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1 Knizhnik-Zamolodchikov differential equations

and coefficients of Drinfel’d associators

In 1986 [6], in order to study the linear representations of the braid group Bn

coming from the monodromy of the Knizhnik-Zamolodchikov differential equa-
tions, Drinfel’d introduced a class of formal power series Φ on noncommutative
variables over the finite alphabet X = {x0, x1}. Such a power series Φ is called
an associator. For n = 3, it leads to the following fuchsian noncommutative
differential equation with three regular singularities in {0, 1,+∞} :

(DE) dG(z) =

(

x0
dz

z
+ x1

dz

1− z

)

G(z).

Solutions of (DE) are power series, with coefficients which are mono-valued
functions on the simply connex domain Ω = C − (] −∞, 0] ∪ [1,+∞[) and can
be seen as multi-valued over1 C− {0, 1}, on noncommutative variables x0 and
x1. Drinfel’d proved that (DE) admits two particular mono-valued solutions on
Ω, G0(z) z̃ 0

exp[x0 log(z)] and G1(z) z̃ 1
exp[−x1 log(1 − z)] [7, 8]. and the

existence of an associator ΦKZ ∈ R〈〈X〉〉 such that G0 = G1ΦKZ [7, 8]. After
that, via representations of the chord diagram algebras, Lê and Murakami [17]
expressed the coefficients of ΦKZ as linear combinations of special values of
several complex variables zeta functions, {ζr}r∈N+ ,

ζr : Hr → R, (s1, . . . , sr) 7→
∑

n1>...>nk>0

1

ns1
1 . . . nsr

k

, (1)

whereHr = {(s1, . . . , sr) ∈ Cr|∀m = 1, .., r,
∑m

i=1 ℜ(si) > m}. For (s1, . . . , sr) ∈
Hr, one has two ways of thinking ζr(s1, . . . , sr) as limits, fulfilling identities
[14, 13, 1]. Firstly, they are limits of polylogarithms and secondly, as truncated
sums, they are limits of harmonic sums, for z ∈ C, |z |< 1, N ∈ N+ :

Lis1,...,sk(z) =
∑

n1>...>nk>0

zn1

ns1
1 . . . nsk

k

,Hs1,...,sk(N) =

N
∑

n1>...>nk>0

1

ns1
1 . . . nsk

k

. (2)

More precisely, if (s1, . . . , sr) ∈ Hr then, after a theorem by Abel, one has

lim
z→1

Lis1,...,sk(z) = lim
n→∞

Hs1,...,sk(n) =: ζr(s1, . . . , sk) (3)

1In fact, we have mappings from the connected covering ˜C− {0, 1}.
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else it does not hold, for (s1, . . . , sr) /∈ Hr, while Lis1,...,sk is well defined over
{z ∈ C, |z |< 1} and so is Hs1,...,sk , as Taylor coefficients of the following function

(1− z)−1Lis1,...,sk(z) =
∑

n≥1

Hs1,...,sk(n)z
n, for z ∈ C, |z |< 1. (4)

Note also that, for r = 1, ζ1 is nothing else but the famous Riemann zeta
function and, for r = 0, it is convenient to set ζ0 to the constant function 1R.
In all the sequel, for simplification, we will adopt the notation ζ for ζr, r ∈ N.

In this work, we will describe the regularized solutions of (DE).
For that, we are considering the alphabets X = {x0, x1} and Y0 = {ys}s≥0

equipped of the total ordering x0 < x1 and y0 > y1 > y2 > . . ., respectively.
Let Y = Y0 − {y0}. The free monoid generated by X (resp. Y, Y0) is denoted
by X∗ (resp. Y ∗, Y ∗

0 ) and admits 1X∗ (resp. 1Y ∗ , 1Y ∗

0
) as unit.

