1 Knizhnik-Zamolodchikov differential equations and coefficients of Drinfel'd associators

In 1986 [START_REF]Drinfel'd-Quantum group[END_REF], in order to study the linear representations of the braid group B n coming from the monodromy of the Knizhnik-Zamolodchikov differential equations, Drinfel'd introduced a class of formal power series Φ on noncommutative variables over the finite alphabet X = {x 0 , x 1 }. Such a power series Φ is called an associator. For n = 3, it leads to the following fuchsian noncommutative differential equation with three regular singularities in {0, 1, +∞} :

(DE) dG(z) = x 0 dz z + x 1 dz 1 -z G(z).
Solutions of (DE) are power series, with coefficients which are mono-valued functions on the simply connex domain Ω = C -(] -∞, 0] ∪ [1, +∞[) and can be seen as multi-valued over 1 C -{0, 1}, on noncommutative variables x 0 and x 1 . Drinfel'd proved that (DE) admits two particular mono-valued solutions on Ω, G 0 (z) z 0 exp[x 0 log(z)] and G 1 (z) z 1 exp[-x 1 log(1 -z)] [START_REF]Drinfel'd-Quasi-Hopf Algebras[END_REF][START_REF]Drinfel'd-On quasitriangular quasi-hopf algebra and a group closely connected with gal(q/q)[END_REF]. and the existence of an associator Φ KZ ∈ R X such that G 0 = G 1 Φ KZ [START_REF]Drinfel'd-Quasi-Hopf Algebras[END_REF][START_REF]Drinfel'd-On quasitriangular quasi-hopf algebra and a group closely connected with gal(q/q)[END_REF]. After that, via representations of the chord diagram algebras, Lê and Murakami [START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF] expressed the coefficients of Φ KZ as linear combinations of special values of several complex variables zeta functions, {ζ r } r∈N+ ,

ζ r : H r → R, (s 1 , . . . , s r ) → n1>...>n k >0 1 n s1 1 . . . n sr k , (1) 
where H r = {(s 1 , . . . , s r ) ∈ C r |∀m = 1, .., r, m i=1 ℜ(s i ) > m}. For (s 1 , . . . , s r ) ∈ H r , one has two ways of thinking ζ r (s 1 , . . . , s r ) as limits, fulfilling identities [START_REF] Hoang | Petitot-Lyndon words, polylogarithmic functions and the Riemann ζ function[END_REF][START_REF] Hoang | Petitot-De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF][START_REF] Bui | Structure of Polyzetas and Explicit Representation on Transcendence Bases of Shuffle and Stuffle Algebras[END_REF]. Firstly, they are limits of polylogarithms and secondly, as truncated sums, they are limits of harmonic sums,

for z ∈ C, | z |< 1, N ∈ N + : Li s1,...,s k (z) = n1>...>n k >0 z n1 n s1 1 . . . n s k k , H s1,...,s k (N ) = N n1>...>n k >0 1 n s1 1 . . . n s k k . (2) 
More precisely, if (s 1 , . . . , s r ) ∈ H r then, after a theorem by Abel, one has

lim z→1 Li s1,...,s k (z) = lim n→∞ H s1,...,s k (n) =: ζ r (s 1 , . . . , s k ) ( 3 
)
1 In fact, we have mappings from the connected covering C -{0, 1}.

1 else it does not hold, for (s 1 , . . . , s r ) / ∈ H r , while Li s1,...,s k is well defined over {z ∈ C, | z |< 1} and so is H s1,...,s k , as Taylor coefficients of the following function

(1 -z) -1 Li s1,...,s k (z) = n≥1 H s1,...,s k (n)z n , for z ∈ C, | z |< 1. ( 4 
)
Note also that, for r = 1, ζ 1 is nothing else but the famous Riemann zeta function and, for r = 0, it is convenient to set ζ 0 to the constant function 1 R . In all the sequel, for simplification, we will adopt the notation ζ for ζ r , r ∈ N.

In this work, we will describe the regularized solutions of (DE).

