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FORCED VIBRATION ANALYSIS OF A
MULTIDEGREE IMPACT VIBRATOR

D. Pun, S . L . L au, S . S . L aw and D. Q. Cao

Department of Civil and Structural Engineering, Hong Kong Polytechnic University, 
Hung Hom, Kowloon, Hong Kong

The dynamics of a multidegree impact vibrator subject to harmonic loading is
investigated. The system is represented by a lumped mass model which hits and rebounds
from a rigid wall during vibration. The periodic solution to the equations of motion with
N forcing cycles and P impacts is formulated. The variational equations and the resulting
transition matrix for investigating local stability of the periodic solutions are derived. A
two-degree-of-freedom example is analysed, and a variety of motion types are found.
Chaotic windows are present between regions of periodic response, and at these boundaries
N-P motions are prevalent. Low velocity impacts are evident at exciting frequencies away
from the natural frequencies. Two basins of attraction are computed, and the sensitivity
to initial conditions is noted. The quality of the N-P motion is discussed from an
engineering application perspective.

1. INTRODUCTION

The vibration of a system subject to displacement restraint is examined. The analysis of

impacting systems has been of considerable interest to researchers, for there are many

situations in engineering practice where such behaviour occurs. Some examples are cutting

tools, jack hammers, compacting equipment, mechanical components which overshoot

their designed travel and impact other parts under abnormal conditions. Shaw and Shaw

[1] analysed the chaotic behaviour of an oscillator with an inverted impacting pendulum

and considered motions with one and two impacts per response cycle. Thompson and

Ghaffari [2] observed a cascade of period-doubling bifurcations leading to chaos for an

impact oscillator in a study of mooring line dynamics. Shaw and Holmes [3] considered

a piecewise unsymmetric oscillator which could be used to represent an impact vibrator.

For this case they computed analytically period N orbits with one impact per response

cycle and examined their stability. Popplewell et al. [4] formulated the equations for the

solution of period N motion with P number of impacts per response cycle (N-P motion)

for a single-degree-of-freedom (DOF) impact damper. They presented numerical results

for 2-1 to 5-1 motions, and performed experiments to verify their results. They further

suggested that the oscillator should be excited at or slightly above its natural frequency

for the damper to work best, and that the driving speed should be carefully controlled

because response sensitivity is high in this region.

Masri [5] analysed a multidegree system with an impact damper which can be attached

to any location on the system. He assumed damper motion of two symmetric impacts per
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load cycle, and obtained good correlations with corresponding experiments. Applications

of the analysis to tall buildings demonstrated that the damper can be effective over a wide

frequency range. Aidanpaa and Gupta [6] analysed in detail the one-impact motion of a

two-DOF impact vibrator. They studied the influences of system parameters and noted

behavioral similarities between one- and two-DOF systems. Nigm and Shabana [7] studied

the dynamics of a multidegree system with an impact damper placed at one end. The

damper is connected to the main system by a viscous damper and a spring. They analysed

motion with two unsymmetric impacts per load cycle, and obtained experimental results

that generally correlated with computations. Their experiments showed that there are

frequency regimes for which steady state solutions apparently do not exist. The motion

is such that for some time durations no impact takes place and the vibration amplitude

builds up until collisions occur, and the amplitude decreases again until impact no longer

materializes, and so on. Moore et al. [8] pointed out in their work on impact dampers in

a cryogenic environment that amplitude and frequency of impact per forcing cycle are

useful and important characterizations, and noted in their simulation work similar

unsteady behaviour as observed in reference [7].

Cao and Shu [9] investigated a multidegree impact vibrator for N-1 motion and obtained

robust stability bounds. This paper presents a solution method for periodic N-P motion

of a multi-DOF impact vibrator, which has not been analysed before. Such motion is

significant because it includes the class of response in which impacts occur occasionally,

and may be part of the apparently unsteady behaviour reported in references [7, 8]. The

transition matrix for the stability analysis of the periodic orbits is obtained through the

perturbed motion technique. A two-DOF example is presented, for which regimes of N-P
motion and chaotic dynamics are found. The results are discussed with the aid of frequency

spectra, phase diagrams, Poincaré maps, and basins of attraction. Finally, some comments

with respect to the performance of impact machinery are made.