The sets of, respectively, polynomials and formal power series, with coeffi-
cients in a commutative Q-algebra A, over X∗ (resp. Y ∗, Y ∗

0 ) are denoted by
A〈X〉 (resp. A〈Y 〉, A〈Y0〉) and A〈〈X〉〉 (resp. A〈〈Y 〉〉, A〈〈Y0〉〉). The sets of poly-
nomials are the A-modules and endowed with the associative concatenation, the
associative commutative shuffle (resp. quasi-shuffle) product, over A〈X〉 (resp.
A〈Y 〉, A〈Y0〉). Their associated coproducts are denoted, respectively, ∆

⊔⊔
and

∆ . The algebras (A〈X〉, ⊔⊔ , 1X∗) and (A〈Y 〉, , 1Y ∗) admit the sets of Lyn-
don words denoted, respectively, by LynX and LynY , as transcendence bases
[18] (resp. [15, 16]).

For Z = X or Y , denoting LieA〈Z〉 and LieA〈〈Z〉〉 the sets of, respec-
tively, Lie polynomials and Lie series, the enveloping algebra U(LieA〈Z〉) is
isomorphic to the Hopf algebra (A〈X〉, ., 1Z∗ ,∆

⊔⊔
, e). We get also H :=

(A〈Y 〉, ., 1Y ∗ ,∆ , e) ∼= U(Prim(H )), where [15, 16]

Prim(H ) = spanA{π1(w)|w ∈ Y ∗}, (5)

π1(w) =

(w)
∑

k=1

(−1)k−1

k

∑

u1,...,uk∈Y +

〈w | u1 . . . uk〉u1 . . . uk. (6)

2 Indexing polylogarithms and harmonic sums

by words and their generating series

For any r ∈ N, since any combinatorial composition (s1, . . . , sr) ∈ Nr
+ can

be associated with words xs1−1
0 x1 . . . x

sr−1
0 x1 ∈ X∗x1 and ys1 . . . ysr ∈ Y ∗.

Similarly, any multi-indice2 (s1, . . . , sr) ∈ Nr can be associated with words
ys1 . . . ysr ∈ Y ∗

0 . Then let Lixr
0
(z) := (log(z))r/r!, and Lis1,...,sk and Hs1,...,sk be

indexed by words [14] : Li
x
s1−1
0 x1...x

sr−1
0 x1

:= Lis1,...,sr and Hys1 ...ysr
:= Hs1,...,sr .

Similarly, Li−s1,...,−sk and H−s1,...,−sk be indexed by words3 [4, 5] : Li−ys1 ...ysr
:=

2The weight of (s1, . . . , sr) ∈ Nr
+ (resp. Nr) is defined as the integer s1 + . . . + sr which

corresponds to the weight, denoted (w), of its associated word w ∈ Y ∗ (resp. Y ∗

0 ) and
corresponds also to the length, denoted by |u|, of its associated word u ∈ X∗.

3Note that, all these {Li−w}w∈Y ∗
0

and {H−
w}w∈Y ∗

0
are divergent at their singularities.
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Li−s1,...,−sr and H−
ys1 ...ysr

:= H−s1,...,−sr . In particular, H−
yr
0
(n) :=

(

n
r

)

= (n)r/r!

and Li−yr
0
(z) := (z/(1 − z))r. There exists a law of algebra, denoted by ⊤, in

Q〈〈Y0〉〉, such that he following morphisms of algebras are surjective [4]

H−
• : (Q〈Y0〉, , 1Y ∗

0
) −→ (Q{H−

w}w∈Y ∗

0
,×, 1), w 7−→ H−

w , (7)

Li−• : (Q〈Y0〉,⊤, 1Y ∗

0
) −→ (Q{Li−w}w∈Y ∗

0
,×, 1), w 7−→ Li−w , (8)

and kerH−
• = kerLi−• = Q〈{w − w⊤1Y ∗

0
|w ∈ Y ∗

0 }〉 [4]. Moreover, the families

{H−
yk
}k≥0 and {Li−yk

}k≥0 are Q-linearly independent.
On the other hand, the following morphisms of algebras are injective

H• : (Q〈Y 〉, , 1Y ∗) −→ (Q{Hw}w∈Y ∗ ,×, 1), w 7−→ Hw, (9)

Li• : (Q〈X〉, ⊔⊔ , 1X∗) −→ (Q{Liw}w∈X∗ ,×, 1), w 7−→ Liw (10)

Moreover, the families {Hw}w∈Y ∗ and {Liw}w∈X∗ are Q-linearly independent
and the families {Hl}l∈LynY and {Lil}l∈LynXare Q-algebraically independent.
But at singularities of {Liw}w∈X∗ , {Hw}w∈Y ∗ , the following convergent values

∀u ∈ Y ∗ − y1Y
∗, ζ(u) := Hu(+∞) and ∀v ∈ x0X

∗x1, ζ(v) := Liv(1) (11)

are no longer linearly independent and the values {Hl(+∞)}l∈LynY−{y1} (resp.
{Lil(1)}l∈LynX−X) are no longer algebraically independent [14, 19].