For that, we are considering the alphabets X = {x 0 , x 1 } and Y 0 = {y s } s≥0 equipped of the total ordering x 0 < x 1 and y 0 > y 1 > y 2 > . . ., respectively. Let Y = Y 0 -{y 0 }. The free monoid generated by X (resp. Y, Y 0 ) is denoted by X * (resp. Y * , Y * 0 ) and admits 1 X * (resp. 1 Y * , 1 Y * 0 ) as unit. The sets of, respectively, polynomials and formal power series, with coefficients in a commutative Q-algebra A, over X * (resp. Y * , Y * 0 ) are denoted by A X (resp. A Y , A Y 0 ) and A X (resp. A Y , A Y 0 ). The sets of polynomials are the A-modules and endowed with the associative concatenation, the associative commutative shuffle (resp. quasi-shuffle) product, over A X (resp. A Y , A Y 0 ). Their associated coproducts are denoted, respectively, ∆ ⊔⊔ and ∆ . The algebras (A X , ⊔⊔ , 1 X * ) and (A Y , , 1 Y * ) admit the sets of Lyndon words denoted, respectively, by LynX and LynY , as transcendence bases [START_REF] Reutenauer | Free Lie Algebras[END_REF] (resp. [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]).

For Z = X or Y , denoting Lie A Z and Lie A Z the sets of, respectively, Lie polynomials and Lie series, the enveloping algebra U(Lie A Z ) is isomorphic to the Hopf algebra (A X , ., 1 Z * , ∆ ⊔⊔ , e). We get also H := (A Y , ., 1 Y * , ∆ , e) ∼ = U(Prim(H )), where [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] 

Prim(H ) = span A {π 1 (w)|w ∈ Y * }, (5) 
π 1 (w) = (w) k=1 (-1) k-1 k u1,...,u k ∈Y + w | u 1 . . . u k u 1 . . . u k . ( 6 
)
2 Indexing polylogarithms and harmonic sums by words and their generating series

For any r ∈ N, since any combinatorial composition (s 1 , . . . , s r ) ∈ N r + can be associated with words x s1-1 0 x 1 . . . x sr -1 0 x 1 ∈ X * x 1 and y s1 . . . y sr ∈ Y * . Similarly, any multi-indice 2 (s 1 , . . . , s r ) ∈ N r can be associated with words y s1 . . . y sr ∈ Y * 0 . Then let Li x r 0 (z) := (log(z)) r /r!, and Li s1,...,s k and H s1,...,s k be indexed by words [START_REF] Hoang | Petitot-Lyndon words, polylogarithmic functions and the Riemann ζ function[END_REF] : Li x s 1 -1 0 x1...x sr -1 0 x1 := Li s1,...,sr and H ys 1 ...ys r := H s1,...,sr . Similarly, Li -s1,...,-s k and H -s1,...,-s k be indexed by words 3 [START_REF] Duchamp | Ngo-Harmonic sums and polylogarithms at negative multi-indices[END_REF][START_REF] Duchamp | Double regularization of polyzetas at negative multiindices and rational extensions[END_REF] : Li - ys 1 ...ys r := 2 The weight of (s 1 , . . . , sr) ∈ N r + (resp. N r ) is defined as the integer s 1 + . . . + sr which corresponds to the weight, denoted (w), of its associated word w ∈ Y * (resp. Y * 0 ) and corresponds also to the length, denoted by |u|, of its associated word u ∈ X * .

3 Note that, all these {Li - w } w∈Y * 0 and {H - w } w∈Y * 0 are divergent at their singularities.

Li -s1,...,-sr and H - ys 1 ...ys r := H -s1,...,-sr . In particular, H -

y r 0 (n) := n r = (n) r /r! and Li - y r 0 (z) := (z/(1 -z)) r .
There exists a law of algebra, denoted by ⊤, in Q Y 0 , such that he following morphisms of algebras are surjective [START_REF] Duchamp | Ngo-Harmonic sums and polylogarithms at negative multi-indices[END_REF] H

- • : (Q Y 0 , , 1 Y * 0 ) -→ (Q{H - w } w∈Y * 0 , ×, 1), w -→ H - w , (7) 
Li -

• : (Q Y 0 , ⊤, 1 Y * 0 ) -→ (Q{Li - w } w∈Y * 0 , ×, 1), w -→ Li - w , (8) 
and ker