2. FORMULATION

2.1. equations of motion

Consider a multiple-DOF lumped mass system which experiences impact when the

displacement X1 of mass M1 reaches the barrier at B, as shown in Figure 1. The following

normalized quantities are introduced:

mi =Mi /M1, ki =Ki /K1, �i =Ci /(2�K1M1),

�=�/�K1/M1, t=T�K1/M1,

Figure 1. Impact vibrator model.
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, fi =Fi /F0,

b=BK1/F0, xi =XiK1/F0, i=1, 2, . . . , L, (1)

where Mi is the mass, Ki the stiffness, Ci the damping, Fi the force, Xi the displacement

of the ith DOF, � the excitation frequency, T at time, B the clearance between M1 and

the point of impact, and L the total number of DOF. The equation governing motion

between impacts is

Md2x/dt2 +C dx/dt+Kx= f cos (�t+ �), (2)

where M, C, K, f, x are matrices or vectors of the normalized quantities, and � is the phase

angle of the excitation. The conditions for impact are

x1(t1)= b ẋ1(t−
i )� 0, (3)

where ti is the time at the ith impact, and t−
i is the moment just before impact, and the

dot denotes differentiation with respect to time. The velocities before and after impact are

related by the impact rule ẋ1(t+
i )=−rẋ1(t−

i ), where t+
i is the moment just after the ith

impact and r is the coefficient of restitution and is an indication of the energy lost during

impact. The impact is assumed to be instantaneous as far as the displacement is concerned,

hence x1(t+
i )= x1(t−

i )= x1(ti )= b. The impact rule can be expressed as

�x(t+
i )

ẋ(t+
i )�=L�x(t−

i )

ẋ(t−
i )�, (4)

where L is a diagonal matrix with elements equal to 1, except that the element 1L+1 =−r.
The goal here is to seek the periodic solutions of the impacting system. In general each

response period may contain N forcing periods and P number of impacts. The first step

of the solution process is to cast equation (2) into modal co-ordinates. It is assumed that

proportional damping is used, so equation (2) can be reduced to

q̈+�q̇+�q= p cos (�t+ �), (5)

where

q=[q1, q2, . . . , qL ]T, x=Uq, (6, 7)

�=diag [�2
i ], �=diag [2�i�i ], p=UTf=[p1, p2, . . . , pL ]T, (8, 9)

q is a vector of modal co-ordinates and U is a matrix whose columns are the eigenvectors

of the free vibration problem of equation (2), normalized with respect to the mass matrix.

�i is the ith eigenvalue, �i is the modal damping coefficient, and p is the modal load vector.

The solution of equation (5) is

q=Ga+Hb+� cos �+� sin �, (11)

where

G=diag [gi ], H=diag [hi ], (12, 13)

�=[�1, �2, . . . , �L ]T, �=[�1, �2, . . . , �L ]T, (14, 15)

�di =�i�1− �2
i , (16)

gi =exp (−�i�it) sin (�dit), hi =exp (−�i�it) cos (�dit), (17, 18)
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�i = �i cos �t+ 	i sin �t, �i = 	i cos �t− �i sin �t, (19, 20)

�i =
(�2

i −�2)pi

(�2
i −�2)2 +2(�i�i�)2 , 	i =

2�i�i�pi

(�2
i −�2)2 +2(�i�i�)2 , (21,22)

and a, b are yet to be determined constant vectors related to the initial conditions. The

modal velocity vector can be expressed as

q̇=G� a +H� b+�� cos �+�� sin �. (23)

Using equations (7), (11) and (23) to express a, b in terms of the initial conditions, one

finally has

�xẋ�=U�DU�−1�x0

ẋ0�+U���cos �

sin ��, (24)

where

U� =�U0 0
U�, D=�D11

D� 11

D12

D� 12�, �=����� ��
��� (25–27)

�� =[��1, ��2, . . . , ��L ]T, �� =[��1, ��2, . . . , ��L ]T, (28, 29)

�� i =�i −(hi + �igi�i /�di )�i − 	igi�/�di , (30)

�� i =�i −(hi + �igi�i /�di )	i + �igi�/�di , (31)

D11 =diag [hi + �igi�i /�di ], D12 =diag [gi /�di ], (32, 33)

where x0, ẋ0 are the initial displacement and velocity vectors, respectively. Defining

W=U�DU�−1, V=U��, (34, 35)

y=[x1, . . . , xL , ẋ1, . . . , ẋL ]T =[xT, ẋT]T, g=[cos �, sin �]T, (36, 37]

� �

Figure 2. Local stability analysis.

