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ABSTRACT. We classify two dimensional neighborhoods of an elliptic curve C with tor-
sion normal bundle, up to formal equivalence. The proof makes use of the existence of a
pair (indeed a pencil) of formal foliations having C as a common leaf, and the fact that
neighborhoods are completely determined by the holonomy of such a pair. We also dis-
cuss analytic equivalence and show, for each formal model, that the corresponding moduli
space is infinite dimensional.
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1. INTRODUCTION

Let C be a smooth elliptic curve: C = C/Γτ , where Γτ = Z + τZ. Given an em-
bedding ι : C →֒ U of C into a smooth complex surface U , we would like to understand
the germ (U, ι(C)) of neighborhood of ι(C) in U . Precisely, we will say that two embed-
dings ι, ι′ : C →֒ U,U ′ are (formally/analytically) equivalent if there is a (formal/analytic)
isomorphism φ : (U, ι(C)) → (U ′, ι′(C)) between germs of neighborhoods making com-
mutative the following diagram

(1.1) C
ι

//

id
��

U

φ

��

C
ι′

// U ′

We want to understand the (formal/analytic) classification of such neighborhoods, i.e. up
to above equivalence. By abuse of notation, we will still denote by C the image ι(C) of its
embedding in U .

1.1. Some known results. A first invariant is the normal bundleNC ofC in the surfaceU ,
or we better should say, its class in the Picard groupPic(C). Its degree d = deg(NC) coin-
cide with the self-intersectionC ·C of the curve in the surface: it is the unique topological
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invariant. We say that the germ of neighborhood (U,C) is linearizable if it is equivalent to
the germ of neighborhood of the zero section in the total space of NC : (U,C) ∼ (NC , 0).
If (U,C) is such that C · C < 0, then it is analytically linearizable following Grauert [8]
(see also [10, 3]).

Ilyashenko studied the case C · C > 0 in [9] and, for any fixed normal bundle NC

with d = deg(NC) > 0, he constructed a huge holomorphic family of non formally
equivalent germs (U,C). The family is parametrized by the set of germs of holomorphic
maps (C2, 0) → (Cd, 0) and is in some sense the universal deformation of the linear model
(NC , 0) (see [9] for more details).

Non torsion case and diophantine condition. So far, and like for neighborhoods of
rational curves (see [8, 21, 15, 6]), formal and analytic classifications coincide. This is no
longer true when we consider zero type neighborhoods, i.e. with C · C = 0, as shown
by Arnold in [1]. More precisely, Arnold proved that the neighborhood (U,C) is formally
linearizable when NC is not torsion, and that it is also analytically linearizable provided
that NC satisfies some diophantine condition:

(1.2) ∃ ǫ, α > 0 such that ∀ k ∈ N, d(N⊗k
C ,OC) ≥

ǫ

kα

where d is the distance given by the natural flat metric on the jacobian variety Jac(C) ≃ C.
This means thatNC has bad approximation by torsion bundles. This diophantine condition
is satified for a set of full Lebesgue measure in Jac(C). However, for “bad bundles” NC ,
well approximated by torsion ones, there are examples of non analytically linearizable
neighborhoods: they contain infinitely many elliptic curves accumulating on C. In fact,
there is a deep connection between the linearization of neighborhoods (U,C) and that of
germs of one variable diffeomorphisms at an indifferent fixed point:

ϕ(z) = az +
∑

n>1

anz
n, |a| = 1.

Arnold’s Theorem is a reminiscence of Siegel’s Linearization Theorem, while non lin-
earizable example are resurgences of Kremer’s non linearizable dynamics. Since Arnold’s
work, deep progresses have been done about the one dimensional problem. Linearizabil-
ity’s diophantine condition has been weakened by Brjuno, and its optimality has been
proved by Yoccoz. For each multiplier a violating Brjuno’s condition, Yoccoz constructed
non analytically linearizable dynamics ϕ(z) = az + o(z) with infinite degree of freedom
giving rise again to an infinite dimensional moduli space; moreover, Pérez-Marco provided
examples without periodic orbits except the fixed point z = 0, and with huge centralizer.

Even if there has been less progress in the neighborhood side of the story, it is interesting
to note that one can construct non linearizable neighborhoods (U,C) by suspension of non
linearizable dynamics ϕ. This is how foliations come into the story. The linear bundle
NC is flat, admitting a 1-parameter family of (flat) holomorphic connections. On the total
space of NC , they define a pencil of foliations (Ft)t∈P1 with the following properties:

• Ft = {ωt = 0} with ωt = ω0 + tω∞,
• ω0 is a closed logarithmic 1-form with pole along C having residue 1 and purely

imaginary periods alongC (i.e. the associated foliationF0 has unitary holonomy);
• ω∞ is holomorphic, transversal to C, inducing the holomorphic 1-form dx on C.

Therefore, each foliation Ft is regular; for t ∈ C, the curve C is a leaf of Ft, and its
holonomy is

(1.3) π1(C) → GL1(C) ≃ C∗ ;

{
1 7→ eα1+t

τ 7→ eατ+tτ
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where α1, ατ are the fundamental periods of ω0. In particular, F0 is the unique unitary
foliation. Going back to (U,C), we get a pencil of formal foliations (F̂t) and it can be
shown (see section 3.1) that there is no other formal foliation tangent to C, i.e. having C
as a leaf.

On the other hand, the works of Yoccoz and Pérez-Marco provide many representations

π1(C) → Diff(C, 0) ;

{
1 7→ a1z + o(z)
τ 7→ aτz + o(z)

with |a1| = |aτ | = 1 which are formally but non analytically linearizable. By suspension,
we can construct a neighborhood (U,C) equipped with 2 foliations F0 and F∞, respec-
tively tangent and transversal to C, and such that the holonomy of F0 is precisely given by
the given representation. If (U,C) were analytically linearizable, F0 would be the unitary
linear foliation, contradicting the non linearizability assumption.

Torsion case, fibration and Ueda type. When NC is torsion of order say m :=
ord(NC), the unitary foliation F0, defined on the total space of NC , has torsion holo-
nomy of order m. It thus defines a fibration f : NC → C for which mC is a special fiber.
For the neighborhoods (U,C), there is a strong dichotomy: either the fibration persists,
or not. The former case is dealt with the theory of Kodaira-Spencer. If there is a formal
fibration tangent to C, then it is actually analytic; moreover, it is analytically isotrivial if,
and only if, U admits a formal fibration transversal to C. In this situation, we can define
κ ∈ N∗ ∪ {∞} such that F0 (or f ) is isotrivial up to order κ, but not up to order κ + 1.
In other words, if I ⊂ OU is the ideal sheaf defining C, and C(n) := Spec(OU/I

n+1)
denotes the nth infinitesimal neighborhhood, then C(κ) is the largest one that admits a fi-
bration transversal to C. This is the only invariant, meaning that any two germs (U,C) and
(U ′, C) having the same normal bundleNC and integer κ = κ′ are analytically equivalent.

When there is no formal fibration, Ueda introduced in [24] another invariant: the Ueda
type of (U,C) (named by Neeman in [18]) which is, similarily to κ, the first obstruction
to define F0 (see section 3.2): utype(U,C) = k ∈ N∗ ∪ {∞} if C(k) admits a fibration
tangent to C, but not C(k+1). The Ueda type is a multiple of the torsionm of the normal
bundle NC . When utype(U,C) < ∞, any formal holomorphic functions on (U,C) is
constant; indeed, such a function must be constant along C and would define a fibration if
non constant.

1.2. Foliated structure of the neighborhoods. The main goal of the paper is to provide a
formal classification of germs of neighborhoods (U,C) in the missing case: NC is torsion
and utype(U,C) = k < ∞. This is a reminiscence of classification of diffeomorphisms
with torsion linear part

ϕ(z) = az + o(z) ∈ Diff(C, 0), ak = 1.

To this aim, we prove (see end of section 4)

Theorem 1.1. When NC is torsion and utype(U,C) = k < ∞, there exists a pencil of
formal foliations (Ft)t∈P1 on (U,C) having the following properties:

• Ft = {ωt = 0} where ωt = ω0 + tω∞ are formal closed meromorphic 1-forms
with polar locus supported on C and whose multiplicities are k+ 1 for t ∈ C and
p+ 1, −1 ≤ p < k for ω∞.

• there exists a transversal (T, z) such for all t ∈ C, the foliation Ft is tangent to C
and its holonomy takes the form

(1.4) π1(C) → D̂iff(C, 0) ;

{
1 7→ a1[z + tzk+1 + o(zk+1)]
τ 7→ aτ [z + (1 + tτ)zk+1 + o(zk+1)]
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where (a1, aτ ) is the m-torsion monodromy of the unitary connection on NC ;
• the holonomy of F0 along the cycle 1 ∈ Γτ is torsion, and this characterizes F0

in the pencil;
• F∞ is either transversal to C, or is tangent to C and its holonomy takes the form

(1.5) π1(C) → D̂iff(C, 0) ;

{
1 7→ a1e

cz + o(z)
τ 7→ aτe

cτz + o(z)
or

{
a1[z + czp+1 + o(zp+1)]
aτ [z + cτzp+1 + o(zp+1)]

with c ∈ C∗ and 0 < p < k with p ∈ mN∗.

Moreover, all formal regular foliations tangent/transversal to C on U are contained in the
pencil.

1.3. Formal classification. The formal classification of neighborhoods (U,C) turns out
to be equivalent to the formal classification of bifoliated neighborhoods (U,C,F0,F∞).
When F∞ is a fibration transversal to C, then it is a suspension, and the classification
reduces to that of the holonomy representation of F0: there is one formal invariant λ ∈ C

in this case. When F∞ is tangent to C, we are led to classify pairs of foliations (F ,G)
havingC as a common leaf. A first invariant is given by the contact order Tang(F ,G) ∈ N∗

between the two foliations alongC (see section 4.1). For instance, in Theorem 1.1, we have
Tang(Ft,Ft′) = k + 1 while Tang(Ft,F∞) = p+ 1. Given a transversal (T, y) to C, we
can consider the holonomy representations

ρF , ρG : π1(C) → D̂iff(C, 0) (or Diff(C, 0)).

Then we prove

Theorem 1.2. Classification. Any formal/analytic bifoliated neighborhoods (U,C,F ,G)
and (Ũ , C, F̃ , G̃) with same contact order Tang(F ,G) = Tang(F̃ , G̃) are formal-
ly/analytically equivalent if, and only if, there exist formal/analytic diffeomorphisms
φ, ψ ∈ D̂iff(C, 0)/Diff(C, 0) such that for all γ ∈ π1(C)

(1.6)

{
ρF (γ) ◦ φ = φ ◦ ρF̃ (γ)
ρG(γ) ◦ ψ = ψ ◦ ρG̃(γ)

and such that φ = ψ mod yk+2.

Realization. Given two formal/analytic representations ρ1, ρ2 of the form (1.4) or (1.5)
for distinct t1, t2 ∈ P1, then there is a unique formal/analytic bifoliated neighborhood
(U,C,Ft1 ,Ft2) having holonomy representations ρ1, ρ2 on a given transversal.

Applying Theorem 1.2 to the canonical pair (F0,F∞) of Theorem 1.1, we get the for-
mal classification (see Theorems 5.3 and 5.4).

Theorem 1.3. The set of formal equivalent classes of germs (U,C) with given normal
bundle NC of order m and Ueda type k = mk′ is in one-to-one correspondance with

(λ, (λ0, λ1, . . . , λk′−1)︸ ︷︷ ︸
Λ

) ∈ C× Ck′

up to the action of k′th roots of unity defined by (λi)
µ
7→ (µ−iλi).

