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On the estimation of sorption isotherm
coefficients using the optimal experiment

design approach

Julien Berger∗, Thomas Busser, Denys Dutykh, and Nathan Mendes

Abstract. This paper deals with an inverse problem applied to the field of building

physics to experimentally estimate three sorption isotherm coefficients of a wood fiber

material. First, the mathematical model, based on convective transport of moisture, the

optimal experiment design (OED) and the experimental set-up are presented. Then mea-

surements of relative humidity within the material are carried out, after searching the

OED, which is based on the computation of the sensitivity functions and a priori values

of the unknown parameters employed in the mathematical model. The OED enables to

plan the experimental conditions in terms of sensor positioning and boundary conditions

out of 20 possible designs, ensuring the best accuracy for the identification method and,

thus, for the estimated parameter. Two experimental procedures were identified: i) single

step of relative humidity from 10% to 75% and ii) multiple steps of relative humidity

10 − 75 − 33 − 75% with an 8-day duration period for each step. For both experiment

designs, it has been shown that the sensor has to be placed near the impermeable bound-

ary. After the measurements, the parameter estimation problem is solved using an interior

point algorithm to minimize the cost function. Several tests are performed for the defini-

tion of the cost function, by using the L 2 or L∞ norm and considering the experiments

separately or in the same time. It has been found out that the residual between the

experimental data and the numerical model is minimized when considering the discrete

Euclidean norm and both experiments separately. It means that two parameters are es-

timated using one experiment while the third parameter is determined with the other

experiments. Two cost functions are defined and minimized for this approach. Moreover,

the algorithm requires less than 100 computations of the direct model to obtain the solu-

tion. In addition, the OED sensitivity functions allow to capture an approximation of the

probability distribution function of the estimated parameters. The determined sorption

isotherm coefficients enable to calibrate the numerical model and fit better the experimen-

tal data, reducing the discrepancies usually reported in the literature that underestimate

the moisture adsorption and overestimate the desorption processes.
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1. Introduction

Moisture in buildings has been a subject of major concern since the eighties. It may affect
energy consumption and demand so we can mention at least four International Energy
Agency projects conducted in the last 30 years to promote global research on this subject
(Annexes 14 , 24 , 41 and 55) [1]. Furthermore, moisture can also have a dramatic impact
on occupants’ health and on material deterioration. Several tools have been developed to
simulate the moisture transport in constructions as described in [54], which can be used to
predict conduction loads associated to porous elements and mold growth risk in building
enclosures. Nevertheless, those tools require input parameters containing temperature- and
moisture- dependent hygrothermal properties.

1.1. Moisture transport in constructions

The following system of differential equations established by Luikov [39] represents the
physical phenomenon of heat and mass transfer through capillary porous materials:

∂U

∂t
= ∇ ·

(

am∇U + δ am∇T
)

, (1.1a)

c b ρ 0

∂T

∂t
= ∇ ·

(

λ∇T
)

+ r 12∇ ·

(

am1 ρ 0

(

∇U + δ 1∇T
)

)

, (1.1b)

where U is the relative concentration of moisture in the porous body, T the temperature,
am the mass transfer coefficient for vapor (denoted with the subscript 1) and liquid inside
the body, δ the thermal-gradient coefficient, ρ 0 the specific mass of the dry body, c b the
specific heat of the body and, r 12 the latent heat of vaporization.

In building physics, those equations represent the physics that occurs in the building
porous envelope and indoor porous elements such as furniture, textiles, etc.. Regarding the
envelope, the phenomenon is investigated to analyze the influence of moisture transfer on
the total heat flux passing through the wall, with the objective of estimating the heat losses.
They are also studied to analyze the durability of walls and to avoid disorders due to the
presence of moisture as, for instance, mold growth, shrinking or interstitial condensation.
This aspect is of major importance for wall configurations involving several materials with
different properties, where moisture can be accumulated at the interface between two
materials. Durability problems may also appear when considering important moisture
sources as wind driven rain or rising damp problems. These analyses are performed by
computing solutions to the partial differential equations. For this, numerical methods are
used due to the nonlinearity of the material properties, depending on moisture content
and temperature, and the non-stationary boundary conditions, defined as Robin-type and
varying according to climatic data. Most of the numerical approaches consider standard
discretization techniques. For the time discretisation, the Euler implicit [25, 42, 43]
or explicit [34] schemes are adopted. Regarding the spatial discretisation, works in [40]
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are based on finite-differences methods, in [5, 25, 41, 42] on finite-volume methods and
in [30, 49] on finite-element methods. It is important to note that the solution of the
equations requires the calculation of large systems of nonlinear equations (an order of
10 6 for 3-D problems). Furthermore, the problem deals with different time scales. The
diffusive phenomena and the boundary conditions evolve on the time scale of seconds
or minutes while the building performance usual analysis is done for a time interval of
one year or even longer when dealing with durability or mold growth issues. Thus, the
computation of heat and moisture transfer in porous material in building physics has a
non-negligible computational cost. Recently, innovative and efficient methods of numerical
simulation have been proposed. Some improved explicit schemes, enabling to overcome the
stability restrictions of standard Euler explicit schemes, have been proposed in [26, 28].
An accurate and fast numerical scheme based on the Scharfetter–Gummel idea has
been proposed in [12] to solve the advection-diffusion moisture differential equation. Some
attempts based on model reduction methods, such as Proper Generalized Decomposition
[9, 10, 13], Proper Orthogonal Decomposition [8, 40] and Spectral Reduced Order Models
[27], have also been proposed.