The graphs of the isomorphisms of algebras, Li• and H•, as generating series,
read then [2, 14]

L :=
∑

w∈X∗

Liw w =

ց
∏

l∈LynX

eLiSl
Pl , H :=

∑

w∈Y ∗

Hww =

ց
∏

l∈LynY

eHΣl
Πl ,(12)

where the PBW basis {Pw}w∈X∗ (resp. {Πw}w∈Y ∗) is expanded over the basis of
LieA〈X〉 (resp. U(Prim(H )), {Pl}l∈LynX (resp. {Πl}l∈LynY ), and {Sw}w∈X∗

(resp. {Σw}w∈Y ∗) is the basis of (Q〈Y 〉, ⊔⊔ , 1X∗) (resp. (Q〈Y 〉, , 1Y ∗)) con-
taining the transcendence basis {Sl}l∈LynX (resp. {Σl}l∈LynY ).

By termwise differentiation, L satisfies the noncommutative differential equa-
tion (DE) with the boundary condition L(z)

z̃→0+
ex0 log(z). It is immediate that

the power series H and L are group-like, for ∆ and ∆
⊔⊔
, respectively. Hence,

the following noncommutative generating series are well defined and are group-
like, for ∆ and ∆

⊔⊔
, respectively [14, 15, 16] :

Z :=

ց
∏

l∈LynY −{y1}

eHΣl
(+∞)Πl and Z

⊔⊔
:=

ց
∏

l∈LynX−X

eLiSl
(1)Pl . (13)

Definitions (3) and (11) lead then to the following surjective poly-morphism

ζ :
(Q1X∗ ⊕ x0Q〈X〉x1, ⊔⊔ , 1X∗)

(Q1Y ∗ ⊕ (Y − {y1})Q〈Y 〉, , 1Y ∗)
−։ (Z,×, 1), (14)

x0x
r1−1
1 . . . x0x

rk−1
1

ys1 . . . ysk
7−→

∑

n1>...>nk>0

n−s1
1 . . . n−sk

k ,(15)

3



where Z is theQ-algebra generated by {ζ(l)}l∈LynX−X (resp. {ζ(Sl)}l∈LynX−X),
or equivalently, generated by {ζ(l)}l∈LynY−{y1} (resp. {ζ(Σl)}l∈LynY−{y1}).

Now, let ti ∈ C, | ti |< 1, i ∈ N. For z ∈ C, |z |< 1, we have [11]
∑

n≥0

Lixn
0
(z) tn0 = zt0 and

∑

n≥0

Lixn
1
(z) tn1 = (1− z)−t1 . (16)

These suggest to extend the morphism Li• over (Dom(Li•), ⊔⊔ , 1X∗), via Lazard’s
elimination, as follows (subjected to be convergent)

LiS(z) =
∑

n≥0

〈S | xn
0 〉

logn(z)

n!
+

∑

k≥1

∑

w∈(x∗

0x1)kx∗

0

〈S | w〉Liw(z) (17)

with C〈X〉 ⊔⊔ Crat〈〈x0〉〉 ⊔⊔ Crat〈〈x1〉〉 ⊂ Dom(Li•) ⊂ Crat〈〈X〉〉 and Crat〈〈X〉〉 de-
notes the closure, of C〈X〉 in C〈〈X〉〉, by {+, ., ∗}. For example [11, 12],

1. For any i, j ∈ N+ and x ∈ X , since (t0x0 + t1x1)
∗ = (t0x0)

∗
⊔⊔(t1x1)

∗ and
(x∗)⊔⊔ i = (ix)∗ then Li(x∗

0)
⊔⊔ i

⊔⊔ (x∗

1)
⊔⊔ j (z) = zi(1− z)−j .