Moreover, for each formal class (λ,Λ), a representative (Uλ,Λ, C) is given by the quo-
tient of the germ neighborhood (Ũ , C̃) of C̃ := {y = 0} in Ũ := Cx × Cy by the action
of Γτ generated by:

(1.7)

{
φ1(x, y) = (x+ 1 , a1y)
φτ (x, y) = (x + τ + gk,λ,P (y) , aτϕk,λ(y))
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where ϕk,λ = exp

(
yk+1

1 + λyk
∂y

)
, gλ,Λ =

∫ y

0

aτϕ
∗
k,λωΛ − ωΛ

with ωΛ := P (
1

ym
)
dy

y
, P (z) :=

k′−1∑

i=0

λiz
i.

The pencil ωt = ω0 + tω∞ of closed 1-forms of Theorem 1.1 is generated by

(1.8) ω0 =
dy

yk+1
+ λ

dy

y
and ω∞ = dx− ωΛ.

The holonomy representation of F0 computed on the transversal {x = 0} is given by

(1.9) ρF0
:

{
1 7→ a1y
τ 7→ aτϕk,λ(y)

When Λ = 0, the germ (Uλ,0, C) is just the suspension of this representation and F∞ is
the fibration transversal to C. When Λ 6= 0, C is a common leaf of F∞ and F0 and the
tangency order of these two foliations along C is p = m deg(P ). Moreover, the holonomy
representation of F∞ is given by

(1.10) ρF∞
:

{
1 7→ a1 exp(vΛ)
τ 7→ aτ exp(τΛ)

where vΛ =
y

P ( 1
ym )

∂y.

In the appendix, we also consider the action of automorphisms of the elliptic curve C
on the normal forms (Uλ,Λ).

1.4. About analytic classification. For a general neighborhood (U,C), with NC torsion
and utype(U,C) = k < ∞, foliations Ft of Theorem 1.1 are only formal, divergent:
Mishustin recently gave in [16] an example where all Ft are divergent. Using the first part
of Theorem 1.2, we can prove

Theorem 1.4. Let (U,C) be an analytic neighborhood with NC torsion and
utype(U,C) = k <∞. Assume

• three elements Ft1 ,Ft2 ,Ft3 of the pencil are convergent,
• or two elements Ft1 ,Ft2 of the pencil are convergent with ti

1+tiτ
6∈ Q for i = 1, 2;

then the full pencil (Ft) is convergent and (U,C) is analytically equivalent to its formal
normal form.

On the other hand, using the second part of Theorem 1.2, we can prove

Theorem 1.5. For each formal normal form (U0, C) and each pair t1, t2 ∈ P1 with
t1

1+t1τ
∈ Q, then the set of analytic equivalence classes of analytic neighborhoods (U,C)

formally equivalent to (U0, C) with Ft1 ,Ft2 convergent is infinite dimensional.

In fact, we prove that each of these deformation spaces contains Écalle-Voronin moduli
space. In the non torsion case, we can also use a construction similar to the second part
of Theorem 1.2 to construct many examples with only two convergent foliations F0,Ft,
t ∈ C∗, but with divergent transversal fibration. In fact, we realize Yoccoz non linearizable
dynamics (see [19]) as holonomy for F0. Again, there are infinitely many parameters. So
far, all non linearizable examples of neighborhoods, in the non torsion case, were obtained
by suspension, i.e. with an analytic fibration transversal to C.
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1.5. Concluding remarks whenU is projective. We do not know any projective exemple
with NC non torsion and (U,C) non linearizable. In [20], Sad shows that the blow-up
(U,C) → (P2, C0) at 9 points on a smooth cubic C0 admits a global foliation having C as
a regular leaf only in the torsion case NC , which is a fibration in this case. Therefore, the
local analytic foliation that exists in the very generic non torsion case (when NC satisfies
diophantine equation (1.2)) does not extend (even as a singular foliation) on the whole of
U . In the torsion case, Neeman proved in [18, Theorem 6.12] that any smooth projective
(U,C) with utype(U,C) < ∞ is a blow-up (outside of the elliptic curve) of a unique
model (U0, C) (corresponding to m = k = 1 and λ = Λ = 0 in Theorem 1.3):
U0 = P(E) where E is the unique non trivial extension 0 → OC → E → OC → 0
and C is regarded as a section via the embedding OC → E, with NC = OC .

Brunella proved in [2, Chapter 9, Corollary 2] that any projective (U,C) with a global
(possibly singular) foliation having C as a compact leaf is, up to ramified coverings and
birational maps, either an elliptic fibration with C as a (possibly multiple) fiber, or a ruled
surface overC admitting a section. In every cases, the germ (U,C) is analytically lineariz-
able, except if (U,C) fits into Neeman’s above examples. In [4], the authors investigate
similar global questions for neighborhoods of higher genus curves in surfaces, or higher
dimensional hypersurfaces. In the local setting, at the neighborhood of a curve C of ar-
bitray genus with flat normal bundle in a complex surface, there still exists many formal
foliations having C as a regular leaf (see [4, Theorem A]). Also, a bifoliated classification
can be done, at least in genus 2 (see [22, 23]).

2. FOLIATIONS, HOLONOMY AND CLOSED 1-FORMS

The principal tool that we will use to classify germs of neighborhoods (U,C) will be
the existence of formal foliations that we will prove in the next section. Let

D̂iff(C, 0) = {
∑

n>0

anz
n ; a1 6= 0}

denotes the group of formal diffeomorphisms fixing 0 and Diff(C, 0) ⊂ D̂iff(C, 0) the
subgroup of holomorphic germs (i.e. convergent ones).

2.1. Foliations and holonomy. A formal regular foliation F on (U,C) tangent to C (i.e.
C is a leaf) is defined by a covering (Ui) together with formal submersions fi : Ui → C

with fi(C ∩ Ui) = 0 satisfying on each non empty intersection Ui ∩ Uj

(2.1) fi = ϕij ◦ fj for some ϕij ∈ D̂iff(C, 0).

We denote by F̂ol(U,C) the set of such foliations, and by Fol(U,C) those ones that can be
defined with convergent fi’s.

An element F ∈ F̂ol(U,C) has a holonomy representation

(2.2) ρF : π1(C) → D̂iff(C, 0).

Precisely, given a loop γ : [0, 1] → C based in p ∈ C, we can cover γ by a finite sequence
of these open sets, say U0, U1, . . . , Un, U0 such that γ intersect successively these open
sets in this order. Then analytic continuation of f0 along γ is obtained by

(2.3) f0 = ϕ01 ◦ f1 = ϕ01 ◦ ϕ12 ◦ f2 = · · · = ϕ01 ◦ ϕ12 ◦ · · · ◦ ϕn0︸ ︷︷ ︸
ϕγ

◦f0
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and we define the morphism (2.2) by [γ] 7→ ϕγ . Changing f = f0 by another first integral,
say φ ◦ f with φ ∈ D̂iff(C, 0), will conjugate ρF by φ:

(φ ◦ f)γ = φ ◦ fγ = φ ◦ ϕγ ◦ f = (φ ◦ ϕγ ◦ φ−1) ◦ (φ ◦ f)

But the class of the representation ρF up to conjugacy in D̂iff(C, 0) does not depend on
the choice of fi’s, of Ui’s and even of the base point. If F is holomorphic (i.e. convergent),
then ρF takes values in the group Diff(C, 0) = {

∑
n>0 anz

n ∈ C{z} ; a1 6= 0} of germs
of holomorphic diffeomorphisms fixing 0. The fundamental group π1(C) ≃ Γτ is abelian
and the classification of abelian subgroups of D̂iff(C, 0) is well-known.

2.2. Abelian subgroups of D̂iff(C, 0). We give here an enumeration of the main proper-
ties of such subgroups (at least those useful in the sequel) for which we refer to [12] and
references therein. Let us start by recalling that any holomorphic vector field v = f(z)∂z
fixing 0, f(0) = 0, is holomorphically conjugated to one and only one of the following
vector fields:

(2.4) vα = αz∂z or vk,λ =
zk+1

1 + λzk
∂z,

where k ∈ N∗ and α, λ ∈ C. This comes form the fact that the dual meromorphic 1-form
defined by ω(v) ≡ 1 is characterized up to change of coordinate by its order of pole, and
its residue: it is therefore conjugated to only one model

(2.5) ωα = α−1 dz

z
or ωk,λ =

dz

zk+1
+ λ

dz

z
.

We can define the formal flow of such a vector field as

exp(tv) =
∑

n≥0

tn

n!
v · (· · · (v︸ ︷︷ ︸

n times

·z) · · · )

where v acts as a differential operator: v · g = f∂z · g = f · g′. For instance, we have
exp(tvα) = exp(tα)z and

(2.6) exp(tvk,λ) = z + tzk+1 +

(
k + 1

2
t2 − λt

)
z2k+1 + o(z2k+1).

The description of formal diffeomorphisms up to conjugacy is similar (see [12, §1.3]):

Theorem 2.1. Any f ∈ D̂iff(C, 0) is conjugated to exactly one of the following models:

(1) f0(z) = az where a ∈ C∗.
(2) f0(z) = a · exp (vk,λ) with ak = 1.

In the first case, f is said to be (formally) linearizable. In the second item, remark that
z → az commutes with exp (vk,λ) and that f0 (hence f ) has infinite order. We note that

any element f ∈ D̂iff(C, 0) is almost contained in a formal flow: in case (2), the iterate
f◦k
0 = exp (kvk,λ) is in a flow. If we turn to abelian groups, the classification looks like

that of flows:

Theorem 2.2. ([12, §1.4]) Any abelian subgroup G ⊂ D̂iff(C, 0) is conjugated to a sub-
group of one of the following models:

(1) L := {f(z) = az ; a ∈ C∗}.
(2) Ek,λ := {a · exp (tvk,λ) ; ak = 1, t ∈ C}.
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These groups are respectively characterized as the group of elements of D̂iff(C, 0) that
commute with the respective models of 1-form (2.5) or vector fields (2.4). Moreover, L
(resp. E) coincide with the centralizer in D̂iff(C, 0) of any non torsion element of L (resp.
E).

2.3. Foliations and closed 1-forms. We immediately deduce:

Corollary 2.3. Any foliation F ∈ F̂ol(U,C) can be defined by a formal closed meromor-
phic 1-form ω on U with polar divisor (ω)∞ = (k + 1)[C] for some k ∈ N. Moreover, the
closed 1-form ω defining F is unique up to a multiplicative constant except when F is a
fibration, i.e. admits a global first integral.

Proof. The holonomy ρF takes values in an abelian subgroup G ⊂ D̂iff(C, 0). By The-
orem 2.2, there exists a formal meromorphic 1-form ω0 = h(z)dz invariant by G: if
ϕ∗G is in the model L (resp. Ek,λ), then ω0 = ϕ∗ωα (resp. ϕ∗ωk,λ). There is a unique
global and closed formal meromorphic 1-form ω on (U,C) which is invariant by F , i.e.
ω ∧ dfi ≡ 0 for local formal first integrals, and coincide with ω0 in the holonomy coordi-
nate: ω|U0

= h(f0)df0 with notations of (2.1). Indeed, if one changes local first integrals
fi : Ui → C such that all ϕij ∈ G, then the the resulting form f∗

i ω0 remains unchanged
and equal to f∗

i ω0. We note that ω0 must have a pole at z = 0, and therefore ω must have
a pole along C.

Now, if there is another formal closed meromorphic 1-form ω′ also defining F , then
we must have ω′ = fω for a formal meromorphic function f ; after derivation we get
df ∧ ω = 0 so that f is a global first integral for F . If f is not constant, then maybe
changing to 1/f , we get a non constant formal holomorphic map f : U → C which is
constant on the leaves, therefore a fibration. �

Conversely to Corollary 2.3, we have:

Theorem 2.4. Let ω be a formal 1-form whose polar divisor (ω)∞ is supported by C (or
empty). Then

(1) either Fω defines an element of F̂ol(U,C),
(2) or Fω is (regular) transversal to C.

If C is not the fiber of a fibration, then ω is closed.