1.2. Inverse problems in building physics

While some research focuses on numerical methods to compute the solution of the so-
called direct problem to analyze the physical phenomena, some studies aim at solving
inverse problems of heat and mass transfer in porous materials. In this case, the focus is
the estimation of material properties

(

γ ◦

0 , c
◦ , a ◦

m , δ ◦
)

using experimental data denoted

as
(

T exp , U exp

)

by minimizing a thoroughly chosen cost function J:
(

γ ◦

0 , c
◦ , a ◦

m , δ ◦
)

= argmin J ,

with J =

∣

∣

∣

∣

∣

∣

∣

∣

T exp − T , U exp − U

∣

∣

∣

∣

∣

∣

∣

∣

,

where

∣

∣

∣

∣

∣

∣

∣

∣

. . .

∣

∣

∣

∣

∣

∣

∣

∣

is certain vector-norm.

Here, the inverse problem is an inverse medium problem, as it aims at estimating the
coefficient of the main equation [31, 32].Two contexts can be distinguished. First, when
dealing with existing buildings to be retrofitted, samples cannot be extracted from the
walls to determine their material properties. Therefore, some in-situ measurements are
carried out according to a non-destructive design. The experimental data can be gathered
by temperature, relative humidity, flux sensors and infrared thermography, among others.
In most of the case, measurements are made at the boundary of the domain. From the
obtained data, parameter estimation enables to determine the material thermo-physical
properties. As mentioned before, the properties are moisture and temperature dependent.
Therefore, the parameter identification problem needs to estimate functions that can be
parameterized. Moreover, in such investigations, there is generally a few a priori informa-
tion on the material properties. In [14], the thermal conductivity of an old historic building
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experimental

model

adsorption phase desorption phase

Figure 1. Illustration of the discrepancies observed when comparing
experimental data to results from numerical model of moisture transfer in porous

material.

wall composed of different materials is presented. In [50], the thermo-physical properties
of materials composing a wall are estimated. In [44], the heat capacity and the thermal
conductivity of a heterogeneous wall are determined. Once this parameter estimated, effi-
cient simulations using the direct model can be performed to predict the wall conduction
loads and at the end choose adequate retrofitting options.

Another issue arises when comparing the numerical model results and experimental data.
Some discrepancies were observed as reported in several studies [12, 29] and illustrated in
Figure 1. A material, with an initial moisture content U 0 , is submitted to an adsorption
and desorption cycles. Results from the simulation always underestimate the moisture
adsorption process or overestimate the desorption process. To answer this issue, models
can be calibrated using in-situ measurements for adapting the material properties to reduce
the discrepancies between model predictions and real observations. In [35], moisture- and
temperature-dependent diffusivity and thermo-physical properties are estimated using only
temperature measurements under a drying process. In [9], the moisture permeability and
advection coefficients are estimated using relative humidity measurements in a wood fiber
material. In these cases, a priori information on the material properties are known thanks
to complementary measurements based on well-established standards.

In terms of methodology for the estimation of parameters, several approaches can be
distinguished in literature. Descent algorithms, based on the Levenberg–Marquardt

algorithm, are used in [44]. Stochastic approaches, using Bayesian inferences and the
Markov chain Monte Carlo algorithm, are applied in [14, 15, 21, 48]. Genetic algorithm
based approaches are adopted to minimize the cost function in [18, 55]. Model reduction
techniques, based on Proper Orthogonal Decomposition, are employed in [19].
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1.3. Problem statement

This article presents the estimation of the moisture sorption isotherm coefficients of a
wood fiber material, represented by three parameters, using an experimental facility, in
order to reduce the discrepancies between model predictions and real performance. The
estimation of the unknown parameters, based on observed data and identification methods,
strongly depends on the experimental protocol. In particular, the boundary conditions
imposed to the material and the location of sensors are of major importance. In [11], the
concept of searching the Optimal Experiment Design (OED) was used to determine the
best experimental conditions in terms of imposed flux and quantity and location of sensors,
aiming at estimating the thermo-physical and hygrothermal properties of a material. The
OED provides the best accuracy of the identification method and, thus, the estimated
parameters.

Therefore, the main issue in this paper is to use the methodology to determine the OED
considering the experimental set-up before starting the data acquisition. First, the optimal
boundary conditions and location of sensors are defined. Then, the experimental campaign
is carried out, respecting the OED. From the experimental data, the parameters are esti-
mated using an interior-point algorithm with constraints on the unknowns. This article
is organized as follows. Section 2 presents the physical problem with its mathematical
formulation and the OED methodology. In Section 3, the existing experimental set up is
described. The OED search providing the different possibilities for the estimation of one or
several parameters with the experimental set up is presented in Section 4. The parameters
are estimated in Section 5 and then the main conclusions are finally outlined.

2. Methodology

2.1. Physical problem

The physical problem involves unidimensional moisture convective transport through
a porous material defined by the spatial domain Ωx = [ 0, L ]. The moisture transfer
occurs due to capillary migration, moisture diffusion and advection of the vapor phase.
The physical problem represented by the convective moisture equation [7, 20, 39, 51]:

∂ρ

∂t
=

∂

∂x

(

d
∂P v

∂x

)

−
∂

∂x

(

P v

R v T
v

)

, (2.1)

where ρ is the volumetric moisture content of the material, d the global moisture transport
coefficient, P v the vapor pressure, T the temperature, v the mass average velocity and, R v

the water vapor gas constant. Eq. (2.1) is derived from Eq. (1.1a) by adding the moisture
advection term. Moreover, the temperature remains the same at the boundaries. Even if
heat transfer occurs in the material due to phase change, the temperature variations in the
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material are assumed negligible. In addition, we can express the transient term as:

∂ρ

∂t
=

∂ρ

∂φ

∂φ

∂P v

∂P v

∂t
+

∂ρ

∂T

∂T

∂t
.