H - • = ker Li - • = Q {w -w⊤1 Y * 0 |w ∈ Y * 0 } [4]
. Moreover, the families {H - y k } k≥0 and {Li - y k } k≥0 are Q-linearly independent. On the other hand, the following morphisms of algebras are injective

H • : (Q Y , , 1 Y * ) -→ (Q{H w } w∈Y * , ×, 1), w -→ H w , (9) 
Li

• : (Q X , ⊔⊔ , 1 X * ) -→ (Q{Li w } w∈X * , ×, 1), w -→ Li w (10) 
Moreover, the families {H w } w∈Y * and {Li w } w∈X * are Q-linearly independent and the families {H l } l∈LynY and {Li l } l∈LynX are Q-algebraically independent. But at singularities of {Li w } w∈X * , {H w } w∈Y * , the following convergent values [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] are no longer linearly independent and the values {H l (+∞)} l∈LynY -{y1} (resp. {Li l (1)} l∈LynX-X ) are no longer algebraically independent [START_REF] Hoang | Petitot-Lyndon words, polylogarithmic functions and the Riemann ζ function[END_REF][START_REF] Zagier | Values of zeta functions and their applications[END_REF].

∀u ∈ Y * -y 1 Y * , ζ(u) := H u (+∞) and ∀v ∈ x 0 X * x 1 , ζ(v) := Li v (1)
The graphs of the isomorphisms of algebras, Li • and H • , as generating series, read then [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Hoang | Petitot-Lyndon words, polylogarithmic functions and the Riemann ζ function[END_REF] L :=

w∈X * Li w w = ց l∈LynX e LiS l P l , H := w∈Y * H w w = ց l∈LynY e HΣ l Π l ,( 12 
)
where the PBW basis {P w } w∈X * (resp. {Π w } w∈Y * ) is expanded over the basis of Lie A X (resp. U(Prim(H )), {P l } l∈LynX (resp. {Π l } l∈LynY ), and

{S w } w∈X * (resp. {Σ w } w∈Y * ) is the basis of (Q Y , ⊔⊔ , 1 X * ) (resp. (Q Y , , 1 Y * )) con- taining the transcendence basis {S l } l∈LynX (resp. {Σ l } l∈LynY ).
By termwise differentiation, L satisfies the noncommutative differential equation (DE) with the boundary condition L(z) z→0 + e x0 log(z) . It is immediate that the power series H and L are group-like, for ∆ and ∆ ⊔⊔ , respectively. Hence, the following noncommutative generating series are well defined and are grouplike, for ∆ and ∆ ⊔⊔ , respectively [START_REF] Hoang | Petitot-Lyndon words, polylogarithmic functions and the Riemann ζ function[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF] :

Z := ց l∈LynY -{y1}
e HΣ l (+∞)Π l and

Z ⊔⊔ := ց l∈LynX-X e LiS l (1)P l . ( 13 
)
Definitions ( 3) and ( 11) lead then to the following surjective poly-morphism

ζ : (Q1 X * ⊕ x 0 Q X x 1 , ⊔⊔ , 1 X * ) (Q1 Y * ⊕ (Y -{y 1 })Q Y , , 1 Y * ) -։ (Z, ×, 1), ( 14 
)
x 0 x r1-1 1 . . . x 0 x r k -1 1 y s1 . . . y s k -→ n1>...>n k >0 n -s1 1 . . . n -s k k , ( 15 
)
where Z is the Q-algebra generated by {ζ(l)} l∈LynX-X (resp. {ζ(S l )} l∈LynX-X ), or equivalently, generated by {ζ(l)} l∈LynY -{y1} (resp. {ζ(Σ l )} l∈LynY -{y1} ). Now, let

t i ∈ C, | t i |< 1, i ∈ N. For z ∈ C, | z |< 1, we have [11] n≥0 Li x n 0 (z) t n 0 = z t0 and n≥0 Li x n 1 (z) t n 1 = (1 -z) -t1 . ( 16 
)
These suggest to extend the morphism Li • over (Dom(Li • ), ⊔⊔ , 1 X * ), via Lazard's elimination, as follows (subjected to be convergent)