2. For a ∈ C, x ∈ X, i ∈ N+, since (ax)∗i = (ax)∗ ⊔⊔(1 + ax)i−1 then

Li(ax0)∗i(z) = za
i−1
∑

k=0

(

i− 1

k

)

(a log(z))k

k!
, (18)

Li(ax1)∗i(z) =
1

(1− z)a

i−1
∑

k=0

(

i− 1

k

)

(a log((1 − z)−1)k

k!
. (19)

3. Let V = (t1x0)
∗s1xs1−1

0 x1 . . . (trx0)
∗srxsr−1

0 x1, for (s1, . . . , sr) ∈ Nr
+. Then

LiV (z) =
∑

n1>...>nr>0

zn1

(n1 − t1)s1 . . . (nr − tr)sr
. (20)

In particular, for s1 = . . . = sr = 1, then one has

LiV (z) =
∑

n1,...,nr>0

Li
x
n1−1
0 x1...x

nr−1
0 x1

(z) tn1−1
0 . . . tnr−1

r

=
∑

n1>...>nr>0

zn1

(n1 − t1) . . . (nr − tr)
. (21)

4. From the previous points, one has

{LiS}S∈C〈X〉⊔⊔ C[x∗

0 ]⊔⊔ C[(−x∗

0)]⊔⊔ C[x∗

1 ]
= spanC

{

za

(1 − z)b
Liw(z)

}a∈Z,b∈N

w∈X∗

⊂ spanC{Lis1,...,sr}s1,...,sr∈Zr

⊕spanC{z
a|a ∈ Z}, (22)

{LiS}S∈C〈X〉⊔⊔ Crat〈〈x0〉〉⊔⊔ Crat〈〈x1〉〉 = spanC

{

za

(1 − z)b
Liw(z)

}a,b∈C

w∈X∗

⊂ spanC{Lis1,...,sr}s1,...,sr∈Cr

⊕spanC{z
a|a ∈ C}. (23)
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3 Noncommutative evolution equations

As we said previously Drinfel’d proved that (DE) admits two particular solu-
tions on Ω. These new tools and results can be considered as pertaining to the
domain of noncommutative evolution equations. We will, here, only mention
what is relevant for our needs.

Even for one sided 4 differential equations, in order to cope with limit initial
conditions (see applications below), one needs the two sided version.

Let then Ω ⊂ C be simply connected and open and H(Ω) denote the algebra
of holomorphic functions on Ω. We suppose given two series (called multipliers)
M1,M2 ∈ H(Ω)+〈〈X〉〉 (X is an alphabet and the subscript indicates that the
series have no constant term). Let then

(DE2) dS = M1S + SM2.

be our equation.

3.1 The main theorem

Theorem 1. Let

(DE2) dS = M1S + SM2. (24)

(i) Solutions of (DE2) form a C-vector space.

(ii) Solutions of (DE2) have their constant term (as coefficient of 1X∗) which
are constant functions (on Ω); there exists solutions with constant coeffi-
cient 1Ω (hence invertible).

(iii) If two solutions coincide at one point z0 ∈ Ω, they coincide everywhere.

(iv) Let be the following one-sided equations

(DE(1)) dS = M1S (DE(2)) dS = SM2. (25)

and let Si, i = 1, 2 a solution of (DE(i)), then S1S2 is a solution of (DE2).
Conversely, every solution of (DE2) can be constructed so.

(v) If Mi, i = 1, 2 are primitive and if S, a solution of (DE2), is group-like
at one point, (or, even at one limit point) it is globally group-like.

Proof. Omitted.

Remark 1. • Every holomorphic series S(z) ∈ H(Ω)〈〈X〉〉 which is group-
like (∆(S) = S ⊗ S and 〈S | 1X∗〉) is a solution of a left-sided dynamics
with primitive multiplier (take M1 = d(S)S−1 and M2 = 0).

• Invertible solutions of an equation of type S′ = M1S are on the same
orbit by multiplication on the right by invertible constant series i.e. let
Si, i = 1, 2 be invertible solutions of (DE(1)), then there exists an unique
invertible T ∈ C〈〈X〉〉 such that S2 = S1.T . From this and point (iv) of
the theorem, one can parametrize the set of invertible solutions of (DE2).