Under isothermal conditions, the second right-hand term of the equation above also van-
ishes. Considering the relation ρ = f (φ) = f (P v, T ), obtained from material properties
and from the relation between the vapor pressure P v and the relative humidity φ , we get:

∂ρ

∂t
= f ′(P v)

1

P s

∂P v

∂t
.

For the advection term of Eq. (2.1), with the assumption of isothermal conditions and
constant mass average velocity v , we can write:

∂

∂x

(

P v

R v T
v

)

≃
v

R v T

∂P v

∂x
.

Eq. (2.1) can be therefore rewritten as:

f ′(P v)
1

P s

∂P v

∂t
=

∂

∂x

(

d
∂P v

∂x

)

−
v

R v T

∂P v

∂x
. (2.2)

The material properties f ′(P v) and d depend on the vapor pressure P v . We denote by:

c
def
:=

f ′(P v)

P s

, the moisture storage coefficient

a
def
:=

v

R v T
, the global moisture advection coefficient .

Therefore, the physical problem of convective moisture transport through a porous material
can be mathematically described as:

c
∂P v

∂t
=

∂

∂x

[

d
∂P v

∂x

]

− a
∂P v

∂x
. (2.3)

The moisture capacity c is assumed to be a second-degree polynomial of the relative hu-
midity, while the moisture permeability d is considered as a first-degree polynomial of the
relative humidity:

c = c 0 + c 1 φ + c 2 φ
2 , (2.4a)

d = d 0 + d 1 φ . (2.4b)

At x = 0 , the surface is in contact with the ambient air at temperature T ∞ and relative
humidity φ∞ . Thus, the boundary condition is expressed as:

d(φ )
∂P v

∂x
− aP v = h

(

P v − P s

(

T ∞
)

φ∞( t )

)

, (2.5)

where h is the vapor convective transfer coefficient, considered as constant. At x = L ,
the surface is impermeable:

d
∂P v

∂x
− aP v = 0 . (2.6)
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At t = 0, the vapor pressure is supposed to be uniform within the material

P v = P i
v . (2.7)

2.2. Dimensionless formulation

For building porous material as concrete, insulation and brick, the coefficients scales with
10 2 for the sorption curve c and 10−11 for the moisture permeability d and the advection
coefficient a . Therefore, while performing a mathematical and numerical analysis of a given
practical problem, it is of capital importance to obtain a unitless formulation of governing
equations. For this, the vapor pressure is transformed to a dimensionless quantities:

u =
P v

P ref
v

, u i =
P i

v

P ref
v

, u∞ =
P s

(

T ∞
)

φ∞

P ref
v

.

The time and space domains are also modified:

x ⋆ =
x

L
, t ⋆ =

t

t ref
,

where L is the length of the material and t ref a characteristic time. The material properties
are changed considering a reference value for each parameter:

c ⋆ =
c

c 0

, d ⋆ =
d

d 0

,

In this way, dimensionless numbers are highlighted:

Pé =
a · L

d 0

, Bi =
h · L

d 0

, Fo =
t ref · d 0

L 2 · c 0

.

The dimensionless moisture Biot number Bi quantifies the importance of the moisture
transfer at the bounding surface of the material. The transient transfer mechanism is
characterised by the Fourier number Fo whereas the Péclet number Pé measures only
the importance of moisture advection. The quantities c ⋆( u ) and d ⋆( u ) give the variation
of storage and permeability coefficients from the reference state of the material. The
dimensionless governing equations are finally written as:

c ⋆( u )
∂u

∂t ⋆
= Fo

∂

∂x ⋆

(

d ⋆( u )
∂u

∂x ⋆
− Pé u

)

, t ⋆ > 0 , x ⋆
∈
[

0, 1
]

, (2.8a)

d ⋆( u )
∂u

∂x ⋆
− a ⋆ u = Bi · ( u − u∞ ) , t ⋆ > 0 , x ⋆ = 0 , (2.8b)

d ⋆( u )
∂u

∂x ⋆
− a ⋆ u = 0 , t ⋆ > 0 , x ⋆ = 1 , (2.8c)

u = u i , t ⋆ = 0 , x ⋆
∈
[

0, 1
]

. (2.8d)
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where functions c ⋆( u ) and d ⋆( u ) are given by:

c ⋆( u ) = 1 + c ⋆
1 u + c ⋆

2 u
2 ,

d ⋆( u ) = 1 + d ⋆
1 u .

The direct problem, defined by Eq. (2.8), is solved using a finite-difference standard
discretisation method. An embedded adaptive in time Runge–Kutta scheme combined
with a Scharfetter–Gummel spatial discretisation approach, is used [12]. It is adaptive
and embedded to estimate local error in time with low extra cost. The algorithm was
implemented in the Matlab environment. For the sake of notation compactness, the upper-
script ⋆ standing for dimensionless parameters, is no longer used.

2.3. The Optimal Experiment Design

Efficient computational algorithms for recovering parameters P given an observation u exp

of the field u (x, t) have already been proposed. Readers may refer to [46] for a primary
overview of different methods. They are based on the minimization of the cost function
J [P ] . For this purpose, it is required to equate to zero the derivatives of J [P ] , with
respect to each of the unknown parameters pm to find critical points. Associated to this
necessary condition for the minimization of J [P ], the scaled dimensionless local sensitivity
function [24] is introduced:

Θm (x, t) =
σ p

σ
,u

∂u

∂pm

, ∀m ∈
{

1, . . . ,M
}

, (2.9)

where σu is the variance of the error measuring u exp. The parameter scaling factor σ p

equals to 1 as we consider that prior information on parameter pm has low accuracy. It is
important to note that all algorithms have been developed considering the dimensionless
problem in order to compare only the order of variation of parameters and observation,
avoiding the effects of units and scales.