Li S (z) = n≥0 S | x n 0 log n (z) n! + k≥1 w∈(x * 0 x1) k x * 0 S | w Li w (z) (17) with C X ⊔⊔ C rat x 0 ⊔⊔ C rat x 1 ⊂ Dom(Li • ) ⊂ C rat X and C rat X de- notes the closure, of C X in C X , by {+, ., * }.
For example [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF][START_REF] Hoang | Symbolic Integration of meromorphic differential equation via Dirichlet functions[END_REF],

1. For any i, j ∈ N + and x ∈ X, since (t

0 x 0 + t 1 x 1 ) * = (t 0 x 0 ) * ⊔⊔ (t 1 x 1 ) * and (x * ) ⊔⊔ i = (ix) * then Li (x * 0 ) ⊔⊔ i ⊔⊔ (x * 1 ) ⊔⊔ j (z) = z i (1 -z) -j . 2. For a ∈ C, x ∈ X, i ∈ N + , since (ax) * i = (ax) * ⊔⊔ (1 + ax) i-1 then Li (ax0) * i (z) = z a i-1 k=0 i -1 k (a log(z)) k k! , (18) 
Li (ax1) * i (z) = 1 (1 -z) a i-1 k=0 i -1 k (a log((1 -z) -1 ) k k! . (19) 3 
. Let V = (t 1 x 0 ) * s1 x s1-1 0 x 1 . . . (t r x 0 ) * sr x sr -1 0 x 1 , for (s 1 , . . . , s r ) ∈ N r + . Then Li V (z) = n1>...>nr >0 z n1 (n 1 -t 1 ) s1 . . . (n r -t r ) sr . ( 20 
)
In particular, for s 1 = . . . = s r = 1, then one has

Li V (z) = n1,...,nr >0 Li x n 1 -1 0 x1...x nr -1 0 x1 (z) t n1-1 0 . . . t nr-1 r = n1>...>nr >0 z n1 (n 1 -t 1 ) . . . (n r -t r ) . (21) 
4. From the previous points, one has

{Li S } S∈C X ⊔⊔ C[x * 0 ] ⊔⊔ C[(-x * 0 )] ⊔⊔ C[x * 1 ] = span C z a (1 -z) b Li w (z) a∈Z,b∈N w∈X * ⊂ span C {Li s1,...,sr } s1,...,sr ∈Z r ⊕span C {z a |a ∈ Z}, (22) 
{Li S } S∈C X ⊔⊔ C rat x0 ⊔⊔ C rat x1 = span C z a (1 -z) b Li w (z) a,b∈C w∈X * ⊂ span C {Li s1,...,sr } s1,...,sr ∈C r ⊕span C {z a |a ∈ C}. ( 23 
)
3 Noncommutative evolution equations

As we said previously Drinfel'd proved that (DE) admits two particular solutions on Ω. These new tools and results can be considered as pertaining to the domain of noncommutative evolution equations. We will, here, only mention what is relevant for our needs.

Even for one sided4 differential equations, in order to cope with limit initial conditions (see applications below), one needs the two sided version.

Let then Ω ⊂ C be simply connected and open and H(Ω) denote the algebra of holomorphic functions on Ω. We suppose given two series (called multipliers) M 1 , M 2 ∈ H(Ω) + X (X is an alphabet and the subscript indicates that the series have no constant term). Let then

(DE 2 ) dS = M 1 S + SM 2 .
be our equation.

The main theorem

Theorem 1. Let

(DE 2 ) dS = M 1 S + SM 2 . (24) 
(i) Solutions of (DE 2 ) form a C-vector space.

(ii) Solutions of (DE 2 ) have their constant term (as coefficient of 1 X * ) which are constant functions (on Ω); there exists solutions with constant coefficient 1 Ω (hence invertible).

(iii) If two solutions coincide at one point z 0 ∈ Ω, they coincide everywhere.

(iv) Let be the following one-sided equations (DE (1) ) dS = M 1 S (DE (2) ) dS = SM 2 .

(25) and let S i , i = 1, 2 a solution of (DE (i) ), then S 1 S 2 is a solution of (DE 2 ).