4



0.4
(a)

–2.0

–2.8

–1.2

–0.4

0.0 1.0 2.0

D1

D2

D3

3.0 4.0 5.0

(b)

0.6

1.2

1.8

2.4

3.0

0.0
0.0 1.0 2.0 3.0 4.0 5.0

D1

D2

D3

Figure 3. (a) Displacement x1 versus frequency, �� 5; (b) impact velocity ẋ1 versus frequency, �� 5.

then equation (24) can be recast with explicit time dependence, that is

y(t)=W(t)y(0)+V(t)g(�), (38)

where y(0) is a vector of initial displacements and velocities. To find periodic responses

of N forcing cycles and P impacts, let the motion at the instant after an impact be used

as a reference starting point. The time t is set to zero and the initial conditions are y(0),

�, where y1(0)= b. Equation (38) governs the motion up to the next impact at time t1,

which can be solved by considering the equation for the first mass

b= �
2L

n=1

W1n (t1)yn (0)+V11(t1) cos �+V12(t1) sin �. (39)

The motion after the first impact at t1 is given by equations (4) and (38)

y1(0)=LW(t1)y(0)+LV(t1)g(�), (40)
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�1 =�t1 + �, (41)

y1(t)=W(t)y1(0)+V(t)g(�1), (42)

where y1(0) is the initial condition after the first impact, y1(t) the subsequent motion up

to the next impact, t the time which begins from 0 after each impact, and �1 the

corresponding phase angle used to maintain force continuity. Similarly, the initial motion

after P impacts

yp(0)=LW(tp )yp−1(0)+LV(tp )g(�p−1). (43)

It is noted that equation (43) contains the impact times t1, t2, . . . , tp−1 implicitly through

yp−1(0). This relation can be written as

yp(0)= �
p

i=1

[LW(ti )]y(0)+ �
p

j=1

�
p

i= j+1

[LW(ti )][LV(tj )]g(�j−1), (44)

Figure 4. (a) Displacement x1 versus frequency, �� 1·05. (b) impact velocity ẋ1 versus frequency, �� 1·05.
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where [LW(ti )] and [LV(tj )] are now treated as single matrices, and in the second term

[LW(ti )]= I if i�P, and �0 = �. Using the periodic condition yp(0)= y(0), then y(0) can

be solved in terms of ti (i=1, . . . , P)

y(0)=−��
p

i=1

[LW(ti )]− I�
−1

� �
p

j=1

�
p

i= j+1

[LW(ti )][LV(tj )]g(�j−1)�. (45)

Figure 5. (a) Real and imaginary parts of eigenvalues, 1·0 ��� 1·8; (b) spectral radius versus frequency.
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Figure 6. (a) Displacement x1 versus frequency, D1 window; (b) impact velocity ẋ1 versus frequency, D1

window.
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y(0) can then be substituted into the impact conditions, using the first row of the matrix

equation (44), for the kth impact

yk
1(0)= b= �

2L

m=1 ��
k

i=1

[LW(ti )]�1m

ym (0)+ �
2L

m=1 � �
k

j=1

�
k

i= j+1

[LW(ti )][LV(tj )]�1m

gm (�j−1),

k=1, 2, . . . , P, (46)

where subscripted brackets indicate matrix element of the enclosed quantity. As there are

P impacts, P equations can be set up on this basis. The variables �i (i=1, . . . , P−1) can

be expressed in terms of ti (i=1, . . . , P−1) by the relation

�k =�tk + �k−1, k=1, 2, . . . , P, (47)

and note that tp can be written as

tp =
2N


�
− �

p−1

i

ti , (48)

so that the final unknowns are ti (i=1, . . . , P−1) and �. With the initial conditions given,

equation (46) furnishes a set of simultaneous non-linear equations that can be used to solve

for N−P motion. The process is doubly iterative, for in addition to being non-linear in

the unknown variables, the values of N and P are not known beforehand and have to be

assumed.