The function Θm measures the sensitivity of the estimated field u with respect to changes
in the parameter pm [4, 45, 46]. A small magnitude of Θm indicates that large changes in
pm induce small changes in u. The estimation of parameter pm is therefore difficult, in this
case. When the sensitivity coefficient Θm is small, the inverse problem is necessarily ill-
conditioned. If the sensitivity coefficients are linearly dependent, the inverse problem is also
ill-posed. Therefore, to get an optimal evaluation of parameters P , it is desirable to have
linearly-independent sensitivity functions Θm with large magnitudes for all parameters pm .
These requirements ensure the best conditioning of the computational algorithm to solve
the inverse problem and thus the better accuracy of the estimated parameter.

It is possible to define the experimental design in order to meet these requirements. The
issue is to find the optimal sensor location X ◦ and the optimal amplitude φ∞, ◦ of the
relative humidity of the ambient air at the material bounding surface, x = 0 . To search
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this optimal experiment design, we introduce the following measurement plan:

π
def
:=
{

X , φ∞
}

. (2.10)

In the analysis of optimal experiments for estimating the unknown parameter(s) P , a
quality index describing the recovering accuracy is the D−optimum criterion [2, 3, 6, 22,
23, 53]:

Ψ = det
[

F ( π )
]

, (2.11)

where F ( π ) is the normalized Fisher information matrix [36, 52] defined as:

F ( π ) =
[

Φ i j

]

, ∀(i, j) ∈
{

1, . . . ,M
} 2

, (2.12a)

Φ i j =

N
∑

n=1

ˆ τ

0

Θ i (xn , t) Θ j (xn , t) dt . (2.12b)

The matrix F ( π ) characterizes the total sensitivity of the system as a function of the
measurement plan π (Eq. (2.10)). The OED search aims at finding a measurement plan
π ⋆ for which the objective function (Eq. (2.11)) reaches the maximum value:

π ◦ =
{

X ◦ , φ∞,◦
}

= argmax
π

Ψ . (2.13)

To solve Eq. (2.13), a domain of variation Ωπ is considered for the sensor position X
and the amplitude φ∞ of the boundary conditions. Then, the following steps are carried
out for each value of the measurement plan π =

{

X , φ∞
}

in the domain Ωπ . First,
the direct problem, defined by Eqs. (2.3)-(2.7), is solved. Then, given the solution P v for
a fixed value of the measurement plan, the next step consists of computing the sensitivity

coefficients Θm =
∂u

∂pm

, using also an embedded adaptive time Runge–Kutta scheme

combined with central spatial discretisation. Then, with the sensitivity coefficients, the
Fisher matrix (2.12)(a,b) and the D−optimum criterion (2.11) are computed. The solu-
tion of the direct and sensitivity problems are obtained for a given a priori parameter P

and, in this case, the validity of the OED depends on this knowledge. If there is no prior
information, the methodology of the OED can be done using an outer loop on the param-
eter P sampled using, for instance, Latin hypercube or Halton or Sobol quasi-random
samplings. Interested readers may refer to [11] for further details on the computation of
sensitivity coefficients.

An interesting remark with this approach is that the probability distribution of the
unknown parameter pm can be estimated from the distribution of the measurements of the
field u and from the sensitivity Θm . The probability P of u is given by:

F ( ū ) = P

{

u( x , t , pm ) 6 ū

}

.
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Using the sensitivity function Θm, the probability can be approximated by:

F ( ū ) ≃ P

{

u( x , t , p ◦

m ) + Θm ·
(

pm − p ◦

m

)

6 ū

}

,

Assuming Θm > 0 , we get:

F ( ū ) = P

{

pm 6 p ◦

m +
ū − u( x , t , p ◦

m )

Θm

}

.

Therefore, using a change o variable, the cumulative derivative function of the probability
of the unknown parameter pm is estimated by:

F ( p̄m ) = P

{

pm 6 p̄m

}

,

= F

(

u + Θm ·
(

p̄m − p ◦

m

)

)

.

When Θm < 0 , the cumulative derivative function of the probability is given by:

F ( p̄m ) = 1 − F

(

u + Θm ·
(

p̄m − p ◦

m

)

)

.

It gives a local approximation of the probability distribution of the unknown parameter
pm , at a reduced computational cost. Moreover, the approximation is reversible. Thus, if
one has the distribution of the unknown parameter, it is possible to get the one of field u .

3. Experimental facility

The test facility used to carry out the experiment is illustrated in Figure 2. It is com-
posed of two connected climatic chambers. The temperature of each chamber is controlled
independently with a thermostatically-controlled water bath allowing water to recirculate
in a heat exchanger. The relative humidity is kept fixed using saturated salt solutions of
MgCl 2 and NaCl. Relative humidity values in chambers 1 and 2 are fixed to φ 1 = 33 %
and φ 2 = 75 % , respectively. Two door locks, at each side, allow the operator to insert
or remove samples to minimize system disturbances. They enable easy and instantaneous
change in humidity boundary conditions for the samples while passing from one chamber
to another. Another climatic chamber is also available used to initially condition materials
at φ 0 = 10 % .