Conversely, every solution of (DE 2 ) can be constructed so.

(v) If M i , i = 1, 2 are primitive and if S, a solution of (DE 2 ), is group-like at one point, (or, even at one limit point) it is globally group-like.

Proof. Omitted.

Remark 1.

• Every holomorphic series S(z) ∈ H(Ω) X which is grouplike (∆(S) = S ⊗ S and S | 1 X * ) is a solution of a left-sided dynamics with primitive multiplier (take M 1 = d(S)S -1 and M 2 = 0).

• Invertible solutions of an equation of type S ′ = M 1 S are on the same orbit by multiplication on the right by invertible constant series i.e. let S i , i = 1, 2 be invertible solutions of (DE (1) ), then there exists an unique invertible T ∈ C X such that S 2 = S 1 .T . From this and point (iv) of the theorem, one can parametrize the set of invertible solutions of (DE 2 ).

3.2 Application: Unicity of solutions with asymptotic conditions.

In a previous work [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF], we proved that asymptotic group-likeness, for a series, implies 5 that the series in question is group-like everywhere. The process above (theorem (1), Picard's process) can be performed, under certain conditions with improper integrals we then construct the series L recursively as

L | w =          log n (z) n! if w = x n 0 z 0 ( x1 1-z ) L | u [s] ds if w = x 1 u z 0 ( x0 z ) L | ux 1 x n 0 [s] ds if w = x 0 ux 1 x n 0 .
one can check that

• this process is well defined at each step and computes the series L as below.

• L is solution of (DE), is exactly G 0 and is group-like

We here only prove that G 0 is unique using the theorem above. Consider the series T = Le -x0 log(z) . Then T is solution of an equation of the type (DE 2 )

T ′ = ( x 0 z + x 1 1 -z )T + T ( x 0 z ) (26) 
but lim z→z0 G 0 e -x0 log(z) = 1 so, by the point (iii) of theorem ( 1) one has G 0 e -x0 log(z) = Le -x0 log(z) and then G 0 = L.

A similar (and symmetric) argument can be performed for G 1 and then, in this interpretation and context, Φ KZ is unique.

Double global regularization of associators

Global singularities analysis leads to to the following global renormalization [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF] 

lim z→1 exp -y 1 log 1 1 -z π Y (L(z)) = lim n→∞ exp k≥1 H y k (n) (-y 1 ) k k H(n) = π Y (Z ⊔⊔ ). ( 27 
)
Thus, the coefficients

{ Z ⊔⊔ |u } u∈X * (i.e. {ζ ⊔⊔ (u)} u∈X * ) and { Z |v } v∈Y * (i.e. {ζ (v)} v∈Y * ) represent the finite part of the asymptotic expansions, in {(1 -z) -a log b (1 -z)} a,b∈N (resp. {n -a H b 1 (n)} a,b∈N ) of {Li w } u∈X * (resp. {H w } v∈Y * ).
On the other way, by a transfer theorem [START_REF] Flajolet | Singularity Analysis of Generating Functions[END_REF], let {γ w } v∈Y * be the finite parts of {H w } v∈Y * , in {n -a log b (n)} a,b∈N , and let Z γ be their noncommutative generating series. The map γ • : (Q Y , , 1 Y * ) → (Z, ×, 1), mapping w to γ w , is then a character and Z γ is group-like, for ∆ . Moreover [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF],

Z γ = exp(γy 1 ) ց l∈LynY -{y1} exp(ζ(Σ l )Π l ) = exp(γy 1 )Z . ( 28 
)
The asymptotic behavior leads to the bridge6 equation [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]]

Z γ = B(y 1 )π Y (Z ⊔⊔ ) or equivalently Z ⊔⊔ = B ′ (y 1 )π Y (Z ⊔⊔ ) ( 29 
)
where B(y 1 ) = exp(γy 1 -k≥2 (-y 1 ) k ζ(k)/k) and B ′ (y 1 ) = exp(-γy 1 )B(y 1 ).

