
pressure distribution. The boundary value problem is sim-
pler mathematically in the case of a soft indenter than of
a rigid one. Therefore, by assuming a pressure distribu-
tion under the indenter, Ljunggren [14], and Petersson and
Heckl [11] (when dealing with a rigid indenter) avoided
the problems a rigid indenter involves. The pressure distri-
bution taken was that of a rigid indenter statically loading
an elastic semi-infinity. Since there is no guarantee that
this assumption actually results in a uniform displacement
under the indenter, such a case can be designated as quasi-
rigid.

In a paper by the authors [16], the pressure distribution
at the interface between the indenter and the plate was de-
termined by use of a variational formulation. The expres-
sions obtained are approximations, although the choice of



these is an optimal one. The mobility described in [16] is
written as

YL �
�

��R�

IaIc � I�b
Ic � Ib � Ia��

(28)

where

Ia �

Z
�

�

sin��Rkr�

kr
A�kr�dkr 	 (29)

Ib �

Z
�

�

J��krR� sin�Rkr�

kr
A�kr�dkr	 (30)

Ic �

Z
�

�

J���krR�

kr
A�kr�dkr	 (31)

and where A�kr) is the admittance, used in all the refer-
ences [11, 14, 15, 16].

It should be pointed out that only the imaginary part of
YL can be said to be due to local deformation, the real part
being due to the rest of the system as well, and it is in a
broad frequency range close to ���

p
m��B.

4.4. Global effects on the mobility

The mobility YG due to global considerations needs to
be determined, local effects near the excitation zone be-
ing excluded. Both the real and the imaginary parts of the
driving-point mobility of the floor structure may be due
to global effects. An infinite thin plate has a real mobility,
whereas in a finite plate, if no damping is included, the mo-
bility is entirely imaginary. Thus, an infinite plate has only
a resistance part in the mobility, whereas a finite plate has
only stiffness and mass parts in the mobility. In lightweight
floors consisting of plates reinforced by beams, the mobil-
ity has an imaginary part, also in the case of infinite sys-
tems. In [2], a typical lightweight floor system is described
by use of a spatial Fourier transform method. The driving-
point mobility due to global effects can be derived using
the same strategy.

Assume that the transformed displacement field is found
in a way similar to that presented in [2]. The driving-point
displacement can be found then by means of a double in-
verse Fourier transform in spatial coordinates,

w�x�	 y�� �
�

��

ZZ
�

��

�w��	 ��e�i�x���y���d�d�	 (32)

where w is the displacement field of the excited plate, �w is
the spatially transformed displacement field, x� and y� are
the coordinates of excitation, and � and � are the trans-
form wavenumbers. An account of how to simplify and
reduce the integrals in (32) to be suited for numerical in-
tegration is presented in the Appendix. A simplified floor
system is also described there.

The driving-point mobility due to global considerations
is defined as

YG � v�x�	 y���F� � i�w�x�	 y���F� (33)

How the driving-point mobility is determined is not cru-
cial, however, for the methods in section 4.1. One can use
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Figure 9. Flow chart for calculation of the force spectrum.

modal sums, FEM or any other deterministic method, as
long as the frequency resolution is sufficiently high.

5. Numerical evaluation and programming

Since the impact force description of the general driving-
point mobility is not given in the form of a closed expres-
sion, program coding is an important part of describing the
excitation. Certain important aspects of the program devel-
oped will be taken up and be shown in a flowchart (Figure
9).

The program starts by defining the input parameters, in-
cluding that the driving-point mobility Y is to be deter-
mined. Equations (28–31) are used for the local part of the
mobility. The global part of the mobility can be integrated
from equations (32–33), see also the Appendix. In the nu-
merical example to be taken up, an adaptive and recursive
Newton-Cotes eight-panel integration scheme, the Matlab
function quad8 [17], was used in the numerical evalua-
tion. In order to speed up the calculations, a frequency res-
olution of 10 Hz was employed, and the frequency range
being 10 Hz to 6000 Hz. The numerical ’signal theoretic’
methods described in section 4.1 are in need of a better
frequency resolution and of a broader frequency range,
as will soon be evident. The narrower frequency range is
achieved using a spline interpolation, and the extended fre-
quency range is achieved by using the asymptotic mobil-
ities of an infinite plate for excitation positions between
beams, and of an infinite beam for excitation positions at
the beams.



The magnitude of the Dirac shown in Figure 8 c needs
to be calculated then, by use of (22) and (23). The spec-
trum of the continuing force is calculated then from (24)
and numerically inverse transformed by use of the IFFT
algorithm. It is important that the frequency resolution is
sufficient to describe the pulse peak and detect the first
zero-crossing correctly.