Proof. The divisor of ω can be written (ω)0 − (ω)∞ = E − (k + 1)C, where E is an
effective divisor and k ∈ Z. One can assume that no component of E coincides with C.
Viewing ω as a holomorphic section of H0(U, ω1

U ((k + 1)C)), we get by restriction to C
a section

ω|C ∈ H0(C, ω1
C ⊗Nk+1

C ).

If it is a non trivial section, then it has no zero meaning that the twisted 1-form ω is regular
transversal to C. If ω|C ≡ 0, since the twisted 1-form ω cannot vanish identically on C,
we deduce that C is Fω-invariant. In this latter case, we can consider the residue

ResC
(
f−k−1ω

)
∈ H0(U,NC

⊗k)

(where f is a section of OU (C) vanishing on C) which must be a non trivial section, hence
nowhere vanishing. In particular E is trivial, and Fω is regular, but this time belonging
to F̂ol(U,C). In each case, F can be defined by a formal closed meromorphic 1-form ω0

whose polar divisor (ω)∞ is supported on C: in case (1) it follows from Corollary 2.3,
and in case (2) we define ω0 = f−1(dx) where f : U → C is the fibration and dx is the
holomorphic 1-form on C. If C is not the fiber of a fibration, then there does not exist non
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constant formal holomorphic function on U : such a function should be constant on C and
define a fibration, contradiction. But ω = fω0 for some formal meromorphic function f ;
since divisors of ω and ω0 are supported on C, so is the divisor of f . We conclude that f
or 1/f is formal holomorphic and therefore constant. �

2.4. Holonomy and periods of closed 1-forms. Consider the vector space C of formal
closed meromorphic 1-forms whose polar divisor is (empty or) supported on C. We can
define the periods of ω as a morphism π1(U \ C) → (C,+) obtained by integration of ω
along paths. Note that this is well defined even if ω is only a formal 1-form. Indeed, let
π : (Ũ , E) → (U,C) be the real analytic polar blow-up along C. The exceptional divisor
is a S1-bundle over C with fiber over a point p ∈ E parametrizing the ray on a transversal
to C through π(p). Given ω ∈ C, one can integrate it to get a primitive on the rays near p
taking the form − α

kyk + λ log y + c+ o(y). It is well defined by ω up to some integration
constant. Following paths on E we obtain a representation perω : π1(E) → C. Since E is
a retraction of U \ C, we have the sought representation.

When NC is torsion, of order m say, we can deduce a representation σω : π1(C) → C

as follows. First consider the unitary representation ρ1 : π1(C) → C∗ taking values in mth

roots of unity. LetK := ker ρ1 denotes the kernel: K ⊂ Γτ has indexm in the lattice. The
S1-principal bundle E comes naturally endowed with a flat connection with monodromy
representation ρ1 given by the unitary connection attached to NC . This allow to lift loops
γ ∈ K as loops γ̃ ∈ π1(E). Define σ(γ) = perω(γ̃) for all γ ∈ K . This can be extended
as a unique morphism σω : π1(C) → C on the whole lattice. This is no more a period
mapping since it is twisted by the unitary connection: for γ ∈ Γτ \K , there is no lift γ̃ for
which we would have σ(γ) = perω(γ̃).

When NC is not torsion, there is no canonical way to deduce a morphism π1(C) → C

from the period map. However, as (U,C) is a topologically trivial neighborhood, the
fundamental group split as a product π1(U \ C) ≃ π1(C) × Z and we can define σ∞

ω :
π1(C) → C as the restriction of the period map perω to the first component. Note that
σ∞
ω depends on the topological trivialization, except when ω has no residue along C. Note

also, in the torsion case, that the two defined morphisms σω and σ∞
ω have no reasons to

coincide unless NC is trivial.
One easily checks:

Proposition 2.5. Let F and ω like in Corollary 2.3 and let ω0 be the restriction of ω to a
(formal) transversal (T, z) ≃ (C, 0).

(1) If ω0 = dz
z , then ϕγ(z) = eσ

∞
ω (γ)z.

(2) If ω0 = dz
zk+1 +λ

dz
z , then ϕγ(z) = aγ ·exp (σω(γ)vk,λ) where aγ is the holonomy

of the unitary (actually torsion of order dividing k) connection on NC .

Proof. It is a direct computation. �

Remark 2.6. In item (1), σ∞
ω may depend on the trivialization, but eσ

∞
ω does not. Indeed,

σ∞
ω is completely determined up to a multiple of 2iπ corresponding to the monodromy of

a primitive of ω0 around C.

To summarize, we have defined a period morphism

(2.7) σ∞ : C → Hom(Γτ ,C) ; ω 7→ σ∞
ω .

depending on the choice of a topological trivialization of (U,C), and when NC is torsion,
we have exhibited a canonical morphism

(2.8) σ : C → Hom(Γτ ,C) ; ω 7→ σω.
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In case C is not a fiber of a fibration, we then have a natural inclusion F̂ol(U,C) ⊂ P(C).

Corollary 2.7. Suppose that NC is torsion and let ω ∈ C non trivial. Then are equivalent

• ω has no periods along C, i.e. σω ≡ 0,
• Fω defines a fibration with fiber C.

Therefore, if C is not the fiber of a fibration, then the period map σ is injective and we have
a natural inclusion F̂ol(U,C) ⊂ P(C).

Proof. We follow notations of Theorem 2.4 (and the end of its proof). If we are in case (2),
then ω coincides with a constant multiple of the closed 1-form π∗(dx) where π : U → C
is the transverse fibration and dx is the fixed abelian differential onC; therefore, ω has non
trivial periods (indeed, σω coincides with the usual period map of the abelian differential
dx). If we are in case (1), we have ω = fω0 where ω0 is the closed 1-form constructed in
Corollary 2.3. After derivation, we get df ∧ω0 = 0 which means that f is a first integral of
Fω. If C is not the fiber of a fibration, then it implies again that f is a constant and we can
conclude that σω is not identically zero, thanks to Proposition 2.5; if on the contraryC is a
fiber of a fibration, then f is non constant only in the case where both f and ω0 define the
fibration (in which case σω is easily seen to be trivial), otherwise we also conclude with
Proposition 2.5. Finally, if C is not the fiber of a fibration, then ker(σ) = {0}; moreover,
an element F ∈ F̂ol(U,C) is defined by a unique closed 1-form ω ∈ C up to a constant, so
that it naturally defines an element of P(C). �

Remark 2.8. Using the same type of argumentation, it is easy to see that σ∞ is injective
whenever NC has infinite order.

3. PENCIL OF FORMAL FOLIATIONS

In this section, we aim at proving the following:

Theorem 3.1. Assume that NC is torsion, but C is not the fiber of a fibration. Then the
period morphism (2.7) defined in section 2.4

σ : C → Hom(Γτ ,C)

is an isomorphism. Moreover, we can choose generators ω̂0, ω̂∞ of C such that

• ω̂0 has a pole of order k + 1 > 1 along C, and ω̂0 has zero period along 1 ∈ Γτ ,
i.e. σω̂0

(1) = 0;
• ω̂∞ has a pole of order 0 ≤ p+ 1 < k + 1 along C.

These properties characterize ω̂0 and ω̂∞ up to a constant. Moreover, the torsion of NC is
dividing p and k.

Consider the pencil of foliations (Ft) defined by

(3.1) Ft : ω̂t := ω̂0 + tω̂∞ = 0, t ∈ P1.

They are all different Ft 6= Fs because having non conjugated holonomy representations
(see Proposition 2.5). Finally, we have

Corollary 3.2. If NC is torsion, but C is not the fiber of a fibration, then

• either F̂ol(U,C) = {Ft ; t ∈ P1} and there is no fibration transversal to C;
• or F̂ol(U,C) = {Ft ; t ∈ C} and F∞ is a fibration transversal to C.

Moreover, F0 and F∞ are uniquely characterized by the following properties:

• F0 ∈ F̂ol(U,C) has torsion holonomy along 1 ∈ Γτ ;
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• F∞ ∈ F̂ol(U,C) has holonomy less tangent to its linear part than others, or is
transversal to C.

It might be interesting to compare with the non torsion case. When NC is not torsion,
Arnold proved in [1, Theorem 4.2.1] that the neighborhood (U,C) is formally linearizable,
i.e. formally equivalent to the neighborhood of the zero section in the total space of NC .
In this situation, we have a one parameter family of foliations, namely those given by flat
holomorphic connections on NC (the arguments stated below show that there are no other
local foliations near the zero section). They are defined by a pencil of closed logarithmic
1-forms ω0 + tω∞ where we can choose (see exact sequence (3.2))

• ω0 with residue 1 on C and purely imaginary periods along C (i.e. the associated
foliation F0 has unitary holonomy);

• ω∞ = dx to be the transverse fibration.

3.1. Foliations in the non fibered case: existence and unicity of the pencil. We start
following [24], including the non torsion case. It should be mentioned that the existence
of formal foliations has already been proved in [4, Theorem A, p.3] without restrictions on
the genus of the embedded curve. However, the proof given here is simpler and provides
further informations.

Select (Ui) an open covering of some neighborhood of C. Let V = (Vi) the open
covering of C defined by Vi := Ui ∩ C. One can choose (Ui) in such a way that V is
an acyclic covering by disks. Denote by Ûi the formal completion of Ui along Vi. Let
yi ∈ O(Ûi) some formal submersion such that {yi = 0} = Vi and such that

aijyj − yi = y2i fij

where aij ∈ Z1(V ,O∗
C) is a cocycle defining the normal bundleNC of the curve in U and

fi,j ∈ O(Ûi ∩ Ûj). The long exact sequence derived from

0 → C∗ → O∗
C

d log
→ Ω1

C → 0

gives in particular

(3.2) 0 → H0(C,Ω1
C) → H1(C,C∗) → Pic0(C) → 0.

Therefore, we can choose aij locally constant. Note that the cohomology class [aij ] ∈
H1(C,C∗) can be regarded as (the monodromy of) a flat connection attached to NC .

If NC is not torsion, we can modify submersions yi in such a way that all fij ≡ 0 so
that we get a global foliation locally defined by dyi = 0. Indeed, assume that we have

aijyj − yi = bijy
n+1
i + fijy

n+2
i

with fij ∈ O(Ûi ∩ Ûj) and bij ∈ O(Vi ∩ Vj) not all zero for some n ∈ Z>0; we already
have a foliation up to the order n. Then we have

Lemma 3.3. Under notations above, we have (bij) ∈ Z1(V , NC
⊗−n), i.e. satisfies the

cocycle condition

bij + a−n
ij bjk + a−n

ij a
−n
jk bki = 0, ∀ i, j, k.

Moreover, after admissible transformation of order n+ 1

ỹi = yi + biy
n+1
i , bi ∈ O(Ûi)
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we get the new cocycle

aij ỹj − ỹi =
[
bij − (b0i − anijb

0
j)
]

︸ ︷︷ ︸
b̃ij

ỹn+1
i + o(ỹn+1

i )

where b0i := bi|C is the restriction. In particular, if the class [bij ] ∈ H1(C,NC
−n) is zero,

then we can make bij = 0.

Proof. This is a straightforward computation. �

Now, by Serre duality

(3.3) H1(C,N−n
C ) ≃ H0(C,Nn

C) =

{
C if N⊗n

C = OC ,
0 if not.