Similarly, there is

C - w ∈ Q and B - w ∈ N, such that H - w (N ) N →+∞ N (w)+|w| C - w and Li - w (z) z→1 (1 -z) -(w)-|w| B - w [4]. Moreover, C - w = w=uv,v =1 Y * 0 ((v)+ | v |) -1 and B - w = ((w)+ | w |)!C - w . (30) 
Now, one can then consider the following noncommutative generating series :

L -:= w∈Y * 0 Li - w w, H -:= w∈Y * 0 H - w w, C -:= w∈Y * 0 C - w w. (31) 
Then H -and C -are group-like for, respectively, ∆ and ∆ ⊔⊔ and [START_REF] Duchamp | Ngo-Harmonic sums and polylogarithms at negative multi-indices[END_REF] lim 

z→1 h ⊙-1 ((1 -z) -1 ) ⊙ L -(z) = lim N →+∞ g ⊙-1 (N ) ⊙ H -(N ) = C -, (32) h(t) 
Next, for any w ∈ Y * 0 , there exists then a unique polynomial p ∈ (Z[t], ×, 1) of degree (w

)+ | w | such that [4] Li - w (z) = (w)+|w| k=0 p k (1 -z) k = (w)+|w| k=0 p k e -k log(1-z) ∈ (Z[(1 -z) -1 ], ×, 1), (34) H - w (n) = (w)+|w| k=0 p k n + k -1 k -1 = (w)+|w| k=0 p k k! (n) k ∈ (Q[(n) • ], × , 1), (35) 
where7 where (n

) • : N -→ Q mapping i to (n) i = n(n-1) . . . (n-i+1). In other terms, for any w ∈ Y * 0 , k ∈ N, 0 ≤ k ≤ (w)+ | w |, one has Li - w | (1 -z) -k = k! H - w | (n) k . ∀p ∈, Q[(n)•], p = d k=0 p k (n) k , deg(p) = d.
Hence, denoting p the exponential transformed of the polynomial p, one has Li - w (z) = p((1 -z) -1 ) and H - w (n) = p((n) • ) with

p(t) = (w)+|w| k=0 p k t k ∈ (Z[t], ×, 1) and p(t) = (w)+|w| k=0 p k k! t k ∈ (Q[t], × , 1).(36) 
Let us then associate p and p with the polynomial p obtained as follows

p(t) = (w)+|w| k=0 k!p k t k = (w)+|w| k=0 p k t ⊔⊔ k ∈ (Z[t], ⊔⊔ , 1). (37) 
Let us recall also that, for any c ∈ C, one has (n) c n→+∞ n c = e c log(n) and, with the respective scales of comparison, one has the following finite parts

f.p. z→1 c log(1 -z) = 0, {(1 -z) a log b ((1 -z) -1 )} a∈Z,b∈N , (38) 
f.p. n→+∞ c log n = 0, {n a log b (n)} a∈Z,b∈N .

Hence, using the notations given in (34) and ( 35), one can see, from (38) and (39), that the values p(1) and p(1) obtained in (36) represent

f.p. z→1 Li - w (z) = f.p. z→1 Li Rw (z) = p(1) ∈ Z, (40) f 
.p. n→+∞ H - w (n) = f.p. n→+∞ H πY (Rw) (n) = p(1) ∈ Q. (41) 
One can use then these values p(1) and p(1), instead of the values B - w and C - w , to regularize, respectively, ζ ⊔⊔ (R w ) and ζ γ (π Y (R w )) as showed Theorem 2 bellow because, essentially, B -

• and C - • do not realize characters for, respectively, (Q X , ⊔⊔ , 1 X * , ∆ ⊔⊔ , e) and (Q Y , , 1 Y * , ∆ , e) [START_REF] Duchamp | Ngo-Harmonic sums and polylogarithms at negative multi-indices[END_REF]. Now, in virtue of the extension of Li • , defined as in ( 16) and [START_REF] Lê | Kontsevich's integral for Kauffman polynomial[END_REF], and of the Taylor coefficients, the previous polynomials p, p and p given in (36)-(37) can be determined explicitly thanks to Proposition 1.