As an example, consider the lumped model with R �
� � ��	; and K � � � ���, use of (14) showing that tcut �
����� � ���� s. An appropriate time resolution might then
be � �� points for describing the force pulse. Thus, the
time resolution should be �t 
 ���	 � ��� s, giving an
upper frequency limit of fnyq � �������	 Hz (the Nyquist
frequency). If a frequency resolution of �f � � Hz is
employed, an FFT/IFFT of 16384 points is needed.

In the numerical example to be presented, the resolution
data chosen were; �t � ���� � ���
 s, �f � ��		 Hz
and fnyq � 	� � ��	 Hz, a 16384-points FFT/IFFT being
employed. Since the impact noise is often only of interest
up to 5000 Hz a low-pass filter of �� � ��	 Hz was used, to
prevent high-frequency terms from influencing the force
spectrum.

The first zero-crossing needs to be found then, so
that the actual, interrupted impact force was determined
from (26). The zero-crossing was found by examining the
change of sign. The exact position could not be determined
since the time resolution is fixed. The force spectrum was
calculated then by use of the fast digital Fourier transform
FFT, the same resolution data as before being employed.

Due to the material models and numerical procedures
there will be some causality problems in the procedure.
If the force is non-zero before and at the time of impact
t � � it clearly violating the causality rules. This not only
produces a wrong result, but also complicates the numer-
ical treatment since sometimes more than one zero cross-
ing may need to be found. However, when the time and
frequency resolution are good and the damping is slight,
problems of this sort are held to a minimum, its being as-
sumed in such cases that the errors involved can be disre-
garded.

6. Numerical results and discussion

A numerical example will be given to illustrate the ex-
citation force description when a frequency dependent
driving-point mobility is employed. One plate reinforced
by one set of periodically spaced beams, as described in
the Appendix, is used instead of the complete floor struc-
ture, so as to simplify the calculations.

The following data were used in the numerical calcula-
tions: distance between beams l � ��	 m, modulus of the
plates Ep��� � ��� � ��� � ��� Pa, Young’s modulus for
the framing beamsEf � 
�� ���� Pa, density of the beams
and plates �p � �f � ��� kg�m

	, thickness of the plates
h � �� � ���	 m, and material damping � � ����. The
beams are 0.220 m in height and 0.067 m in width.

The magnitude of the driving-point mobility is shown
in Figure 10, calculated there for 15 positions. These
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Figure 10. Global driving-point mobility at 15 positions, solid
line (—). Driving-point mobility for an infinite plane, dashed line
(- - -). Driving-point mobility for an infinite beam, dashed-dotted
line (- � -).
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Figure 11. Force spectrum, calculated according to sections 4 and
5. Mobility is taken as the global one, see section 4.4, no local
weakness are present.

are the global mobilities. The excitation co-ordinates are
x� � f� ����� ����� ����� ����� ����� ����� �����
����� ����� ����� ����� ����� ���
� ���gm (chosen ran-
domly) and y� � � m. These mobilities are used as input
data in calculating the impact force. The asymptotic mo-
bilities for an infinite plate (� � �) and for an infinite beam
(-�-) are also shown in the figure.

The force spectrum resulting from the mobilities con-
tained in Figure 10, without consideration of local effects,
is shown in Figure 11. The points of excitation are clearly



10 100 1k 5k
10

−1

10
0

10
1

|F
n|, 

|F
1/T

R
| [

N
]

f [Hz]

Figure 12. Force spectrum, calculated according to 4 and 5. Mo-
bility taken as the global one in section 4.4, but with local weak-
ness added in accordance with section 4.3.

important, since these differ both in the low-frequency
asymptote and at the cutoff frequency. The extremes of
the low-frequency asymptotes are indicated by one star
(	) and one circle (�) on the ordinata. One of the curves
fall outside the extremes, implying the numerical proce-
dures to not be perfect. The errors, however, are minor, the
important features being clearly illustrated. It should be
pointed out that for this case there are no problems con-
cerning causality.

In Figure 12 the local mobility has been added to the
global mobility, in accordance with equation (27), the
force spectrum being calculated then. Local effects are
also important; the corresponding excitation points in Fig-
ures 11 and 12 differ both in the asymptote and in the cut-
off frequency. The cutoff frequency and the low-frequency
asymptote are consisting less in Figure 12.

7. Summary and conclusions

Findings concerning the excitation force achieved by the
ISO tapping machine, as reported in the literature, have
been summarised and reconsidered. A two-parameter
lumped model of impact developed by Lindblad [5], was
analysed. The model can only deal with frequency-inde-
pendent parameters. Low-frequencyasymptotes and cutoff
frequencies were derived. The low-frequency asymptotes
were found to have a span of 6 dB. The lumped parame-
ters were taken as the local stiffness and the driving-point
mobility of an infinite plate. On the basis of a numerical
parametric study, it was concluded that increasing the stiff-
ness gives a lower low-frequency asymptote and a higher
cutoff frequency, and that increasing the resistance gives a
higher low-frequency asymptote, as well as an unchanged

undamped cutoff frequency and a lower actual cutoff fre-
quency.