When NC is not torsion, we have H1(C,N−n
C ) = 0 for all n > 0 and can successively

kill the (bij) at each order. We finally arrive at formal coordinates yi satisfying yi = aijyj .
The corresponding formal foliation F , locally defined by dyi

yi
= 0, is not convergent in

general, but is convergent for generic NC (in the sense of Lebesgue measure on Jac(C))
as proved by Arnol’d in [1, Theorem 4.3.1]. We note that the construction of F is unique
once we have fixed the class of the cocycle (aij) in H1(C,C∗). Indeed, consider two
foliations F ,F ′ together with the same linear holonomy (corresponding to the same [aij ] ∈
H1(C,C∗). Both holonomy representation being abelian, we deduce from theorem 2.2
that they are in fact linearizable. This allows to construct on the formal neighborhood
of C a function f which locally expresses a the quotient of a first integral of F and F ′.
Observe now that f is necessarily constant (and consequently F = F ′), otherwise it would
provide a global equation for C, contradicting the fact that NC has infinite order. The
pencil of formal foliations described above can be then obtained by taking ω0 to be the
unique logarithmic form with residue 1 on C associated to the foliation in F̂ol(U,C) with
unitary holonomy and setting ω∞ = ω0 − ω1 where ω1 is a logarithmic form with residue
1 defining an element in F̂ol(U,C) with non unitary holonomy. Thanks to Remark 2.8,
the formal 1-form (without poles) ω∞ has non trivial periods along C, and then defines a
(necessarily unique) transverse fibration.

3.2. Torsion case: fibration and Ueda class. When NC is torsion, say of order m, then
we can choose amij = 1. We can follow the same algorithm as in the non torsion case,
but the process can stop each time m divides n. If not, i.e. if (bij) is zero as a cocycle at
each step, then Arnol’d proved in [1] that the process can be done in a convergent way, so
that we get holomorphic submersions yi satisfying yi = aijyj . The functions ymi patch
together to define a global fibration y : U → C and mC is the zero fiber.

From now on, we assume the converse:

aijyj − yi =
bij
k
yk+1
i + o(yk+1

i )

for some k ≡ 0 mod m and [bij ] ∈ H1(C,NC
⊗−k) = H1(C,OC) is not zero; equiva-

lently
1

yik
−

1

yjk
= bij + o(1).

This cohomology class is defined by Ueda in [24] and is unique up to multiplication by a
non zero scalar. It turns out to be a formal invariant which gives an obstruction to realize
(formally) the neighborhood ofC as the neighborhood of the zero section in the total space
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of the line bundle NC . In Ueda’s terminology, the neighborhoods with this obstruction are
said to be “of finite type”. This allows us to define the Ueda type of the curve

utype(U,C) := k

(we set utype(C) := ∞ when there is no formal obstruction). We note that we can choose
the representative (bij) of the Ueda class locally constant. Indeed, the long exact sequence
derived from

0 → C → OC
d
→ Ω1

C → 0

gives in particular

(3.4) 0 → H0(C,Ω1
C) → H1(C,C) → H1(C,OC) → 0.

The locally constant representative (bij) is unique up to periods of a holomorphic 1-form.
We choose one from now on.

3.3. Torsion case: existence of foliations. Now, let us start going on beyond Ueda ob-
struction: let us write

(3.5)
1

yik
−

1

yjk
= bij + cijyi

n + o(yni )

for some n ∈ Z>0, with [bij ] ∈ H1(C,OC) non zero and cij ∈ O(Vi ∩ Vj).

Lemma 3.4. Under notations above, (cij) ∈ Z1(V , NC
⊗−n) satisfies the cocycle condi-

tion. Moreover, if its class [cij ] ∈ H1(C,NC
⊗−n) is zero, then we can assume cij = 0

after an admissible transformation of order n+ k + 1.

Proof. The cocycle condition directly comes from considering the sum of (3.5) when (i, j)
runs over a cyclic permutation on three indices. Now, setting

ỹi = yi + ciy
n+k+1
i , ci ∈ O(Ui),

we get
1

ỹki
−

1

ỹkj
= bij +

[
cij − k(c0i − a−n

ij c
0
j )
]

︸ ︷︷ ︸
c̃ij

ỹni + o(ỹni )

where c0i := ci|C is the restriction to the curve. If [cij ] ∈ H1(C,NC
⊗−n) is zero, then so

is [ cijk ] and we can make cij = 0 by conveniently choosing ci. �

Using inductively Lemma 3.4, we arrive at

(3.6)
1

yik
−

1

yjk
= bij + cijyi

n + o(yni )

with n a multiple of m = ord(NC). Since H1(C,OC) is one dimensional, we can assume
(cij) = λ · (bij) for some constant λ ∈ C.

Lemma 3.5. Under notations above, if n 6= k, then after an admissible transformation
ỹi = yi+cy

n+1
i with c ∈ C, one can assume that the class [cij ] ∈ H1(C,NC

⊗−n) is zero.

Proof. From (3.6), we deduce yjn−k = yn−k
i +(n−k)bijy

n
i +o(y

n
i ) so that straightforward

computation shows

1

ỹki
−

1

ỹkj
= bij + (cij + ck(n− k)bij)ỹ

n
i + o(ỹni )

so that we can fix c to kill the class [cij ] ∈ H1(C,OC). �
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Lemma 3.6. Under notations above, if n = k in (3.6) then

1

yik
−

1

yjk
− λ log

yi
k

yjk
= bij + o(yi

k)

(we choose the principal determination of the logarithm near 1).

Proof. From (3.6), we deduce yjk = yki (1 + bijy
k
i + o(yki )) so that

−λ log
yi

k

yjk
= λ log(1 + bijy

k
i + o(yki )) = λbijy

k
i + o(yki )

which proves the result. �

Lemma 3.7. Assume that we have

(3.7)
1

yik
−

1

yjk
− λ log

yi
k

yjk
= bij + cijyi

n + o(yni )

with n > k and cij ∈ O(Vi ∩ Vj). Then (cij) ∈ Z1(V , NC
⊗−n) satisfies the cocycle

condition. Moreover, if its class [cij ] ∈ H1(C,NC
⊗−n) is zero, then we can assume

cij = 0 up to doing an admissible transformation of order n+ k + 1.

Proof. It is similar to that of Lemma 3.4. �

Lemma 3.8. Assume that the yi’s satisfy the relation (3.7) with n > k multiple of k. After
an admissible transformation ỹi = yi + cyn+1

i with c ∈ C, one can assume that the class
[cij ] ∈ H1(C,NC

⊗−n) is zero.

Proof. It is similar to that of Lemma 3.5. �

When passing to the limit, one gets a collection of formal submersions yi satisfying

(3.8)

(
1

yik
− λ log yi

k

)
−

(
1

yjk
− λ log yj

k

)
= bij .

Finally, since we have chosen (bij) locally constant, we get after derivation a global closed
meromorphic 1-form

ω :=
dyi
yik+1

+ λ
dyi
yi
.

In particular, the equation ω = 0 defines a regular formal foliation F having C as a leaf; a
collection of regular formal first integrals is given by the submersions yi.

3.4. Proof of Theorem 3.1. We now discuss the non unicity of our construction. Recall
that we are assuming thatNC is torsion, butC is not the fiber of a fibration like in Theorem
3.1. For each choice of (bij) ∈ H1(C,C) which is not zero in H1(C,OC), we have
constructed a formal closed meromorphic 1-form ω ∈ C with a pole of order k + 1 > 1
along C, k being the Ueda type utype(U,C). Moreover, formula (3.8) shows that the
canonical morphism σω is given by 1

k (bij) through the natural isomorphism H1(C,C) ≃
Hom(Γτ ,C). By this way, we have realized every morphism in Hom(Γτ ,C) except those
given by periods of holomorphic 1-forms on C. From obvious dimensional reasons, the
morphism σ is thus surjective which, together with Corollary 2.7, proves the first statement
of Theorem 3.1.

Note that the periods of holomorphic 1-forms are realized by elements of C having a
lower order pole along C (possibly free of poles). Indeed, let ω∞ be generating this one
dimensional subspace of C:

ker
(
C ≃ Hom(Γτ ,C) ≃ H1(C,C) → H1(C,OC)

)
= C · ω∞.
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One can write ω∞ = ω−η where ω, η ∈ C have a pole of order k+1 alongC. Suppose
that ω∞ has also a pole of order k + 1 and let F∞ ∈ F̂ol(U,C) be the corresponding foli-
ation. The holonomy representation of F∞ has the form given by item (2) of Proposition
2.5 but this latter clearly implies that utype(U,C) > k: a contradiction.

Finally, choose ω0 ∈ C \ C · ω∞ such that its period vanish along m (or equivalently,
any non zero multiple of m) ∈ Γτ .

4. BIFOLIATED CLASSIFICATION

A bifoliated neighborhood is a 4-uple (U,C,F ,G) where (U,C) is a germ of neigh-
borhood of the elliptic curve C and F ,G ∈ Fol(U,C) are distinct foliations having C as a
common leaf. Another 4-uple (Ũ , C, F̃ , G̃) will be said equivalent to (U,C,F ,G) if there
is an isomorphism φ : (U,C) → (Ũ , C) between germs of neighborhoods satisfying (1.1)
and conjugating the foliations:

φ∗F = F̃ and φ∗G = G̃.

In this section, we consider the classification of bifoliated neighborhoods up to equiva-
lence, and show that it reduces to the classification of the pair of holonomy representations
(ρF , ρG) up to some equivalence (see Theorem 4.10). All constructions and results will be
valid and usefull both in the formal and analytic settings. In fact, it will be applied to the
canonical pair of formal foliations (F0,F∞) to deduce the formal classification of neigh-
borhoods (U,C). We will also make use of the analytic setting, not necessarily with the
canonical pair, to construct huge families of analytic neighborhoods that are all formally
equivalent, but pairwise not analytically equivalent. Even in the non torsion case, our con-
struction provides new examples with formal but divergent fibration transversal to C. For
simplicity, we will work in the analytic setting; we will just mention its formal counterpart
in the main statements, the proof being exactly the same.

4.1. Basic invariants. A first invariant is given by the holonomy representation of the
common leaf C for both foliations

ρF , ρG : π1(C, p) → Diff(C, 0)

each representation being defined up to conjugacy in Diff(C, 0) (see section 2.1). In the
sequel, it will be convenient to define holonomy on a transversal curve (T, y): T ⊂ (U,C)
is a germ of curve at a point p ∈ C transversal to C and y : (C, p) → (C, 0) a coordinate.
The holonomy of F on the transversal (T, y) is defined as follows. Let f : (U, p) → (C, 0)
be the unique first integral for F whose restriction to T coincides with the coordinate y:
then define the holonomy ofF as the monodromy of f by setting f0 = f in the construction
of section 2.1. This allow us to compute and compare if necessary the two holonomy
representations ρF , ρG on a same transversal (T, y).

A second invariant is the order of tangency Tang(F ,G) between F and G along C:
given non vanishing 1-forms α and β at the neighborhood of a point p ∈ C defining the
two foliations F and G respectively, then α ∧ β vanishes along C; being locally constant,
the vanishing order, denoted by Tang(F ,G) does not depend on the choice of α and β, is
globally well-defined and is a positive integer. Let k ∈ N be such that Tang(F ,G) = k+1.
The next proposition shows that this order of tangency can be detected from the knowledge
of holonomy representations.

Proposition 4.1. Let F ,G ∈ Fol(U,C) and consider the corresponding holonomy repre-
sentations ρF , ρG evaluated on the same transversal (T, y). Then the following properties
are equivalent.
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(1) Tang(F ,G) = k + 1.
(2) ρF and ρG coincide to order k in the variable y but differ at order k + 1.

In particular, two foliations having the same holonomy must coincide.