The temperature and relative humidity fields are measured within the samples with
wireless sensors from the HygroPuce range (Waranet industry). The accuracy is ± 2 % for
the relative humidity and ± 0.5 ◦C for the temperature and the dimensions are 0.6 cm

thickness and 1.6 cm diameter, as illustrated in Figure 3(a). The sensors are placed within
the material by cutting the samples. The total uncertainty on the measurement of relative
humidity can be evaluated considering the propagation of the uncertainty due to sensor
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Storage coefficient c c( u ) = c 0 + c 1 u + c 2 u
2

c 0 = 1 , c 1 = −9.79 · 10−1 , c 2 = 1.003

Diffusion coefficient d d( u ) = d 0 + d 1 u

d 0 = 1 , d 1 = 0.29

Péclet number Pé = 1.1 · 10−2

Fourier number Fo = 4 · 10−3

Biot number Bi = 13.7

Table 1. A priori dimensionless material properties of wood fiber from [9, 47].

measurement and due to their location. In [9] the total uncertainty on the measurement
has been evaluated to ∆φ = 2 % .

The material investigated is the wood fibre, which properties have been determined in
[9, 47] and are shown in its dimensionless form in Table 1. The reference parameter used to
compute the unitless parameters are t ref = 3600 s , d 0 = 5.17 s , c 0 = 2.85 kg/(m 3.Pa) ,
L = 0.08 m and P ref

v = 1404Pa . It constitutes a priori information on the unknown
parameters Fo , c 1 and c 2 . The samples are cylindrical, with a 10 cm diameter and 8 cm

thickness in order to avoid border effects and to minimize perturbations by sensors placed
within the sample. Moreover, to ensure unidimensional moisture transfer and a null flux
condition at x = 1, the samples are covered with aluminium tape and glued on a white
acrylic seal, as illustrated in Figure 3(b). The convective moisture transport coefficient at
x = 0 has been estimated experimentally in [9, 16] following the protocol detailed in [38].
The corresponding Biot number is reported in Table 1.

Finally, the experimental facility is used to submit the samples to a single or multiple
steps of relative humidity. For a single step, the boundary conditions are defined as:

u∞ ( t ) =







u i , t = 0 ,

u c , t > 0 .

For the case of multiple steps, we set:

u∞ ( t ) =



























u i , t = 0

u 1
c , t ∈

(

0 , τ
]

,

u 2
c , t ∈

(

τ , 2 τ
]

,

u 3
c , t ∈

(

2 τ , 3 τ
]

,

where the initial condition belongs to u i ∈
{

0.2 , 0.6 , 1.5
}

, the climatic chamber

boundary condition
(

u c , u
1
c , u

2
c , u

3
c

)

∈
{

0.6 , 1.5
}

and the duration of the step τ ∈
{

24 , 48 , 72 , 96 , 120 , 144 , 168 , 192
}

. A total of 20 designs are possible for providing
measurements to estimate the unknown parameters Fo , c 1 and c 2 .
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Figure 2. Illustration of the RH-box experimental facility.

(a) (b)

Figure 3. Sensors of relative humidity and temperature (a) and wood fibre
samples (b) with white acrylic seal and with aluminium tape.

Single step
Multiple step

Case 1 Case 2

Design u i u c Design τ Design τ Design τ Design τ

1 0.2 0.66 5 1 9 5 13 1 17 5

2 0.2 1.5 6 2 10 6 14 2 18 6

3 0.66 1.5 7 3 11 7 15 3 19 7

4 1.5 0.66 8 4 12 8 16 4 20 8

Case 1: u i = 0.2 , u 1
c = 0.66 , u 2

c = 1.5 , u 3
c = 0.66

Case 2: u i = 0.2 , u 1
c = 1.5 , u 2

c = 0.66 , u 3
c = 1.5

Table 2. Possible designs according to the experimental facility.
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4. Searching the OED

4.1. Estimation of one parameter

This Section focuses on the estimation of one parameter within Fo , c 1 or c 2 with experi-
ments coming from single- or multiple-step designs. It should be noted that by estimating
parameter Fo , the complete sorption isotherm curve is defined, according to the dimen-
sionless quantities defined in Section 2.2.

4.1.1 Single step

Figure 4(a) gives the variation of the criterion Ψ for the four single-step designs. For
the estimation of parameters Fo or c 1 , the criterion reaches its maximal value for design
2 , corresponding to a step from u i = 0.1 to u c = 1.5 . For parameter c 2 , the design 4
is the optimal one. It can be noted that, for parameter c 1 , the relative criterion Ψ attains
80% for the design 4 . It could be an interesting alternative to estimate this parameter.
The variation of the criterion is related to the sensitivity function of each parameter. As
noticed in Figures 5(a) and 5(b), functions Θ have higher magnitudes of variation for the
OED. The variation of Ψ as a function of the sensor location X is shown in Figure 4(b) for
the OED. The optimal sensor location is at the boundary of the material opposite from the
perturbations. If required for practical purpose, the sensor can be placed in the interval
X ∈

[

0.9 , 1
]

, ensuring to reach 95% of the criterion Ψ . Results have similar tendencies
for the three parameters.