A description of impact force applicable to general,
frequency-dependent impedances and mobilities was de-
rived. The general force description was implemented by
means of numerical integration and FFT. The mobilities
may be due to local effects, to the use of thick plate theory,
and/or global effects, obtained using spatial Fourier trans-
form methods and numerical integration. From a numeri-
cal example it was concluded that both the local and the
global effects are important in determining the excitation
force of the ISO tapping machine on a non-homogenous
lightweight floor. In order to adequately describe what oc-
curs, the global and the local driving-point mobility has
to be used and combined. The results also indicate how
important it is to use an accurate and detailed system de-
scription in order to predict the impact force spectrum ap-
propriate. The force spectrum needs to be determined on
the basis of the entire driving-point mobility, that is both
the real and the imaginary parts.

Appendix

The driving-point mobility is needed for determining the
force spectrum of the tapping machine. A simplified sys-
tem for performing the calculations is considered, one tak-
ing account of the upper plate and the beams. Moreover,
the fluid reaction is not taken into account. The simplifi-
cation and the reductions of the number of integrals to be
evaluated are inspired by Mace [18, 19]. The transformed
displacement used in this system, discussed by Evseev
[20] and Mace [21] and also in [2], can be written as

�w��	 �� �
FRe

i��x���y��

S��	 ��

� Pa��	 ��G����l

S��	 ���� � Pb��	 ��G����l�
	 (A1)

where

S��	 �� � D
�
��� � ���� � ��

�
	 (A2)

G��� � Ef If�
� � �fAf�

�	 (A3)

are the transformed plate and beam operators, respectively,
D is the bending stiffness of the plate, � the bending wave
number,Ef If the bending stiffness of the beam and �fAf

the mass per unit length of the beam. The two help func-
tions Pa and Pb are

Pa��	 �� �
FRe

i�y�

D

�X
n���

ei���en�x��
��� en��� ��

�� � ��
	 (A4)

Pb��	 �� �
�

D

�X
n���

��
��� en��� ��

�� � ��
	 (A5)

where, as before, e � ���l and � is the bending wave
number. The fluid reaction is not included in equations
(A2–A5) .



The inverse transform w�x	 y� � F��x�yf �w��	 ��g is de-
fined in [2], equation (2 b). The half-way transform, trans-
formed in the y�� direction or inverse transformed in the
x�� direction, is denoted �w�x	 �� � F��x f �w��	 ��g �
Fyfw�x	 y�g.

Define a function � for the sums in (A4–A5),

���	 ��x�� �
�X

n���

ei���en�x��
�� � en�� � ��

�� � ��
� (A6)

Thus, equations (A4) and (A5) can be expressed in terms
of �,

Pa��	 �� � FRe
i�y����	 ��x���D	

Pb��	 �� � ���	 �� ���D�

The function � can be given explicitly using the Pois-
son’s sum formula, contour integration and a geometric
series expression, a method described in Mace [18, 19].
After considerable manipulations, equation (A6) can be
expressed as

� ���

l
���	 ��x��

�
ie�ix�q��q�
�� e�il���q��

� ieix�q��q�
�� e�il���q��

�
e�x�q��q�

�� e�l�i��q��
� ex�q��q�

�� e�l�i��q��
(A7)

for � 
 x� 
 l, and where q� �
p
�� � �� and

q� �
p
�� � �� . For other positions of x�, the periodic-

ity of the structure can be used to translate the co-ordinates
so that the inequality is fulfilled. However, the sum in (A6)
converges rapidly (due to the fourth-order expression in
the nominator) making it possible to use a truncated sum
instead of the explicit expression (A7). When the fluid re-
action is included, a truncated sum needs to be employed.