Proof. Assume that Tang(F ,G) = k+1. This implies that F and G coincide on restriction
to the kth infinitesimal neighborhood C(k) = Spec OU/IC

k+1; in particular, ρF and ρG
coincide up to order k. Let fp, gp two respective first integrals of F and G such that
{fp = 0} = {gp = 0} are reduced equation of C and such that fp = gp on C(k). From
the hypothesis on Tang(F ,G), this means that fp = gp + apgp

k+1 where ap is a formal
function whose restriction ap|C to C is a non constant holomorphic function. Let fp

′, gp
′

be sharing the same properties. Hence, they are related to fp and gp by fp
′ = φ(fp),

gp
′ = ψ(gp) where φ, ψ ∈ Diff(C, 0) and φ(y) = ψ(y) mod yk+1. It is then easy to verify

that fp
′ = gp

′ + ap
′gp

k+1 whith ap′|C = τ ◦ ap|C where τ is an affine transformation of
the complex line. As a byproduct, the collection of ap|C , when varying the base point p,
define an (maybe branched) affine structure on C intrinsically attached to the pair (F ,G).
Now, let us fix p0 ∈ C, pick a germ of transversal (T, y) at p0 and let f, g the local first
integrals of F and G which coincide with y on T . Let a such that f = g + agk+1. Note
that a(p0) = 0. Let bγ the germ at (C, p0) obtained by analytic continuation (well defined
by the affine structure) of a|C along γ ∈ π1(C, p0). Clearly, the holonomy representations
of F and G coincide up to order k + 1 if and only if bγ(p0) = 0 for every loop γ. In this
case, there exists on C a multivaluate non constant function ξ locally holomorphic with
multiplicative monodromy. This gives a contradition with the residue theorem applied to
the logarithmic differential dξ

ξ . �

Remark 4.2. The statement of Proposition 4.1 remains valid when considering more gen-
erally n+1-dimensional bifoliated neighborhoods of n-dimensional compact Kähler man-
ifolds (use the same arguments).

Remark 4.3. The affine structure exhibited in the proof will reappear in the main Theorem
4.11 of this section.

4.2. First case: Tang(F ,G) = 1. There is the following constraint on the holonomy
representations. The foliation F defines a partial connection ∇F on the normal bundle
NF called Bott partial connection whose restriction to the leaf C is a flat connection on
the normal bundle NC ≃ NF |C . The monodromy representation of ∇F |C is given by the
linear part of the holonomy. Comparing ∇F and ∇G on NC , we get that there exists a
holomorphic 1-form ω on C, namely ω = ∇F |C −∇G|C such that

(4.1) lin (ρG(γ)) = exp

(∫

γ

ω

)
· lin (ρF(γ))

for all γ ∈ π1(C, p). As we will see, we have

Tang(F ,G) = 1 ⇔ ω 6= 0

and in this case F and G are transversal outside C.

Theorem 4.4. Case Tang(F ,G) = 1.

• Classification Two analytic/formal bifoliated neighborhoods (U,C,F ,G) and
(Ũ , C, F̃ , G̃) (both with k = 0) are analytically/formally equivalent if, and only
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if, there exist analytic/formal diffeomorphisms φ, ψ ∈ Diff(C, 0)/D̂iff(C, 0) such
that for all γ ∈ π1(C, p)

(4.2)

{
φ ◦ ρF̃ (γ) = ρF (γ) ◦ φ
ψ ◦ ρG̃(γ) = ρG(γ) ◦ ψ

• Realization Given two representations ρF , ρG satisfying the compatibility rule
(4.1) for a non zero 1-formω onC, there is a unique (up to isomorphism) bifoliated
neighborhood (U ⊃ C,F ,G) realizing these invariants with k = 0.

Remark 4.5. In the statement of Theorem 4.4, we do not demand that the holonomy pairs
are evaluated with respect to the same transversal, contrary to the higher tangency case
(see Theorem 4.11). Moreover, as one of the conjugated representations, says ρG , ρG̃ is lin-
earizable (see proof of Theorem 4.4), we can impose to the diffeomorphisms φ, ψ involved
in 4.2 to have the same linear part. This corresponds to the statement of Theorem 1.2 of
the introduction for k = 0.

Remark 4.6. One can more generally consider bifoliated neighborhoods of any compact
curve C regardless of its genus g = g(C). When g > 1, the 1-form ω vanishes at some
points meaning that we have other tangencies between F and G. This gives rise to addi-
tional invariants, even locally (see [22]).

Before giving the proof of theorem 4.4, let us start by some useful remarks.
Let F ,G be foliations fullfilling the hypothesis of 4.2. In local coordinates (x, y) at p,

where C = {y = 0}, we can choose the 1-forms defining F and G uniquely as follows
{
α = dy + ya(x, y)dx
β = dy + yb(x, y)dx

with a, b ∈ C{x, y}.

Then, the holomorphic 1-form defined on C by

ω := [b(x, 0)− a(x, 0)]dx = ResC(
β ∧ α

y2
)

is not identically vanishing, and does not depend on the choice of coordinates (x, y). This
is an invariant of the pair of foliations measuring the discrepancy between them at the
first order along C. We thus get a global non zero holomorphic 1-form ω on C, which
is precisely the 1-form involved in (4.1). Indeed, one has ∇F |C = d − a(x, 0)dx and
∇G|C = d− b(x, 0)dx. Since C is an elliptic curve, it follows that ω does not vanish at all,
and F is therefore transversal to G outside of C. In order to prove Theorem 4.4, we need
the following local classification result, which is a version of [11, Lemma 5] for functions.

Lemma 4.7. Let f, g ∈ C{x, y} be two local reduced equations for C = {y = 0} and
assume that the zero divisor of df ∧ dg is C (hence also reduced). Then, there is a unique
system of local coordinates (x̃, ỹ) satisfying

f = ỹ g = eu(x̃)ỹ and (x̃, ỹ)|C = (x, 0)

for a submersive function u unique modulo 2iπ.

The invariant u(x) is given by the limit of the ratio of the two functions:

eu(x)|C :=
g(x, y)

f(x, y)
|y=0.

For the corresponding foliations, the invariant 1-form discussed above is ω := du. As
noticed above, it can also be interpreted as the Poincaré residue of the 2-form dg

g ∧ df
f

along C.
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In the Lemma, we have only considered changes of coordinates fixingC pointwise since
this is what we need for the proof of Theorem 4.4. On the other hand, if we just ask that
the change of coordinates preserve C globally, then we arrive at the unique normal form

f = ỹ g = (c+ x̃)ỹ

where c := eu(0) is a non zero constant.

Proof. Let us first set ỹ := f and expand

g = g1(x)ỹ + g2(x)ỹ
2 + g3(x)ỹ

3 + · · ·

Then df ∧ dg = −(
∑

n>0 g
′
n(x)ỹ

n)dx ∧ dỹ and we get g′1(x) 6= 0; in fact, g1(x) = u(x).
We can write g1(x) = c + ϕ(x) with c = g1(0) 6= 0 and ϕ(x) a local coordinate. Then
g = (c+ φ(x, ỹ))ỹ where

φ(x, ỹ) = ϕ(x) +
∑

n>0

gn+1(x)ỹ
n =

g

ỹ
− c.

Clearly, (x̃, ỹ) := (φ(x, ỹ), ỹ) is the unique system of coordinates putting g into the normal
form g = (c+x̃)ỹ. Finally, the coordinateϕ−1◦φ induces the identity onC and conjugates
g to exp(log(c+ ϕ(x̃)))ỹ. �

Proof of Theorem 4.4. Given (U,C,F ,G) and (Ũ , C, F̃ , G̃) together with k = 0 and sat-
isfying 4.2. Choose a point p ∈ C ⊂ U, Ũ . Maybe after changing first integrals by left
composition in Diff(C, 0): (f̃ , g̃) → (φ ◦ f̃ , ψ ◦ g̃), we may assume that ρF = ρF̃ and
ρG = ρG̃ .

Let ω and ω̃ the discrepancy 1-forms associated to the pairs (F ,G) and (F̃ , G̃) respec-
tively. Since holonomy representations are the same for the two pairs, we must have

exp

(∫

γ

ω

)
= exp

(∫

γ

ω̃

)

for all γ ∈ π1(C, p). It follows that ω = ω̃.
One of the two representations, say ρG , must be non unitary. Therefore, according to

Koenigs theorem, it is analytically conjugated to its linear part (see Theorem 6.2). Chang-
ing again if necessary g and g̃, we can assume that ρG = ρG̃ is linear. In particular, we can
now multiply g and g̃ by constants without modifying their holonomy; therefore, we can
now assume that g/f and g̃/f̃ have common limit 1 at the point p. By consequence, these
ratios have the same limit exp(u(x)) on C.

Lemma 4.7 says that there is a unique germ of diffeomorphism Φ : (U, p) → (Ũ , p)
fixing C pointwise conjugating the two pairs of first integrals. By analytic continuation of
the first integrals, the existence and unicity of Φ at each point implies the analytic continu-
ation principle for Φ along any path in C. Having chosen (f̃ , g̃) with the same monodromy
as (f, g), we get a globally well-defined diffeomorphism Φ : (U,C) → (Ũ , C).

The existence part of Theorem 4.4 can be done by quotient, similarly to the usual con-
struction by suspension when we want to realize a single representation. The difference
is that, instead of preserving a fibration, we preserve a second foliation. Consider on the
universal cover Cx → C the trivial line bundle Cx × Cy together with models

f = y and g = eθx · y

where ω = θdx is the 1-form of the Theorem. For each period γ, we want to construct a
diffeomorphism φγ at the neighborhood of C̃ = {y = 0} ≃ Cx such that

• φγ is preserving C̃ and inducing the translation by γ on it,
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• φγ is conjugating (ρF (γ) ◦ f, ρG(γ) ◦ g) with (f, g).

Note that ρF(γ) is a (germ of) diffeomorphism fixing 0 so that, composed with f , we still
get a first integral of the associated foliation at the neighborhood of C̃, vanishing on C̃. We
deduce the existence of φγ from Lemma 4.7 locally at any point. Indeed, we just have to
check that the infinitesimal invariant eu is the same for

• (f, g) at (x+ γ, 0) and
• (ρF (γ) ◦ f, ρG(γ) ◦ g) at (x, 0)

which straightly follows from assumptions. By uniqueness, the local diffeomorphisms pro-
vided by Lemma 4.7 patch together into a global diffeomorphism φγ . The map γ 7→ φγ
defines a group action on the germ of neighborhood of C̃. On the quotient, we get a neigh-
borhood U ⊃ C equipped with two foliations F and G having the expected holonomy.
Note that invariants k = 0 and ω are actually determined by the monodromy. �

Example 4.8. For linear representations
{
ρF(γ) : y 7→ aγy
ρG(γ) : y 7→ bγy

we get the foliations associated to connections ∇F ,∇G of a (degree zero) line bundle
L → C. In this case, the φγ constructed in the proof above are just given by (x, y) 7→
(x+ γ, aγy). Indeed,

φ∗(f, g) = (aγy, e
θ(x+γ)aγy) = (aγf, bγg)

(we must have bγ = eθγaγ for any period γ). In particular, in this case, the fibration
defined by the x-variable is preserved.

4.3. Second case: Tang(F ,G) = k + 1, k > 0. As before, we only deal with analytic
bifoliated neighborhoods in the proofs and leave the reader to adapt the argument in the
formal setting.. We can choose local coordinates (x, y) so that y is a first integral for F ,
i.e. so that {

α = dy
β = dy + yk+1h(x, y)dx

with h(x, 0) 6≡ 0.

are defining forms for F and G. Then, the holomorphic 1-form ω = h(x, 0)dx is well-
defined up to multiplication by a constant. If we do this with a uniformizing coordinate
x on C, then the logarithmic derivative of h(x, 0) defines a logarithmic 1-form η = dh

h |C
with only positive residues (zeroes of h(x, 0)). By Residue Theorem, η = θ · dx for a
constant θ ∈ C, and

ω = c exp(θx)dx

for a constant c ∈ C∗. In particular, ω does not vanish and F is transversal to G outside C.
The invariant found here is not a global holomorphic 1-form in general, but a global affine
structure onC: an affine coordinate is given by integration of ω (regarded as a holomorphic
form on the universal covering)

(4.3) u(x) =

∫ x

0

ω =

{
c
(
eθx − 1

)
when θ 6= 0

cx when θ = 0

with monodromy given by

u(x+ γ) =

{
eθγu(x) + c

(
eθγ − 1

)

u(x) + cγ

(here, we have imposed u(0) = 0 which is convenient for the sequel).
The version of Lemma 4.7 when k > 0 reads as follows:
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Lemma 4.9. Let f, g ∈ C{x, y} be two local reduced equations for C = {y = 0} and
assume that the zero divisor of df ∧ dg is (k + 1)[C]. Then, there is a unique system of
local coordinates (x̃, ỹ) satisfying

f = ỹ g = P (ỹ) + u(x̃)ỹk+1 and (x̃, ỹ)|C = (x, 0)

for unique non vanishing function u on C and degree ≤ k polynomial coordinate P
(P (0) = 0 and P ′(0) 6= 0).