4.1.2 Multiple steps

Figure 6(a) shows the variation of the relative criterion Ψ for the designs considering
multiple steps of relative humidity. It increases with the duration τ of the steps. Thus, for
the group of designs 5 to 12 and the group 13 to 20 , the criteria reach their maximum for
designs 12 and 20 , respectively, corresponding to the step duration τ = 8 . The group
5 to 12 corresponds to a multiple step u 1

c = 0.66 , u 2
c = 1.5 , u 3

c = 0.66 . For them,
the criterion does not attains 80% of the maximal criteria. Therefore, it is preferable to
choose among designs 18 to 20, with a multiple step u 1

c = 1.5 , u 2
c = 0.66 , u 3

c = 1.5 ,
and a duration τ > 6 to estimate the parameters. Figures 7(a), 7(b) and 7(c) compare
the sensitivity function of each parameter for three different designs. The quantity Θ has
higher magnitude of variation for the OED than for the others. Moreover, for the design 5 ,
the duration of the step is so short that there is almost no variation in the sensitivity when
occurring the first step for t ∈

[

0 , 24
]

. As for the previous case, the optimal sensor

position is X ∈
[

0.9 , 1
]

.
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Design
1 2 3 4

Ψ
/Ψ

m
a
x
(-
)

0

0.2

0.4

0.6

0.8

1 Fo
c 1
c 2

(a)
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Fo
c 1
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X ◦

(b)

Figure 4. Variation of the criterion Ψ for the four possible single step designs
(a) and as a function of the sensor position X for the OED (b), in the case of

estimating one parameter.
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Θ
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Fo, design 2
c 1, design 2
c 2, design 4

(a)
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Θ
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0.05

Fo
c 1
c 2

(b)

Figure 5. Sensitivity coefficients Θ for parameters Fo , c 1 and c 2 for the OED

(a) and for design 1 (b) (X = X ◦).

4.2. Estimation of several parameters

The issue is now to estimate two or three parameters defining the moisture capacity Fo ,
c 1 and c 2 . First of all, it is important to notice in Figures 5 and 7, that the sensitivity
function Θ of the parameters have a strong correlation. The interval of variation of the
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Design
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Figure 6. Variation of the criterion Ψ for the sixteen possible designs (a) and
as a function of the sensor position X for the OED (b), in the case of estimating

one parameter.

correlation coefficients for all the designs are:

r
(

Fo , c 1

)

∈
[

0.94 , 0.99
]

,

r
(

c 1 , c 2

)

∈
[

0.92 , 0.99
]

,

r
(

Fo , c 2

)

∈
[

0.71 , 0.95
]

.

Therefore, the estimation of the three parameters at the same time using only one exper-
iment might be a difficult task. In addition, over all the possible designs, the couple of
parameters

(

Fo , c 2

)

is the one with the lower correlation. Therefore, the OED search will
only consider their estimation.

4.2.1 Single step

Figure 8(a) gives the variation of the criterion Ψ for the four possible designs, considering
a single step of relative humidity. The OED is reached for design 4 . However, the design 2
represents an interesting alternative as more than 95% of the maximum criterion is reached.
The sensor should be placed between X ∈

[

0.9 , 1
]

.

4.2.2 Multiple steps

The variation of the criterion Ψ for the sixteen designs is shown in Figure 9. It increases
with the duration of the steps τ . The OED is reached for the design considering a multiple
step u i = 0.2 , u 1

c = 1.5 , u 2
c = 0.66 and u 3

c = 1.5 , with a duration τ = 8 . As for the
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Figure 7. Sensitivity coefficients Θ for parameters Fo , c 1 and c 2 for the OED
(design 20) (a), design 12 (b) and design 5 (c) (X = X ◦).

previous case, the OED is defined for a sensor placed near the boundary of the material
x = 1 .

5. Estimation of the unknown parameters

5.1. Methodology

As mentioned before, the sensitivity functions of parameters Fo , c 1 and c 2 are strongly
correlated and the estimation of the three parameters using one single experiment might
be a laborious task. To answer this issue, a single step, referenced as experiment A , will be
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Figure 8. Variation of the criterion Ψ for the four possible designs of single
step of relative humidity (a) and as a function of the sensor position X for the

OED (b), in the case of estimating the couple of parameters
(

Fo , c 2
)

.
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Figure 9. Variation of the criterion Ψ for the sixteen possible designs of
multiple steps of relative humidity (a) and as a function of the sensor position X

for the OED (b), in the case of estimating the couple of parameters
(

Fo , c 2
)

.

used for the estimation of the parameter c 1 and a multiple step, referenced as experiment
B , for the parameters

(

Fo , c 2

)

, which sensitivity functions are less correlated. According
to the results of the OED, the sensor is placed near the border x = 1. For the boundary
conditions, the single step will be operated from u i = 0.2 to u c = 1.5 . The OED
multiple step is defined as u i = 0.2 , u 1

c = 1.5 , u 2
c = 0.66 , u 3

c = 1.5 and a duration
of each step τ = 8 .
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To estimate the unknown parameters, the following cost function is defined by mini-
mizing the residual between the experimental data and the numerical results of the direct
model:

Jn
i =

∣

∣

∣

∣

∣

∣

∣

∣

u − u exp ,n

∣

∣

∣

∣

∣

∣

∣

∣

L i

, n ∈
{

1 , 2 , 3
}

, i ∈
{

2 , ∞
}

.

Several expressions of the cost function are tested. The subscript i denotes the norm used
for the cost function J : i = 2 stands for the standard discrete L 2 norm while i = ∞

for the L∞ (uniform) norm.
The upper-script n = 1 implies that both experiments are considered separately. The

single step is used for estimating parameter c 1 and the multiple step experiment for the
parameters

(

Fo , c 2

)

. In such case, there is a cost function according to each experiment:

J 1A
i

(

Fo , c 2

)

=

∣

∣

∣

∣

∣

∣

∣

∣

u − u exp ,A

∣

∣

∣

∣

∣

∣

∣

∣

L i

, for the single step experiment

J 1B
i

(

c 1

)

=

∣

∣

∣

∣

∣

∣

∣

∣

u − u exp ,B

∣

∣

∣

∣

∣

∣

∣

∣

L i

, for the multiple step experiment .