1. The following morphisms of algebras are bijective

λ : (Z[x * 1 ], ⊔⊔ , 1 X * ) -→ (Z[(1 -z) -1 ], ×, 1), R -→ Li R , η : (Q[y * 1 ], , 1 Y * ) -→ (Q[(n) • ], ×, 1), S -→ H S .
2. For any w = y s1 , . . . y sr ∈ Y * 0 , there exists a unique polynomial R w belonging to

(Z[x * 1 ], ⊔⊔ , 1 X * ) of degree (w)+ | w |, such that Li Rw (z) = Li - w (z) = p((1 -z) -1 ) ∈ (Z[(1 -z) -1 ], ×, 1), H πY (Rw) (n) = H - w (n) = p((n) • ) ∈ (Q[(n) • ], ×, 1).
In particular, via the extension, by linearity, of R • over Q Y 0 and via the linear independent family {Li -

y k } k≥0 in Q{Li - w } w∈Y * 0 , one has ∀k, l ∈ N, Li Ry k ⊔⊔ Ry l = Li Ry k Li Ry l = Li - y k Li - y l = Li - y k ⊤y l = Li R y k ⊤y l .
3. For any w, one has p(x * 1 ) = R w . kr =0

s 1 k 1 s 1 + s 2 -k 1 k 2 . . . s 1 + . . . + s r -k 1 -. . . -k r-1 k r ρ k1 ⊔⊔ . . . ⊔⊔ ρ kr ,
where, for any i = 1, . . . , r, if k i = 0 then ρ ki = x * 1 -1 X * else, for k i > 0, denoting the Stirling numbers of second kind by S 2 (k, j)'s, one has [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF][START_REF] Ngoc | Structure of polyzetas and Lyndon words[END_REF]). With notations of (14), similar to the character γ • , the poly-morphism ζ can be extended as follows 1. The power series x * 0 and x * 1 are transcendent over C X .

ρ ki = ki j=1 S 2 (k i , j)(j!) 2 j l=0 (-1) l l! (x * 1 ) ⊔⊔ (j-l+1) (j -l)! . Proposition 2 ([
ζ ⊔⊔ : (Q X , ⊔⊔ , 1 X * ) -→ (Z, ×, 1), ζ : (Q Y , , 1 Y * ) -→ (Z, ×, 1) satisfying, for any l ∈ LynY -{y 1 }, ζ ⊔⊔ (π X (l)) = ζ (l) = γ l = ζ(l)
2. The family {x * 0 , x * 1 } is algebraically independent over (C X , ⊔⊔ , 1 X * ) within (C X , ⊔⊔ , 1 X * ).

The module

(C X , ⊔⊔ , 1 X * )[x * 0 , x * 1 , (-x 0 ) * ] is C X -free and the family {(x * 0 ) ⊔⊔ k ⊔⊔ (x * 1 ) ⊔⊔ l } (k,l)∈Z×N forms a C X -basis of it. Hence, {w ⊔⊔ (x * 0 ) ⊔⊔ k ⊔⊔ (x * 1 ) ⊔⊔ l } (k,l)∈Z×N w∈X * is a C-basis of it.
4. One has, for any 

x i ∈ X, C rat x i = span C {(tx i ) * ⊔⊔ C x i |t ∈ C}. Since, for any t ∈ C, | t |< 1, one has Li (tx1) * (z) = (1 -z) -t and H πY (tx1) * = k≥0 H y k 1 t k = exp - k≥1 H y k (-t) k k ( 
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= w∈Y * 0 (

 0 (w)+ | w |)!t (w)+|w| w and g(t) = y∈Y0 t (y)+1 y * .

4 .

 4 More explicitly, for any w = y s1 , . . . y sr ∈ Y * 0 , there exists a unique polynomial R w belonging to (Z[x * 1 ], ⊔⊔ , 1 X * ) of degree (w)+ | w |, given by R ys 1 ...ys r = ...+sr )-(k 1 +...+k r-1 )

  and, for the generators of length (resp. weight) one, for X * (resp. Y * ), γ y1 = γ and ζ ⊔⊔ (x 0 ) = ζ ⊔⊔ (x 1 ) = ζ (y 1 ) = 0. Now, to regularize {ζ(s 1 , . . . , s r )} (s1,...,sr)∈C r , we use Lemma 1 ([4]).