We note that P is characterized by g = P (f) +O(fk+1) and the function u(x) on C is
given by the restriction of g−P (f)

fk+1 . The invariant for the pair of corresponding foliations is

given by the Poincaré residue ω := du of the 2-form dg∧df
fk+2 along C. In other words, local

invariants for the pair (f, g) are given by the polynomial P and the function u on C while
local invariants for the pair of foliations (F ,G) is given by C ·du (i.e. du up to a constant).

Proof. By local change of coordinate, we can first set f = ỹ, and we get

g = P (ỹ) + ỹk+1(u(x) + ỹh(x, ỹ))

where P =
k∑

n=1
anỹ

n and a1 6= 0. Setting x̃ = u(x) + ỹh(x, ỹ)− u(0) we get the sharper

normal form
f = ỹ and g = P (ỹ) + ỹk+1(u(0) + x̃).

If we restrict to x-change of coordinates inducing the identity along y = 0 we get the
normal form of the statement by setting u(x̃) = u(x) + ỹh(x, ỹ). �

As can be checked from the normal form, are equivalent:

• on any curve Γ transversal to C at p = (0, 0), the restrictions of f and g coincide
up to the order k + 1 (i.e. f − g|C = o(fk+1));

• there exists a curve Γ transversal to C at p in restriction to which f ≡ g (and this
curve is unique);

• P (y) = y and u(0) = 0.

In this case, we say that f and g coincide up to the order k + 1 at the point p. Given a pair
of foliations (F ,G) satisfying Tang(F ,G) = k+1, we can always find a pair (f, g) of first
integrals that coincide up to the order k + 1. Note also that if f, g coincide at order k + 1
at p, then for φ, ψ ∈ Diff(C, 0), the new pair φ ◦ f ,ψ ◦ g coincide at order k+1 at p if and
only if φ(y) = ψ(y) mod yk+2.

At another point of C, the function u will be non zero in general, and we cannot find
a transversal curve in restriction to which f ≡ g, but we still have P (y) = y by analytic
continuation and f still coincides with g up to the order k on any transversal curve.

In order to settle the relationship between the affine structure previously defined and
the holonomy representations of the two foliations F and G, let us fix a point p ∈ C and
two local respective first integrals f and g that coincide on a transversal curve Γ. Let
us compute the holonomy representations of the two foliations with respect to these first
integrals. After analytic continuation along a loop γ based at p, we will have on one hand

fγ = ϕγ
F ◦ f and gγ = ϕγ

G ◦ g.

On the other hand, we have

(4.4) g = f + u(x)fk+1 mod fk+2 with u(x) =

{
c (exp(θx) − 1)
cx (if θ = 0)
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and, after analytic continuation along γ, we get (in restriction to Γ)

gγ = φγ ◦ fγ mod fk+2 with φγ(y) = y + u(γ)yk+1.

To summarize, we get

(4.5) ϕγ
G = φγ ◦ ϕγ

F mod yk+2 for all γ ∈ π1(C, p)

with φγ(y) =

{
y + c(eθγ − 1)yk+1 if θ 6= 0
y + cγyk+1 if θ = 0

In particular this illustrates the general principe given in 4.1 according to which the
holonomies of both foliations coincide at order k but differ at order k + 1. The above
equalities give restrictions on the way they can differ at the order k+1. Mind that γ 7→ φγ
is not a group morphism (even after truncating coefficients of order ≥ k + 2).

The linear part lin(ρF ) = lin(ρG) of the holonomy of the two foliations is related to the
linear part γ 7→ eθγ of the monodromy of the affine structure as follows.

Proposition 4.10. If we set ρF (γ) = aγy + · · · , then we have

(4.6) a−k
γ = eθγ.

In particular, θ is completely determined by the linear part of the holonomy and the normal
bundle NC is necessarily torsion of order dividing k. Moreover, if lin(ρF) is unitary, then
it is torsion and the affine structure is actually a translation structure, i.e θ = 0.

Proof. From the formula (4.3), we get

u(2γ)

u(γ)
− 1 = eθγ

for all γ ∈ π1(C, p). On the other hand, comparing (4.5) for φγ and φ2γ with linear part
aγ for ρF and ρG yields

u(2γ)

u(γ)
− 1 = a−k

γ

whence the relation. In particular, this shows that N⊗k
C comes equipped with a connec-

tion, namely ∇F
⊗k
|C , whose monodromy is given by the exponential of the periods of the

abelian differential −θdx. This implies that N⊗k
C ≃ OC and that the monodromy (given

by lin(ρF)
⊗k) is not unitary, unless θ vanishes identically. This concludes the proof. �

In order to state our result, we associate to any bifoliated neighborhood (U,C,F ,G)
the holonomy representations (ρF , ρG) computed from a pair (f, g) of first integrals that

coincide on a given transversal at p ∈ C.

Theorem 4.11. Case Tang(F ,G) = k + 1, k > 0.

• Classification Two analytic/formal bifoliated neighborhoods (U,C,F ,G) and
(Ũ , C, F̃ , G̃) (with the same k > 0) are analytically/formally equivalent if, and

only if, there exists analytic/formal diffeomorphisms φ, ψ ∈ Diff(C, 0)/D̂iff(C, 0)
such that for all γ ∈ π1(C, p),

(4.7)

{
φ ◦ ρF̃ (γ) = ρF(γ) ◦ φ
ψ ◦ ρG̃(γ) = ρG(γ) ◦ ψ

with φ = ψ mod yk+2.

• Realization Given two representations ρF , ρG satisfying the compatibility rule
(4.5) for an affine structure defined by a chart u(x) on C, there is a unique (up
to isomorphism) bifoliated neighborhood (U,C,F ,G) realizing these invariants
(with tangency divisor (k + 1)[C]).
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Proof. Classification part. Let (F ,G),(F̃ , G̃) two pairs of foliations satifying the property
4.7. After changing first integrals (f̃ , g̃) by (φ ◦ f̃ , ψ ◦ g̃), we may assume that ρF = ρF̃
and ρG = ρG̃ . One easily checks that the affine coordinate u(x) is determined by its
values u(γ) when γ runs over π1(C, p), and therefore by the monodromy of f and g up
to order k + 1, due to (4.5). We deduce that invariants u(x) and ũ(x) of the two pairs
coincide at p. On the other hand, f and g (resp. f̃ and g̃) coincide on a transversal.
Therefore, Lemma 4.9 provides the existence and uniqueness of a diffeomorphism Φ :

(U, p) → (Ũ , p) conjugating (f, g) to (f̃ , g̃) and inducing the identity on C. After analytic
continuation, we can check that Φ is uniform, due to the fact that (f, g) and (f̃ , g̃) have the
same monodromy, and provides a global diffeomorphism Φ : U → Ũ . �

Proof. Realization part.We proceed anagolously to the case k = 0, taking into account
the new invariants. Let us start from the model defined on Cx × Cy by

f = y and g =
y

(1− ku(x)yk)
1/k

= y + u(x)yk+1 + · · ·

which are those first integrals satisfying f(0, y), g(0, y) = y for the foliations

F : dy = 0 and G : dy + yk+1ω = 0.

where ω = du. For all γ, we construct a diffeomorphism Φγ conjugating

(fγ(x), gγ(x)) = (f(x+ γ, 0), g(x+ γ, 0)) with (ρF (γ) ◦ f, ρG(γ) ◦ g).

By assumption, the two pairs have exactly the same invariants at any point p. Lemma 4.9
provides the existence and unicity of Φγ at the neighborhood of any point p ∈ C̃, and
therefore on a neighborhood of C̃ . �

Lemma 4.12. When θ 6= 0, condition (4.5) exactly means that ρG(γ) coincides with ψ−1 ◦
ρF(γ) ◦ ψ up to order k + 1 where ψ = y + cyk+1 + · · · .

Proof. Denoting ϕγ
F (y) := ρF(γ) = aγy+ · · · , a straightforward computation shows that

ψ−1 ◦ ϕγ
F ◦ ψ ◦ (ϕγ

F )
−1(y) = y + c(1− a−k

γ )yk+1 + · · · modulo yk+2

and condition (4.5) reads

ϕγ
G ◦ (ϕγ

F )
−1(y) = y + c(1− a−k

γ )yk+1 + · · · modulo yk+2

for all γ ∈ π1(C, p), whence the conclusion. �

Corollary 4.13. When θ 6= 0, then (U,C) is analytically/formally linearizable.

Proof. We deal with a pair (F ,G) of convergent foliation tangent at order k + 1 along C,
the proof of the formal analogue being the same.

When θ 6= 0, the linear part lin (ρF) : π1(C, p) → C∗ is not unitary and has infinite
image; then both ρF and ρG are analytically linearizable with the same linear part. One
can then assume that ρF coincide with its linear part in the pair (ρF , ρG). Then, with
the notation of lemma 4.12, H(γ) := ψ ◦ ϕγ

G ◦ ψ−1(y) = aγy mod yk+2. One can
then easily verify that there exists φ ∈ Diff(C, 0) tangent to identity up to order k + 1
such that for every γ, φ ◦ H(γ) ◦ φ−1(y) = aγy. In particular, and thanks to Theorem
4.11, lin (ρF) and c provide a complete system of bifoliated analytical invariants. Let us
show that we can realize the same invariants for a pair of foliations (F0,G0) on the linear
neighborhood (NC , 0) = Cx × (Cy, 0)/G where G = {gγ , γ ∈ Γτ} is an abelian group
of transformations of the form gγ(x, y) = (x + γ, λγy) with λγ

k = 1. The coordinates x
and y give rise on NC to the transversal fibration dx and the unitary foliation dy (actually
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a fibration with C as a multiple fiber of order dividing k). Let λ be a non zero complex
number such that for every γ ∈ π1(C), aγ = λγe

λγ . Now, consider on NC the foliations
F0 and G0 respectively defined by

α = dy + λydx and β = α− ck2yk+1dx

whose tangency order along C agrees with that of F and G.
Considering the new variable z = yeλx ( a local first intergral for F0 which gives local

model at p = 0), one easily checks that (U,C,F ,G) and
(
(NC , 0), C,F0,G0

)
have the

same invariants and are thus equivalent. This gives the sought conjugation between U and
(NC , 0). �

4.4. Proof of Theorem 1.1. In view of the results proved in section 2 and 3, it remains
to check that one obtains the right expression for the holonomies. Let us detail the proof
for p > 1 (the remaining cases being settled similarly). With the notations and results of
Proposition 2.5, one can choose a transversal (T, z) in restriction to which ω0 = dz

zk+1 +

λdz
z , so that ϕγ(z) = ϕγ(z) = aγ · exp (σω0

(γ)vk,λ), with σω0
(1) = 0 and σω0

(τ) = 1.
Up to multiplyω∞ by a constant, one can suppose that σω∞

(1) = 1 and σω∞
(τ) = τ . Then

ωt (t ∈ C) in restriction to (T, z) has the form ωt =
dz

zk+1 +λ
dz
z +tα dz

zp+1 dz+o(1), α 6= 0.
Therefore, the k + 1 jet of the formal vector field vt dual to ωt coincide with that of vk,λ.
Using again item (2) of Proposition 2.5, one obtains that the k+1 jet of the holonomy of Ft

along γ ∈ K is given by the truncation at order k+1 of exp [(1 + t)
(
σω0(γ)vk,λ

)
]. By the

comparison relation (4.5) (θ = 0), we indeed obtain for every γ ∈ Γ, that the k + 1 jet of
the holonomy of Ft along γ coincide with the k + 1 jet of aγ exp [(1 + t) (σω0

(γ)vk,λ)].
We thus have the sought relation for the expression of the holonomy of Ft, t ∈ C. We
conclude along the same line in order to justify the computation of the holonomy of F∞.