4As the left (DE) for instance.
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3.2 Application: Unicity of solutions with asymptotic con-

ditions.

In a previous work [3], we proved that asymptotic group-likeness, for a series,
implies5 that the series in question is group-like everywhere. The process above
(theorem (1), Picard’s process) can be performed, under certain conditions with
improper integrals we then construct the series L recursively as

〈L | w〉 =



















logn(z)

n!
if w = xn

0
∫ z

0

(

( x1

1−z )〈L | u〉
)

[s] ds if w = x1u
∫ z

0

(

(x0

z
)〈L | ux1x

n
0 〉
)

[s] ds if w = x0ux1x
n
0 .

one can check that

• this process is well defined at each step and computes the series L as below.

• L is solution of (DE), is exactly G0 and is group-like

We here only prove that G0 is unique using the theorem above. Consider the
series T = Le−x0 log(z). Then T is solution of an equation of the type (DE2)

T ′ = (
x0

z
+

x1

1− z
)T + T (

x0

z
) (26)

but limz→z0 G0e
−x0 log(z) = 1 so, by the point (iii) of theorem (1) one has

G0e
−x0 log(z) = Le−x0 log(z) and then G0 = L.
A similar (and symmetric) argument can be performed for G1 and then, in

this interpretation and context, ΦKZ is unique.

4 Double global regularization of associators

Global singularities analysis leads to to the following global renormalization [2]

lim
z→1

exp

(

−y1 log
1

1− z

)

πY (L(z)) = lim
n→∞

exp

(

∑

k≥1

Hyk
(n)

(−y1)
k

k

)

H(n)

= πY (Z⊔⊔
). (27)

Thus, the coefficients {〈Z
⊔⊔
|u〉}u∈X∗ (i.e. {ζ

⊔⊔
(u)}u∈X∗) and {〈Z |v〉}v∈Y ∗

(i.e. {ζ (v)}v∈Y ∗) represent the finite part of the asymptotic expansions,
in {(1 − z)−a logb(1 − z)}a,b∈N (resp. {n−aHb

1(n)}a,b∈N) of {Liw}u∈X∗ (resp.
{Hw}v∈Y ∗). On the other way, by a transfer theorem [10], let {γw}v∈Y ∗ be the
finite parts of {Hw}v∈Y ∗ , in {n−a logb(n)}a,b∈N, and let Zγ be their noncommu-
tative generating series. The map γ• : (Q〈Y 〉, , 1Y ∗) → (Z,×, 1), mapping w

5Under the condition that the multiplier be primitive, result extended as point (v) of the
theorem above.
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to γw, is then a character and Zγ is group-like, for ∆ . Moreover [15, 16],

Zγ = exp(γy1)

ց
∏

l∈LynY−{y1}

exp(ζ(Σl)Πl) = exp(γy1)Z . (28)

The asymptotic behavior leads to the bridge6 equation [2, 15, 16]

Zγ = B(y1)πY (Z⊔⊔
) or equivalently Z

⊔⊔
= B′(y1)πY (Z⊔⊔

) (29)

where B(y1) = exp(γy1 −
∑

k≥2(−y1)
kζ(k)/k) and B′(y1) = exp(−γy1)B(y1).

Similarly, there is C−
w ∈ Q and B−

w ∈ N, such that H−
w(N) ˜N→+∞

N (w)+|w|C−
w

and Li−w(z)z̃→1
(1− z)−(w)−|w|B−

w [4]. Moreover,

C−
w =

∏

w=uv,v 6=1Y ∗
0

((v)+ |v |)−1 and B−
w = ((w)+ |w |)!C−

w . (30)

Now, one can then consider the following noncommutative generating series :

L− :=
∑

w∈Y ∗

0

Li−w w, H− :=
∑

w∈Y ∗

0

H−
ww, C− :=

∑

w∈Y ∗

0

C−
ww. (31)