1 .

 1 42) then, with the notations of Proposition 2, we extend extend the characters ζ ⊔⊔ and γ • , defined in Proposition 2, over C X ⊔⊔ C[x * 1 ] and C Y C[y * 1 ], respectively, as follows Proposition 3 ([4]). The characters ζ ⊔⊔ and γ • can be extended as followsζ ⊔⊔ : (C X ⊔⊔ C[x * 1 ], ⊔⊔ , 1 X * ) -→ (C, ×, 1 C ), ∀t ∈ C, | t |< 1, (tx 1 ) * -→ 1 C . γ • : (C Y C[y * 1 ], , 1 Y * ) -→ (C, ×, 1 C ), ∀t ∈ C, | t |< 1, (ty 1 ) * -→ exp γt -For any (s 1 , . . . , s r ) ∈ N r+ associated with w ∈ Y * , there exists a unique polynomial p ∈ Z[t] of valuation 1 and of degree (w)+ | w | such that p(x * 1 ) = R w ∈ (Z[x * 1 ], ⊔⊔ , 1 X * ) p((1 -z) -1 ) = Li Rw (z) ∈ (Z[(1 -z) -1 ], ×, 1), p((n) • ) = H πY (Rw) (n) ∈ (Q[(n) • ], ×, 1), ζ ⊔⊔ (-s 1 , . . . , -s r ) = p(1) = ζ ⊔⊔ (R w )∈ (Z, ×, 1), γ -s1,...,-sr = p(1) = γ πY (Rw ) ∈ (Q, ×, 1).

2 .e

 2 Let Υ(n) ∈ Q[(n) • ] Y and Λ(z) ∈ Q[(1 -z) -1 ][log(z)] X be the noncommutative generating series of {H πY (Rw) } w∈Y * and {Li R π Y (w) } w∈X * : Υ := w∈Y * H πY (Rw) w and Λ := w∈X * Li R π Y (w) w, with Λ(z) | x 0 = log(z).Then Υ and Λ are group-like, for respectively ∆ and ∆ ⊔⊔ , and : Li R π Y (S l ) P l .3. Let Z - γ ∈ Q Y and Z - ⊔⊔ ∈ Z X be the noncommutative generating series of {γ πY (Rw) } w∈Y * and 8 {ζ ⊔⊔ (R πY (w) )} w∈X * , respectively :Z - γ := w∈Y * γ πY (Rw) w and Z - ⊔⊔ := w∈X * ζ ⊔⊔ (R πY (w) )w.Then Z - γ and Z - ⊔⊔ are group-like, for respectively ∆ and ∆ ⊔⊔ , and :Z - γ = ց l∈LynY e γ π Y (R Σ l ) Π land Z - ⊔⊔ = ց l∈LynX e ζ ⊔⊔ (πY (S l ))P l . Moreover, F.P. n→+∞ Υ(n) = Z - γ and F.P. z→1 Λ(z) = Z - ⊔⊔ meaning that, for any v ∈ Y * and u ∈ X * , one has f.p. n→+∞ Υ(n) | v = Z - γ | v and f.p. z→1 Λ(z) | u = Z - ⊔⊔ | u . (43)

As the left (DE) for instance.

Under the condition that the multiplier be primitive, result extended as point (v) of the theorem above.

This equation is different from Jean Écalle's one[START_REF]Jean Écalle-L'équation du pont et la classification analytique des objets locaux[END_REF].

Here, it is also convenient to denote Q[(n)•] the set of "polynomials" expanded as follows

On the one hand, by Proposition 2, one hasZ - ⊔⊔ | x 0 = ζ ⊔⊔ (x 0 ) = 0. On the other hand, since Ry 1 = (2x 1 ) * -x * 1 then Li Ry 1 (z) = (1 -z) -2 -(1 -z) -1 and H π Y (Ry 1 ) (n) = n 2 -n 1 . Hence, one also has Z - ⊔⊔ | x 1 = ζ ⊔⊔ (R π Y (y 1 ) ) = 0 and Z - γ | x 1 = γ π Y (Ry 1 ) = -1/2.