Remark 4.14. Theorem 1.2 of the intoduction and more particularly its realization part is
just a particular case of Theorems 4.4 and 4.11.

5. FORMAL CLASSIFICATION OF NEIGHBORHOODS

As recalled in the introduction, (U,C) is formally linearizable as soon asNC has infinite
order. We detail below the torsion cases.

5.1. The case of fibrations. Let (U,C) be a neighborhood. Assume that C is a smooth
(but possibly non reduced) fiber of an analytic fibration f : U → ∆ (with ∆ ⊂ C the unit
disc): f−1(0) = mC and NC is torsion of order m, for some m ∈ Z>0.

Proposition 5.1. Let (U,C) an analytic neighborhood with a fibration. Are equivalent:

• the fibration f : U → ∆ is isotrivial,
• there is a formal fibration x : U → C transversal to C,
• F̂ol(U,C) is not reduced to the fibration,
• (U,C) ≃ (NC , 0) is formally linearizable,
• (U,C) ≃ (NC , 0) is analytically linearizable.

Proof. If (U,C) admits an analytic fibration transversal to C, then it is linearizable (use
x : U → C and f : U → ∆ as a pair of global coordinates). If (U,C) admits a formal
fibration transversal to C, then there exists one analytic by Grauert Comparison Theorem
[7]. If F ∈ F̂ol(U,C) is distinct from the fibration, then it is transversal to it outside of C,
inducing a fibration transversal to other fibers; the fibration is therefore isotrivial and the
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neighborhood linearizable. On the linear neighborhood (NC , 0), there are many foliations
due to the size of automorphism group

(x, f) 7→ (x+ ϕ(f), ψ(f))

but modulo this group, all foliations are diffeomorphic to

df = 0, λ
df

f
+ dx = 0 or

df

fk+1
+ λ

df

f
+ dx = 0.

Indeed, given a foliation F ∈ F̂ol(U,C), it is globally defined by

df =
∑

n≥0

αnf
n

where αn are holomorphic 1-forms on C, therefore of the form αn = andx. Therefore,
we can rewrite

df∑
n anf

n
− dx = 0

(or df = 0 if all an = 0) and then normalize the meromorphic 1-form by a change of
f -coordinate. In particular, we deduce that all representations are linearizable (in the log-
arithmic case) or normalizable (in the irregular case). �

In the non isotrivial case, we have:

Theorem 5.2. Let (U,C) having a non isotrivial fibration f : U → ∆. Then (U,C) is
conjugated to one and only one of the following analytic neighborhoodFn(a1, aτ ), n ≥ 1:

{
(x, y) ∼ (x + 1, a1y)
(x, y) ∼ (x+ τ + yn, aτy)

Moreover, the conjugation can be made analytic.

Proof. Under the assumptions of Theorem 5.2, Ueda has shown that C is a (maybe mul-
tiple) fiber of some analytic fibration ([24, Theorem 3, p.596]) and the remainder follows
from classical Kodaira-Spencer theory. Remark that for n > 0, there exists a transverse
fibration on the nth infinitesimal neighborhoodC(n), but not on C(n+1), which is a way to
prove that Fn and Fn′ are formally distincts whenever n 6= n′. �

5.2. The case NC torsion and utype(C) finite. The combination of Theorem 3.1 and
Proposition 2.5 shows that holonomy representation of F0 takes the form in a convenient
formal transversal (T, y):

(5.1) ρF0
:

{
1 7→ a1y
τ 7→ aτ exp(vk,λ)

with vk,λ =
yk+1

1 + λyk
∂y

where (a1, aτ ) is the m-torsion monodromy of the unitary connection on NC , k = mk′ is
the Ueda type of (U,C), k′ ∈ Z>0, and λ ∈ C∗.

5.2.1. The case F∞ is a fibration transversal to C. This is the classical suspension case:
there are no other invariants and the neighborhood (U,C) can be defined as the quotient of
the germ (Ũ , C̃) := (Cx × Cy, {y = 0}) by the group generated by

{
(x, y) ∼ (x + 1, a1y)
(x, y) ∼ (x+ τ, aτ exp(vk,λ))

and the pencil of foliations (or closed 1-forms) is generated by

ω0 =
dy

yk+1
+ λ

dy

y
and ω∞ = dx.
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5.2.2. The case F∞ is a logarithmic foliation tangent to C. This is the case p = 0 in
Theorem 1.1:

(5.2) ρF∞
:

{
1 7→ a1e

cy + o(y)
τ 7→ aτe

cτy + o(y)
with c ∈ C∗.

There are no other formal invariants in this case. In fact, let

ϕk,λ := exp(vk,λ) and gk,λ(y) :=
1

c

∫ y

0

dt

t
− aτϕ

∗
k,λ

dt

t
.

Then we have

Theorem 5.3. If 0 = p < k, then the neighborhood (U,C) is formally equivalent to the
quotient of (Ũ , C̃) := (Cx × Cy, {y = 0}) by the group generated by

(5.3)

{
φ1(x, y) = (x+ 1 , a1y)
φτ (x, y) = (x+ τ + gk,λ(y) , aτϕk,λ(y))

and the pencil ωt = ω0 + tω∞ of closed 1-forms is generated by

(5.4) ω0 =
dy

yk+1
+ λ

dy

y
and ω∞ = cdx+

dy

y

with c ∈ C∗. The holonomy representation of the pencil Ft : {ωt = 0} is given by

(5.5) ρFt
:

{
1 7→ a1 exp(tvk,λ+t)
τ 7→ aτ exp((tτ + 1)vk,λ+t)

and ρF∞
:

{
1 7→ a1e

cy
τ 7→ aτe

tτy

when computed on the transversal (T = {x = 0}, y).

Proof. The linear part of the holonomy (5.2) of F∞ is not torsion; following Theorem 2.2,
ρF∞

can be linearized by formal change of coordinate. Using equivalence relation (4.2),
this can be done without modifying the normal form (5.1) for the holonomy of F0. It fol-
lows that λ and c are the only formal invariants in the case 0 = p < k. The list of formal
models (5.3) for (U,C) is obtained in a similar way that realization part of the proof of
Theorem 4.4. We first start with models (5.4) on (Ũ , C̃) and look for transformations of
that neighborhood preserving C̃ and inducing the translation lattice Γτ on it, and commut-
ing with the 1-forms ω0 and ω∞. Commutation with ω0 with holonomy constraint (5.1)
shows that {

φ1(x, y) = (x+ 1+ f(x, y) , a1y)
φτ (x, y) = (x+ τ + g(x, y) , aτϕk,λ(y))

with f, g holomorphic, vanishing along C̃ : {y = 0}. Now, invariance of ω∞ gives f = 0
and g = gk,λ. We check that the monodromy of first integrals f0 = y and ft = yecx for
ω0 and ω∞ on the quotient (Ũ , C̃)/ < φ1, φτ > are given by ρF0

and ρF∞
, so that, by the

classification part of Theorem 4.4, we get formal equivalence:

(U,C,F0,F∞) ∼ (Ũ , C̃,Fω0
,Fω∞

)/ < φ1, φτ > .

�
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5.2.3. The general case 0 < p < k. We now have

(5.6) F∞ :

{
a1[z + czp+1 + o(zp+1)]
aτ [z + cτzp+1 + o(zp+1)]

with c ∈ C∗ and 0 < p < k with p ∈ mZ>0. Set k = mk′ and p = mp′. Given

P (z) =
∑p′

i=0 λiz
i a polynomial of degree p′ precisely, define

(5.7) ωP := P (
1

ym
)
dy

y
, vP :=

y

P ( 1
ym )

∂y and gk,λ,P (y) :=

∫ y

0

aτϕ
∗
k,λωP − ωP .

The group Zk′ of k′th roots of unity acts on the set of polynomials P as follows:

(5.8) (µ, P (z)) 7→ P (µ−1z)

Theorem 5.4. If 0 < p < k, then there exist λ ∈ C and P ∈ Cp′

× C∗ unique up to
the Zk-action (5.8) such that (U,C) is formally equivalent to the quotient of (Ũ , C̃) :=
(Cx × Cy, {y = 0}) by the group generated by

(5.9)

{
φ1(x, y) = (x+ 1 , a1y)
φτ (x, y) = (x + τ + gk,λ,P (y) , aτϕk,λ(y))

The pencil ωt = ω0 + tω∞ of closed 1-forms is generated by

(5.10) ω0 =
dy

yk+1
+ λ

dy

y
and ω∞ = dx− ωP .

The holonomy representation of the pair (F0,F∞) is given by

(5.11) ρF0
:

{
1 7→ a1y
τ 7→ aτϕk,λ(y)

and ρF∞
:

{
1 7→ a1 exp(vP )
τ 7→ aτ exp(τvP )

when computed on the transversal (T = {x = 0}, y).

Proof. We first have to show that, under equivalence relation (4.7), we can reduce the
holonomy ofF∞ to the form (5.11). We can assume holonomy of F0 already normalized to
(5.1), so that it remains to normalize the holonomy of F∞ by help of some ψ ∈ D̂iff(C, 0)
with ψ(y) = y + o(yk+1). Choose γ ∈ π1(C) such that aγ has order m precisely, and
consider ϕγ := ρF∞

(γ): we have ϕγ(y) = aγy + c0y
p+1 + o(yp+1), for some c0 ∈ C∗.

If ψ(y) = y + cyn+1, then

ψ−1 ◦ ϕγ ◦ ψ(y) = ϕγ + aγc(1− anγ )y
n+1 + o(yn+1).

By iterating such conjugacies with increasing n, this allow us to kill successively all coef-
ficients of ϕγ that are not of the form yqm+1 (since (1 − aqmγ ) = 0). Therefore, we can
now assume ϕγ(y) = aγy(1 + ypf(ym)); we note that aγ commutes with ϕγ , and there-
fore with ϕ0 := y(1 + ypf(ym)). We can write ϕ0 = exp(v) for a unique formal vector
field v = yp+1g(ym)∂y , with dual 1-form ω = h(ym)

yp+1 dy. Again, if ψ(y) = y + cyn+1,

we see that ψ∗ω = ω − (ph(0)cyn−p−1 + o(yn−p−1))dz. By successive change of co-
ordinates with n = qm > p, we can kill all positive coefficients of ω so that it remains
only the principal part ωP = P ( dy

ym )dyy with deg(P ) ≤ p. Finally, we have constructed
some ψ conjugating ω with ΩP , and therefore v to vP , and ϕ0 to exp(vP ). Since ψ com-
mutes with aγy, it is also conjugating ϕγ to aγ exp(vP ). By Theorem 2.2, the whole
holonomy representation, being in the centralizer of ϕγ , must be normalized to a exp(tvP )
with t ∈ C, am = 1. Here we use that vP can be normalized to some vp,µ by a convenient
ψ(y) = yu(ym). We have thus reduced the pair of holonomy representations to the form
(5.11). One easily checks that the reduction is unique except that we could have used ψ in
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the centralizer of ρF0
, i.e. ψ(y) = ay+ o(yp+1) with am = 1. This gives rise to an action

of kth roots of unity on the set of principal parts P , which actually factors via an action
of k′th roots of unity. This ends the formal classification. It remains to prove holonomy
representations of the pair of foliations (Fω0

,Fω∞
) defined by (5.10) on the quotient by

(5.9) is indeed given by (5.11) so that we can conclude by classification part of Theorem
4.11. The holonomy of F0 computed on x = 1 is clearly given by (5.11). For F∞, the ho-
lonomy along the loop 1 ∈ Γτ is also clearly like (5.11), i.e. ϕ1 = a1 exp(vP ). Again, by
Theorem 2.2, the whole holonomy representation ρF∞

, being in the centralizer of ϕ1, must
be normalized to a exp(tvP ) with t ∈ C, am = 1. We conclude with (1.5) in Theorem 1.1
that holonomy along τ ∈ Γτ also fit with (5.11). �

6. ABOUT THE ANALYTIC CLASSIFICATION

6.1. Criteria of convergence. If we start with a convergent foliation F ∈ Fol(U,C), then
one might ask when the formal 1-form ω given by Corollary 2.3 is convergent. This is not
true in general and one can find examples in [1] for instance. In fact, the convergence of
ω is equivalent to the existence of a convergent ϕ ∈ Diff(C, 0) conjugating the holonomy
group G to a subgroup of the models L or Ek,λ (see Theorem 2.2). Here follow some
criteria. The first one is a baby case of Bochner Theorem (see [12, §2.1]):

Proposition 6.1. If G ⊂ Diff(C, 0) is finite, then it is conjugated to a subgroup of L.