Then H− and C− are group-like for, respectively, ∆ and ∆
⊔⊔

and [4]

lim
z→1

h⊙−1((1 − z)−1)⊙ L−(z) = lim
N→+∞

g⊙−1(N)⊙H−(N) = C−, (32)

h(t) =
∑

w∈Y ∗

0

((w)+ |w |)!t(w)+|w|w and g(t) =

(

∑

y∈Y0

t(y)+1y

)∗

. (33)

Next, for any w ∈ Y ∗
0 , there exists then a unique polynomial p ∈ (Z[t],×, 1)

of degree (w)+ |w | such that [4]

Li−w(z) =

(w)+|w|
∑

k=0

pk
(1− z)k

=

(w)+|w|
∑

k=0

pke
−k log(1−z) ∈ (Z[(1 − z)−1],×, 1), (34)

H−
w(n) =

(w)+|w|
∑

k=0

pk

(

n+ k − 1

k − 1

)

=

(w)+|w|
∑

k=0

pk
k!

(n)k ∈ (Q[(n)•],×, 1), (35)

where7 where (n)• : N −→ Q mapping i to (n)i = n(n−1) . . . (n−i+1). In other
terms, for any w ∈ Y ∗

0 , k ∈ N, 0 ≤ k ≤ (w)+ |w |, one has 〈Li−w | (1 − z)−k〉 =
k!〈H−

w | (n)k〉.

6This equation is different from Jean Écalle’s one [9].
7Here, it is also convenient to denote Q[(n)•] the set of “polynomials” expanded as follows

∀p ∈,Q[(n)•], p =
d

∑

k=0

pk(n)k , deg(p) = d.
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Hence, denoting p̃ the exponential transformed of the polynomial p, one has
Li−w(z) = p((1 − z)−1) and H−

w(n) = p̃((n)•) with

p(t) =

(w)+|w|
∑

k=0

pkt
k ∈ (Z[t],×, 1) and p̃(t) =

(w)+|w|
∑

k=0

pk
k!

tk ∈ (Q[t],×, 1).(36)

Let us then associate p and p̃ with the polynomial p̌ obtained as follows

p̌(t) =

(w)+|w|
∑

k=0

k!pkt
k =

(w)+|w|
∑

k=0

pkt
⊔⊔ k ∈ (Z[t], ⊔⊔ , 1). (37)

Let us recall also that, for any c ∈ C, one has (n)c ˜n→+∞
nc = ec log(n) and,

with the respective scales of comparison, one has the following finite parts

f.p.z→1c log(1− z) = 0, {(1− z)a logb((1 − z)−1)}a∈Z,b∈N, (38)

f.p.n→+∞c logn = 0, {na logb(n)}a∈Z,b∈N. (39)

Hence, using the notations given in (34) and (35), one can see, from (38)
and (39), that the values p(1) and p̃(1) obtained in (36) represent

f.p.z→1 Li
−
w(z) = f.p.z→1 LiRw

(z) = p(1) ∈ Z, (40)

f.p.n→+∞H−
w(n) = f.p.n→+∞HπY (Rw)(n) = p̃(1) ∈ Q. (41)

One can use then these values p(1) and p̃(1), instead of the values B−
w and C−

w ,
to regularize, respectively, ζ

⊔⊔
(Rw) and ζγ(πY (Rw)) as showed Theorem 2 bel-

low because, essentially, B−
• and C−

• do not realize characters for, respectively,
(Q〈X〉, ⊔⊔ , 1X∗ ,∆

⊔⊔
, e) and (Q〈Y 〉, , 1Y ∗ ,∆ , e) [4].

Now, in virtue of the extension of Li•, defined as in (16) and (17), and of
the Taylor coefficients, the previous polynomials p, p̃ and p̌ given in (36)–(37)
can be determined explicitly thanks to

Proposition 1. 1. The following morphisms of algebras are bijective

λ : (Z[x∗
1 ], ⊔⊔ , 1X∗) −→ (Z[(1 − z)−1],×, 1), R 7−→ LiR,

η : (Q[y∗1 ], , 1Y ∗) −→ (Q[(n)•],×, 1), S 7−→ HS .