The estimation of the unknown parameters proceeds in an iterative approach as described
in the algorithm 1. In this case, a tolerance η = 10−6 has been chosen.

1

(

Fo , c 1 , c 2

) k
=
(

Fo , c 1 , c 2

) apr
;

2 while
∣

∣

∣

∣

(

Fo , c 1 , c 2

) k
−
(

Fo , c 1 , c 2

) k−1
,
∣

∣

∣

∣ > η do

3

(

Fo , c 2

) k
= argmin J 1A

i ;

4

(

c 1

) k
= argmin J 1B

i ;

5 k = k + 1 ;

6 end

Algorithm 1: Estimation of the unknown parameters
(

Fo , c 1 , c 2
)

considering both

experiments separately with an iterative process.

When n =
{

2 , 3
}

, both experiments of single and multiple steps are considered at the

same time, without any distinction. For n = 2 , parameters
(

Fo , c 1 , c 2

)

are estimated
at once. An additional test, for n = 3 is carried by considering both experiments to
estimate all the material properties parameters

(

Fo , c 1 , c 2 , d 1 , Pé
)

. Thus, in these
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cases, the cost functions are defined as:

J 2
2

(

Fo , c 1 , c 2

)

=

∣

∣

∣
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∣
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,
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for n = 2 , and for n = 3 :

J 3
2
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)
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Table 3 synthesizes all tests performed according to the definition of the cost function
J. The cost function J is minimized using function fmincon in the Matlab environment,
providing an efficient interior-point algorithm with constraint on the unknown parameters
[17]. Here, the box-type constraints are defined with upper and lower bound for the
parameters:

p ◦
∈
[

0.8 , 1.5
]

·p apr ,

where the upper-scripts ◦ and apr denote the estimated and a priori values of the pa-
rameters, respectively. The bounds have been defined by performing previous tests and
analyzing the parameter impact on the calibration.

In order to quantify the quality of measured data, we estimate the noise inherent to any
real physical measurement. By assuming that the noise ξ (ω) is Gaussian (i.e. ξ (ω) ∼

N (0, σ 2)), linear and additive, its variance σ 2 can be thus estimated. Moreover, we assume
that the underlying signal is smooth. In order to extract the noise component, the signal
is approximated locally by a low-order polynomial representing the trend. Then, the trend
is removed by using a special filter, leaving us with the pure noise content, which can be
further analyzed using the standard statistical techniques. For the considered data, the
variance equals:

σ ≃ 0.01 , for the single-step experiments ,

σ ≃ 0.008 , for the multiple-step experiments .
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Definition of the cost function J
Tests

1 2 3 4 5 6 7 8 9

Experiments considered separately x x x

Experiments at the same time (3 parameters to estimate) x x x

Experiments at the same time (5 parameters to estimate) x x x

Euclidean norm x x x

Infinite norm x x x x

Sum of the infinite norms x x

Table 3. Synthesis of the tests carried out with the expression of the cost function.

The noise variance does not necessarily correspond to the measurement accuracy. This
measure provides a lower bound of this error, i.e. the accuracy cannot be lower than the
noise present in the measurement.

5.2. Results

Figure 10(a) shows the variation of the residual between the measured data and the
numerical results for different tests performed. The residual is minimized for tests 1, 4
and 7, corresponding to the involving considering the Euclidean norm for the compu-
tation of the cost functions. The tendencies are similar for both experiments. It can be
noted that the residual is lower when estimating only three parameters

(

Fo , c 1 , c 2

)

and
not all the parameters of the material properties. Figure 10(b) provides the number of
computations of the direct problem. As expected, the tests 1 to 3, considering both ex-
periments separately, require a few more computations of the direct problem, due to the
iterative procedure. Globally, the algorithm requires less than 100 computations, which is
extremely low compared to stochastic approaches. For instance in [14], 10 4 computations
are necessary to estimate the thermal conductivity of two materials by solving an inverse
heat transfer problem.

The comparison of the measured data and numerical results is illustrated in Figure 11(a)
for the one-step experiment. Figure 11(b) shows it for the multiple-step procedure, for
the test 1 . Results of the numerical model are provided for the a priori and estimated
three parameters. As mentioned in the Introduction section, the numerical model with a
priori parameters underestimates the moisture adsorption and overestimates the desorp-
tion processes. With the calibrated model, i.e. with the estimated parameters, there is a
better agreement between the numerical results and the experimental data. Figures 11(c)
and 11(d) show the residual. It is uncorrelated, highlighting a satisfactory estimation of
the parameters. Nevertheless, it can be noted that some discrepancies remain between the
experimental data and the numerical results. This can be specifically observed at t = 200 ,
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in Figures 11(b) and 11(d), for which some explanations are possible. First, the mathemat-
ical model may fail in representing the physical phenomenon. Some assumptions such as
isothermal conditions, unidimensional transport and constant velocity might contribute to
the differences observed between experimental and numerical results. Although the experi-
ment has been conceived to be isothermal, slight variations in the temperature field occurs
due to mechanisms of phase change that may affect the profile of vapor pressure, which
is highly temperature dependent. On the other hand, despite the low relative humidity
uncertainty, other uncertainties appear such as the interference of sensors on the moisture
transfer through the sample, contact resistances and no perfect impermeabilization. An-
other possible explanation is associated to the parametrization of the material properties
that can be improved. An interesting alternative could be to search for time varying pa-
rameters by adding a regularization term in the cost function J . The convergence of the
parameter estimation is shown in Figure 12(a). On the contrary to parameters Fo and c 1 ,
the a priori values of c 2 is not far from the estimated one. After one iteration, the algo-
rithm almost estimates the parameters. The number of computations of the direct model
for test 1 is given in Figure 12(b). Only two global iterations are required to compute the
solution of the inverse problem. More computations are required at the first iteration as
the unknown parameters are more distant from the estimated optimal ones.