The next is a direct consequence of Koenigs Theorem (see [12, §2.1]):

Theorem 6.2. If G ⊂ Diff(C, 0) is not unitary, i.e. contains an element f(z) = az + · · ·
with |a| 6= 1, then it is conjugated to a subgroup of L.

The last citerion is due to Écalle and Liverpool (see [12, §2.8.1]):

Theorem 6.3. If G ⊂ Diff(C, 0) is resonant, i.e. has only elements f(z) = az + · · · with
am = 1 for some m, but is not virtually cyclic, then it is conjugated to a subgroup of Ek,λ.

Proof of Theorem 1.4. First observe that, due to Theorem 1.1, the holonomy of Ft is vir-
tually cyclic if, and only if t

1+tτ ∈ Q. On the other hand, if the holonomy ρFt
is not

virtually cyclic, then Theorem 6.3 asserts that it preserves the (analytic) 1-form ωk,λ and
the closed 1-form ω defining Ft constructed in Corollary 2.3 is convergent. If we have two
such elements t1, t2 in the pencil, then the full pencil can be recovered by the pencil of con-
vergent closed meromorphic 1-forms generated by ωt1 and ωt2 . Moreover, the holonomies
ρFt1

and ρFt2
being analytically conjugated to its formal normal form (5.5) or (5.11), we

can use classification part of Theorem 4.4 or (4.11) to conjugate (U,C) analytically to its
formal model of Theorem (5.3) or (5.4).

Now, if 3 elements of the pencil are convergent, say Ft1 ,Ft2 ,Ft3 , we can also recover
the full pencil analytically by considering those foliations Ft having constant cross-ratio
with those 3: for each c ∈ C \ {0, 1,∞} and at each point p ∈ U \ C close enough to C,
there is a unique direction TpF such that

cross-ratio(TpFt1 , TpFt2 , TpFt3 , TpF) = c.

This defines a foliationF on the germU\C; let us show that it extends on the neighborhood
of C. We check it in the case where all Tang(Fti ,Ftj ) = (k + 1)[C] and leave as an
exercise the case when one of the 3 foliations is F∞ with lower tangency p + 1. In local
coordinates (x, y) where C is defined by {y = 0} and Fti by dy

dx = si(x, y), with say

(6.1) s1(x, y) = 0, s2(x, y) = yk+1f(x, y) and s3(x, y) = yk+1g(x, y),
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with f, g, f − g 6= 0, ( ⇔ Tang(Fti ,Ftj ) = (k + 1)[C])

the foliation F is defined by

(6.2)
dy

dx
= s(x, y) with c =

s−s1
s2−s1
s−s3
s2−s3

⇔ s =
s1(s2 − s3)− cs3(s2 − s1)

(s2 − s3)− c(s2 − s1)
.

Clearly, if s1, s2, s3 satisfy (6.1), then

F :
dy

dx
= s = yk+1 cfg

(c− 1)f + g

which is clearly holomorphic for all c 6= 1 − g(0, 0)/f(0, 0). In particular, F belongs to
Fol(U,C). For obvious reasons of cardinality, one can find among those c two foliations
whose holonomy is not virtually cyclic and we can apply the previous reasoning. �

6.2. Examples of huge moduli. Recall (see [12, Section 2]) that the moduli space of
germs

(6.3) ϕ(z) = az +
∑

n>1

anz
n ∈ Diff(C, 0), |a| = 1

for analytic classification is infinite dimensional whenever a is periodic, or does not satisfy
the Brjuno diophantine condition. Let us be more precise.

If a = e2iπα, α ∈ R \ Q, denote by
(

pn

qn

)
n∈Z≥0

, pn, qn ∈ Z, qn > 0, the sequence

of truncations of the continued fraction for α (see [19]): this is the fastest approximation
sequence of α by rational numbers. Then Brjuno condition writes

(6.4) (B) :
∑

n≥0

log(qn+1)

qn
<∞

and means that the approximation is not very fast. Brjuno proved that, for a satisfying
condition (B), any germ (6.3) is analytically linearizable. On the other hand, Yoccoz
proved the sharpness of this condition: for any a non periodic and not satisfying (B),
then there exists non linearizable germs (6.3). More precisely, Yoccoz constructs examples
with infinitely many periodic points accumulating on 0, and can even prescribe, for each
periodic orbit, the multiplicator of the return map (see [26, 19]), giving an infinite number
of parameters of freedom. In other words, as soon as Brjuno condition (B) is violated, the
moduli space is infinite dimensional.

Corollary 6.4. For certain non torsion bundles L ∈ Jac(C) not satisfying diophantine
condition (1.2), and for any t0 ∈ C∗, there exists an infinite dimensional family of non
analytically equivalent neighborhoods (U,C) with NC = L and only F0 and Ft0 are
convergent in the formal pencil F̂ol(U,C). In particular, the transversal fibration F∞ is
divergent.

The similar result with a convergent fibration, i.e. with t0 = ∞, is well-known (see [1])
and can be obtained by suspension method.

Proof. Choose NC = L such that, in the linear model, the holonomy of the unitary fo-
liation F0 (1.3) is cyclic, generated by y 7→ ay with a violating condition (B). Then
we can realize all Yoccoz non linearizable dynamics as holonomy of F0 simultaneously
with the linear holonomy for Ft0 by using realization part of Theorem 4.4. If another for-
mal foliations Ft1 were convergent, then its holonomy representation (being non unitary)
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would be linearizable by Theorem 6.2 and we could conclude that (U,C) was itself ana-
lytically linearizable by applying classification part of Theorem 4.4 to the pair (Ft0 ,Ft1);
this would contradict that holonomy of F0 is not linearizable. In a similar way, if the for-
mal transversal fibration F∞ were convergent, then (U,C) would be the suspension of the
linear holonomy of Ft0 , and therefore itself linearizable; contradiction again. �

Diophantine condition (1.2) for the bundle NC implies Siegel diophantine condition
(see [19]) for the holonomy of its unitary foliation F0. We do not know what is the optimal
diophantine condition for NC to be linearizable. There are two problems. First, we do not
know what is the optimal condition on a pair (a1, aτ ) ∈ C∗ × C∗ such that there is a non
linearizable abelian representation with these multiplicators (see [17, 19]); when the group
< a1, aτ > is not cyclic, we might expect more constraint than just violating condition (B)
for both a1 and aτ . Secondly, we do not know if there exists examples of neighborhoods
(U,C) with divergent F0, so that even assuming that a1 or aτ satisfies condition (B), we
cannot conclude that all neighborhoods are linearizable.

Let us now turn to the torsion case am = 1. For each prescribed formal model
a exp(vk,λ), there is an explicit moduli space of infinite dimension for the analytic conju-
gacy in Diff(C, 0). This has been described in various ways by Voronin, Écalle, Martinet,
Ramis, Malgrange [25, 14, 5, 13] (see also [12, Section 2.7]): the moduli space is more or
less identified with Diff(C, 0)2k. We have a similar description of the moduli space for rep-
resentations π1(C) → Ek,λ as soon as the image is virtually cyclic, therefore completing
the statement of Theorem 6.3 (see [12, Sections 2.8 and 2.10]).

Proof of Theorem 1.5. We assume t1, t2 ∈ C and let the case t1 or t2 = ∞ for the reader.
Since the holonomy of Ft1 is assumed to be virtually cyclic, there is a huge moduli of
non analytically conjugated representations in Diff(C, 0). Using realization part of The-
orem 4.11, we can realize such holonomy representations for Ft1 simultaneously with
the formal model for Ft2 . After convenient conjugacy by a polynomial diffeomorphism
φ ∈ Diff(C, 0) of degree k + 1, we can assume that the pair of holonomies coincide up to
order k and fit with the formal invariants P of Theorem 5.4. �

Remark 6.5. In case ti
1+tiτ

∈ Q, i = 1, 2, we can deform independently the two holonomy
representations following the method presented in the proof of Theorem 1.5. Therefore, we
can explicitely describe the moduli space of neighborhoods with 2 convergent foliations
whenNC is torsion. However, in the non torsion case, even the moduli space of diffeomor-
phism germs of type (6.3) with a not satifying (B) is totally unknown: even the regularity
properties of its structure are widely open. We just know that we can inject Ecalle-Voronin
moduli: it suffices, for each resonant germ ψ, to use Yoccoz method to construct a germ
ϕ(z) = az + o(z) with infinitely many periodic orbits accumulating on z = 0 with all
return maps analytically equivalent to ψ.

APPENDIX: ACTION OF THE INVOLUTION ON FORMAL MODELS.

For each prescribed normal bundleNC and k = utype(U,C) <∞, we have given a list
(Uλ,Λ, C) of models for the classification up to formal equivalence inducing the identity
on C (see (1.1)). If we relax the fact that φ induces the identity on C, we have to take into
account the action of Aut(C). First of all, the two closed meromorphic 1-forms ω0 and
ω∞ given in (5.10) induce by duality two vector fields

v0 = ∂x and v∞ =
1

ω0(vΛ)
(∂x + vΛ)
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which generate a 2-dimensional group of symetries for (Uλ,Λ, C) acting transitively on C
and its complement U \ C; it induces an action by translation on C, but acting trivially on
H1(C). On the other hand, Aut(C) acts on H1(C) as a cyclic group of order q = 2, 3, 4
or 6. We would like to investigate the induced action on the set of normal forms. Except
the 3 exceptional configurations associated to q = 3, 4, 6, recall that q = 2 generically.
For convenience, denote by U(a1, aτ , λ,Λ) the neighborhood (Uλ,Λ, C) where (a1, aτ )
generate the unitary monodromy on NC (and therefore determine NC ), assuming that the
group < a1, aτ > has order m = ord(NC), and k = utype(U,C) is the Ueda type. Note
that we have a well defined action of C∗ on Λ defined, for ξ ∈ C∗ by ξ.(λ0, λ1..., λk′−1) =

(λ0, ξ
−1λ1, ..., ξ

−(k′−1)λk′−1)
Then one checks directly that the action of the involution induces a diffeomorphism

φ : U(a1, aτ , λ,Λ) → U(a−1
1 , a−1

τ ,−λ,−(ξm.Λ))

defined by (x, y) 7→ (−x, ξy), ξk = −1 (the Ueda type remains unchanged by this
conjugacy map).

Remark 6.6. In the exceptional cases q > 2 and when utype(C) < ∞, it is quite uneasy
to explicit conjugacy map associated to transformation of the elliptic curve of finite order
> 2. However, it is still possible to describe equivalent normal forms by the bifoliated
method, but this involves rather complicated formulae. As an example, the reader may
amuse himself to prove that, in Theorem 5.4 and when NC = OC , and for τ = i :

(1) When p = 1, U(λ,Λ) ∼ U(−iλ− λ0, i(λ0, ξ
−1λ1), 0, ..., 0), ξ = exp 3iπ/4.

(2) When k = 3, p = 2, U(λ,Λ) ∼ U(−iλ− λ0, i(λ0,−iλ1 +
λ2

2

2 ,−λ2))
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