2. For any w = ys1 , . . . ysr ∈ Y ∗
0 , there exists a unique polynomial Rw be-

longing to (Z[x∗
1], ⊔⊔ , 1X∗) of degree (w)+ |w |, such that

LiRw
(z) = Li−w(z) = p((1− z)−1) ∈ (Z[(1 − z)−1],×, 1),

HπY (Rw)(n) = H−
w(n) = p̃((n)•) ∈ (Q[(n)•],×, 1).

In particular, via the extension, by linearity, of R• over Q〈Y0〉 and via the
linear independent family {Li−yk

}k≥0 in Q{Li−w}w∈Y ∗

0
, one has

∀k, l ∈ N, LiRyk
⊔⊔ Ryl

= LiRyk
LiRyl

= Li−yk
Li−yl

= Li−yk⊤yl
= LiRyk⊤yl

.
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3. For any w, one has p̌(x∗
1) = Rw.

4. More explicitly, for any w = ys1 , . . . ysr ∈ Y ∗
0 , there exists a unique poly-

nomial Rw belonging to (Z[x∗
1], ⊔⊔ , 1X∗) of degree (w)+ |w |, given by

Rys1 ...ysr
=

s1
∑

k1=0

s1+s2−k1
∑

k2=0

. . .

(s1+...+sr)−

(k1+...+kr−1)
∑

kr=0

(

s1
k1

)(

s1 + s2 − k1
k2

)

. . .

(

s1 + . . .+ sr − k1 − . . .− kr−1

kr

)

ρk1
⊔⊔ . . . ⊔⊔ ρkr

,

where, for any i = 1, . . . , r, if ki = 0 then ρki
= x∗

1 − 1X∗ else, for ki > 0,
denoting the Stirling numbers of second kind by S2(k, j)’s, one has

ρki
=

ki
∑

j=1

S2(ki, j)(j!)
2

j
∑

l=0

(−1)l

l!

(x∗
1)

⊔⊔ (j−l+1)

(j − l)!
.

Proposition 2 ([2, 15, 16]). With notations of (14), similar to the character
γ•, the poly-morphism ζ can be extended as follows

ζ
⊔⊔

: (Q〈X〉, ⊔⊔ , 1X∗) −→ (Z,×, 1), ζ : (Q〈Y 〉, , 1Y ∗) −→ (Z,×, 1)

satisfying, for any l ∈ LynY − {y1}, ζ⊔⊔ (πX(l)) = ζ (l) = γl = ζ(l) and, for
the generators of length (resp. weight) one, for X∗ (resp. Y ∗), γy1 = γ and
ζ
⊔⊔
(x0) = ζ

⊔⊔
(x1) = ζ (y1) = 0.

Now, to regularize {ζ(s1, . . . , sr)}(s1,...,sr)∈Cr , we use

Lemma 1 ([4]). 1. The power series x∗
0 and x∗

1 are transcendent over C〈X〉.

2. The family {x∗
0, x

∗
1} is algebraically independent over (C〈X〉, ⊔⊔ , 1X∗) within

(C〈〈X〉〉, ⊔⊔ , 1X∗).

3. The module (C〈X〉, ⊔⊔ , 1X∗)[x∗
0, x

∗
1, (−x0)

∗] is C〈X〉-free and the family
{(x∗

0)
⊔⊔ k

⊔⊔(x∗
1)

⊔⊔ l}(k,l)∈Z×N forms a C〈X〉-basis of it.

Hence, {w ⊔⊔(x∗
0)

⊔⊔ k
⊔⊔(x∗

1)
⊔⊔ l}

(k,l)∈Z×N

w∈X∗ is a C-basis of it.

4. One has, for any xi ∈ X, Crat〈〈xi〉〉 = spanC{(txi)
∗

⊔⊔ C〈xi〉|t ∈ C}.

Since, for any t ∈ C, | t |< 1, one has Li(tx1)∗(z) = (1 − z)−t and

HπY (tx1)∗ =
∑

k≥0

Hyk
1
tk = exp

(

−
∑

k≥1

Hyk

(−t)k

k

)

(42)

then, with the notations of Proposition 2, we extend extend the characters
ζ
⊔⊔

and γ•, defined in Proposition 2, over C〈X〉 ⊔⊔ C[x∗
1] and C〈Y 〉 C[y∗1 ],

respectively, as follows
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Proposition 3 ([4]). The characters ζ
⊔⊔

and γ• can be extended as follows

ζ
⊔⊔

: (C〈X〉 ⊔⊔ C[x∗
1], ⊔⊔ , 1X∗) −→ (C,×, 1C),

∀t ∈ C, | t |< 1, (tx1)
∗ 7−→ 1C.