The integrals in the inverse transform is now to be eval-
uated,

�w�x	 �� �
�

��

Z
�

��

FRe
i��x���y��

S��	 ��
e�i�xd�

� �

��

Z
�

��

Pa��	 ��G���l
��e�i�x

S��	 ��
�
� � Pb��	 ��G����l

�d�
� I� � I�	 (A8)

where the integrals I� and I� are defined. The second inte-
gral in (A8) is

I� �
G���FRe

i�y�

��lD


Z
�

��

���	 ��x��e
�i�xd�

S��	 ��
�
� � ���	 �� ��G����lD

� (A9)

In order to simplify the integration, subdivide the infinite
integral I� into an infinite sum of finite integrals,Z

�

��

� d� �

�X
n���

Z ��n�����l

��n�����l

� d� (A10)

Making use of the periodic behaviour of the infinite sums
yields

���	 ��x�� � ���� �n��l	 ��x���

A variable substitution �� � � � �n��l and a change of
order between the sum and the integral, allow (A9) to be
written as

I� �
G���FRe

i�y�

��lD


Z ��l

���l

�X
n���

e�i���en�x

S����en������
�	 ��x��d�

�

� � ����	 �� ��G����lD
(A11)

The sum in (A11) is identified as

�X
n���

e�i���en�x

S��� � en	 ��
� �����	 ��x��D�

Thus, I� becomes a finite integral,

I� �
G���FRe

i�y�

��lD


Z ��l

���l

�����	 ��x�����	 ��x��d��
� � ����	 �� ��G����lD

(A12)

Since the driving-point mobility is to be evaluated, x �
x�. Utilising this and the fact that � is symmetric in a if
x � �, ���	 �� �� � ����	 �� ��, can be used to reduce
the integral to

I� �
G���FRe

i�y�

�lD


Z ��l

�

�����	 ��x�����	 ��x��d��
� � ����	 �� ��G����lD

(A13)

The first integral in (A8) is

I� �
FRe

i�y�

��

Z
�

��

d�

S��	 ��
(A14)

After use of (A10), variable substitution and change of or-
der between the sum and the integral and identifying �, I�
can be written as a finite integral. The negative side can be
reduced using the symmetry of � in �, yielding

I� �
FRe

i�y�

�

Z ��l

�

����	 �	 ��d�� (A15)

The integral in the �-direction is now to be evaluated.
The complete inverse transform is written as

w�x�	 y�� �
�

��

Z
�

��

I����e
�i�y�d�

� �

��

Z
�

��

I����e
�i�y�d� � J� � J�� (A16)



where the integrals J� and J� are defined. The second term
is

J� �
FR

���lD


Z
�

��

G���

Z ��l

�

����	 ��x����	 ��x��d�d�
� � ���	 �� ��G����lD

� (A17)

The symmetry of the functions
���	���x�� � ���	 ��x�� and G���� � G��� can

be used to reduce the integral to

J� �
FR
��lD


Z
�

�

G���

Z ��l

�

����	 ��x����	 ��x��d�d�
� � ���	 �� ��G����lD
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The first integral J� can be shown to be

J� �
FR
���

Z Z
�

��

S��d�d� �
FR

i��
p
m��D

�

It is better numerically, however, to evaluate this integral
in the same way as J�. Thus, if the symmetry is used

J� �
FR
��

Z
�

�

Z ��l

�

���	 �� ��d�d�� (A19)

Summing up (A18) and (A19), the inverse transform
(A16) can now be written as

w�x�	 y�� �
FR
��

Z
�

�

Z ��l

�

���	 �� ��

� ���	 ��x������	 ��x��G���
lD ����	 �� ��G���

d�d�	 (A20)

where (A20) is to be evaluated numerically. The driving-
point mobility is found by using the results presented in
sections 4.2 to 4.4.

Acknowledgements

The authors thank their colleagues at the Division of Engi-
neering Acoustics at LTH, Lund University, for the helpful
suggestions and criticism they have provided, in particular
Dag Holmberg. The financial support provided by Skanska
Teknik AB, ’The Building and its Indoor Environment’ re-
search school at Lund university (the KK-foundation) and
SBUF is also thankfully acknowledged.

References

[1] ISO 140-6: – Acoustics – Measurement of sound insula-
tion in buildings and building elements – part 6: Laboratory
measurments of impact sound insulation of floors.

[2] J. Brunskog, P. Hammer: Prediction model for the impact
sound level of lightweight floors. Acta Acustica / Acustica
89 (2003) 309–321.

[3] J. Brunskog, P. Hammer: Prediction models of impact
sound insulation on timber floor structures; a literature sur-
vay. Journal of Building Acoustics 7 (2000) 89–112.

[4] L. Cremer, M. Heckl, E. E. Ungar: Structure-borne sound.
Springer-Verlag, Berlin, 1988.

[5] S. Lindblad: Impact sound characteristics of resilient floor
coverings. a study on linear and nonlinear dissipative com-
pliance. Dissertation. Division of Building Technology,
Lund Institute of Technology, Lund, Sweden, 1968.

[6] Vér: Impact noise isolation of composite floors. Journal of
the Acoustical Society of America 50 (1971) 1043–1050.

[7] E. Gerretsen: Calculation of airborne and impact sound in-
sulation between dwellings. Applied Acoustics 19 (1986)
245–264.
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