The computation of the sensitivity functions of the parameters to be estimated enables
to approximate their probability density functions. The error is assumed as a normal
distribution N( 0 , σ 2

eff ) with its standard deviation σ eff computed by adding the ones due
to uncertainty and to the noise:

σ eff = σnoise + σ error .

Thus, the probability distribution is computed for different times as illustrated in Figure 13.
As reported in Figure 7(a), the sensitivity function of parameters Fo and c 1 is maximum
and minimum at t = 207 and t = 4 , respectively. It explains why the probability
function is maximum at t = 207 for these parameters. Similar results can be observed
when comparing the sensitivity function of parameter c 2 in Figure 5(a) and the probability
function in Figure 13(c).

6. Final remarks

6.1. Conclusion

In the context of building physics, inverse problems are encountered to estimate moisture
dependent hygrothermal properties of porous materials, using measurements associated
to heat and moisture transport. Two applications are distinguished. In the first case,
concerning the diagnosis of existing building walls, there are few a priori estimations of the
material properties. Moreover, measurements must be non-intrusive and non-destructive.
In the second case, measurements are performed in the laboratory to calibrate the numerical
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Figure 10. Residual between the measured data and numerical results for both
experiments (a) and number of computations of the direct problem (b) for the
different definition of the cost function J .

model with the experimental data. This article is encompassed in these conditions, focused
on the estimation of three moisture sorption isotherm coefficients of a wood fiber material.

First, the OED methodology has been described and used for searching the optimal ex-
periment design, ensuring to provide the best accuracy of the identification method for the
parameter estimation. The approach is based on the sensitivity functions of the unknown
parameters, enabling to determine sensor location within the material and boundary con-
ditions, according to an existing facility among 20 possible designs. It has been carried
out considering a priori values of the unknown parameters. The facility allows to submit
material to relative humidity steps on one surface, being all others moisture impermeable.
Results have enhanced two designs: i) single step of relative humidity from 10% to 75%
and ii) multiple steps of relative humidity 10− 75− 33− 75% , with a duration period of
8 days for each step. For each design, the sensor has to be placed as close as possible to
the impermeable boundary.

Then, experimental data have been provided according to the OED results for the two
selected designs. The parameter estimation has been conducted by minimizing a cost
function between the experimental data and the numerical results. The estimation has
been accomplished using an interior point algorithm. Nine tests have been performed for
the definition of the cost function J . The L 2 and L∞ have been evaluated. Two series of
tests aimed at estimating the three parameters using both experiments at the same time
or separately with an iterative algorithm. The third series intended to estimate all five
parameters of the material properties. Results have shown that the L 2 norm provided
better results of the parameter estimation problem. Moreover, it was better to consider
both experiments separately to estimate only three parameters of the problem. Within
this approach, the algorithm requires only two iterations to compute the solution with less
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Figure 11. Comparison of the numerical results with the experimental data
(a-b) and their 98% confidence interval for the single-step (a) and the

multiple-step (b) experiments (test 1). Comparison of the residual for the
single-step (c) and multiple-step (d) experiments.

than 100 computations of the direct model. This approach has a really low computational
cost compared to stochastic approaches, needing an order of 10 4 computations for similar
problems. Another advantage of this approach is to use the sensitivity function, computed
during the search of the OED, to provide an approximation of the probability distribution
function of the estimated parameters at a lower computational cost.

As highlighted in Section 5, the estimated parameter enables a better agreement of the
numerical model with the experimental data. Particularly, the numerical results do not
underestimate the moisture adsorption process or overestimate the desorption process, as
usually reported in the literature [29]. The values of the estimated parameters are close to
the a priori ones used for the search of the OED, validating the approach.
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Figure 12. Convergence of the parameter estimation, for the test 1 as a

function of the number of iterations (a) and number of computations of the direct
model (b).

6.2. Outlooks and open-problems

As illustrated in Figure 11, some discrepancies still remain between the experimental
data and the numerical calibrated model, which motivate further research to concentrate on
improving the physical model by considering coupled heat and moisture transfer. Another
interesting perspective of improvement concerns the assumptions related to the moisture
sorption isotherm coefficients c( u ) . A parametrization was previously defined c( u ) =
1 + c 1 u + c 2 u

2 and the parameter estimation problem aimed at identifying coefficients
c 1 , c 2 (and Fo). An ambitious outlook could aim at estimating directly the function c( u ) ,
with inspiration from the following studies [33, 37].
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Nomenclature

Latin letters

a moisture advection coefficient [s/m]

am mass transfer coefficient [m2/s]

c moisture storage capacity [kg/(m3.Pa)]

c b specific heat [ J

(kg.K)
]

d moisture permeability [s]

h convective vapour transfer coefficient [s/m]

L length [m]

P s saturation pressure [Pa]

P v vapor pressure [Pa]

r 12 latent heat of evaporation [J/kg]

R v water gas constant [J/(kg.K)]

T temperature [K]



J. Berger, T. Busser, D. Dutykh & N. Mendes 28 / 31

Greek letters

λ thermal conductivity [W/(m.K)]

δ thermal gradient coefficient [K−1]

φ relative humidity [−]

ρ specific mass [kg/m3]
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