γ• : (C〈Y 〉 C[y∗1 ], , 1Y ∗) −→ (C,×, 1C),

∀t ∈ C, | t |< 1, (ty1)
∗ 7−→ exp

(

γt−
∑

n≥2

ζ(n)
(−t)n

n

)

=
1

Γ(1 + t)
.

Therefore, in virtue of Propositions 1 and 3, we obtain then

Theorem 2. 1. For any (s1, . . . , sr) ∈ Nr
+ associated with w ∈ Y ∗, there

exists a unique polynomial p ∈ Z[t] of valuation 1 and of degree (w)+ |w |
such that

p̌(x∗
1) = Rw ∈ (Z[x∗

1], ⊔⊔ , 1X∗)
p((1− z)−1) = LiRw

(z) ∈ (Z[(1 − z)−1],×, 1),
p̃((n)•) = HπY (Rw)(n) ∈ (Q[(n)•],×, 1),

ζ
⊔⊔
(−s1, . . . ,−sr) = p(1) = ζ

⊔⊔
(Rw) ∈ (Z,×, 1),

γ−s1,...,−sr = p̃(1) = γπY (Rw) ∈ (Q,×, 1).

2. Let Υ(n) ∈ Q[(n)•]〈〈Y 〉〉 and Λ(z) ∈ Q[(1 − z)−1][log(z)]〈〈X〉〉 be the non-
commutative generating series of {HπY (Rw)}w∈Y ∗ and {LiRπY (w)

}w∈X∗ :

Υ :=
∑

w∈Y ∗

HπY (Rw)w and Λ :=
∑

w∈X∗

LiRπY (w)
w, with 〈Λ(z) | x0〉 = log(z).

Then Υ and Λ are group-like, for respectively ∆ and ∆
⊔⊔
, and :

Υ =

ց
∏

l∈LynY

e
HπY (RΣl

)Πl and Λ =

ց
∏

l∈LynX

e
LiRπY (Sl)

Pl .

3. Let Z−
γ ∈ Q〈〈Y 〉〉 and Z−

⊔⊔
∈ Z〈〈X〉〉 be the noncommutative generating

series of {γπY (Rw)}w∈Y ∗ and8 {ζ
⊔⊔
(RπY (w))}w∈X∗, respectively :

Z−
γ :=

∑

w∈Y ∗

γπY (Rw)w and Z−
⊔⊔

:=
∑

w∈X∗

ζ
⊔⊔
(RπY (w))w.

Then Z−
γ and Z−

⊔⊔
are group-like, for respectively ∆ and ∆

⊔⊔
, and :

Z−
γ =

ց
∏

l∈LynY

e
γπY (RΣl

)Πl and Z−
⊔⊔

=

ց
∏

l∈LynX

eζ⊔⊔ (πY (Sl))Pl .

Moreover, F.P.n→+∞Υ(n) = Z−
γ and F.P.z→1Λ(z) = Z−

⊔⊔
meaning that, for

any v ∈ Y ∗ and u ∈ X∗, one has

f.p.n→+∞〈Υ(n) | v〉 = 〈Z−
γ | v〉 and f.p.z→1〈Λ(z) | u〉 = 〈Z−

⊔⊔
| u〉. (43)

8On the one hand, by Proposition 2, one has 〈Z−

⊔⊔
| x0〉 = ζ⊔⊔ (x0) = 0.

On the other hand, since Ry1 = (2x1)∗ − x∗

1 then LiRy1
(z) = (1 − z)−2 − (1 − z)−1

and HπY (Ry1 )(n) =
(

n
2

)

−
(

n
1

)

. Hence, one also has 〈Z−

⊔⊔
| x1〉 = ζ⊔⊔ (RπY (y1)) = 0 and

〈Z−
γ | x1〉 = γπY (Ry1 ) = −1/2.
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