2.2. stability analysis

The local stability analysis is carried out as illustrated in Figure 2, where the original

initial conditions are perturbed to an adjacent state ỹ(0), given by

ỹ(0)= y(0)+�y(0). (49)

Figure 7. (a) Displacement x1 versus frequency, D11 window; (b) impact velocity ẋ1 versus frequency, D11

window.
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Figure 8. (a) Displacement x1 versus frequency, D2 window; (b) impact velocity ẋ1 versus frequency, D2

window.

From equation (36), it follows that

�y(0)= [�x(0) �ẋ(0)]T. (50)

As the reference state is at the moment just after an impact, it is clear that x1(0)= b and

�x1(0)=0. In place of �x1(0), the impact time is subject to variation and this is

incorporated by varying the phase angle �. Taking variation of equation (38) gives

�y(t)=W(t)�y(0)+V(t)g'(�)��+[W� (t)y(0)+V� (t)g(�)]�t, (51)

where

g'(�)= [−sin �, cos �]T. (52)

The initial deviations after the first impact are obtained by applying equation (4) to

equation (51)

�y1(0)= [LW(t1)]�y(0) + [LV(t1)]g'(�)��+L[W� (t1)y(0)+V� (t1)g(�)]�t1. (53)
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It can be appreciated that [LV(t1)]g'(�) and L[W� (t1)y(0)+V� (t1)g(�)] are column vectors.

The first row of this matrix equation is

�y1
1 (0)= �

2L

i=1

[LW(t1)]1i�yi (0)+ [LV(t1)g'(�)]1��+ {L[W� (t1)y(0)+V� (t1)g(�)]}1�t1, (54)

noting that �y1
1 (0)=�y1(0)=0, �t1 can be found

�t1 =

− �
2L

i=2

[LW(t1)]1i�yi (0)+ [LV(t1)g'(�)]1��

{L[W� (t1)y(0)+V� (t1)g(�)]}1

. (55)

The relationship between the time and phase variations can be inferred from equation (47)

��1 =��t1 +��. (56)

Figure 9. (a) Displacement x1 versus frequency, D3 window; (b) impact velocity ẋ1 versus frequency, D3

window.
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Figure 10. Impact velocity ẋ1 versus frequency, �� 0·9.

Equation (55) can be substituted into equation (56) to obtain a relation for ��1 in terms

of �yi (0) (i=2, . . . , 2L) and ��. It should also be apparent that by using equations (55)

and (56) and the 2 to 2L rows of equation (53), one can obtain the expression

�y1
2 �y2

· ·

· ·

· =G0 · =G0z, (57)�
�

�
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Figure 11. Impact velocity ẋ1 versus frequency, �� 0·5.
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Figure 12. Displacement x1 versus time: (a) 1-4 motion, �=0·50; (b) 1-2 motion, �=0·60; (c) 1-1 motion,
�=1·00; (d) 2-1 motion, �=2·50; (c) 3-1 motion, �=3·50.

where the matrix G0 gives the variations after the first impact in terms of the initial ones.

This procedure can be carried out P times to arrive at the motion deviations after P impact

occurrences. Defining

G=GP−1 · · · G1G0 (58)

then

z1 =Gz, (59)

where z1 is the variation at the end of the one response cycle and G is the transition matrix.

The variations after k cycles are

zk =Gkz, (60)

and the stability of a periodic solution is determined by the eigenvalues of the transition

matrix. The case of interest in this study is the flip or period doubling bifurcation, where

an eigenvalue becomes −1 and leaves the unit circle along the real axis.

3. RESULTS

A system with the following properties is analysed below:

M=�10 0

1�, K=� 1

−1

−1

2 �, C=� 0·05

−0·05

−0·05

0·1 �, f=�10�. (61)
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The coefficient of restitution is 0·6, the gap b is 0, and the system natural frequencies are

�1 =0·618 and �2 =1·618. The initial conditions are

x=�−1

−1�, ẋ=�11�. (62)

The solutions are obtained from equations (38), (39) and (43); the first 1800 normalized

secs of the responses are ignored, and the motion of the next 100 impacts are recorded.

The initial conditions are fixed at the specified values as the solution branches are traced

out over the frequency spectrum. Figures 3(a) and (b) show the displacement and impact

velocity spectra for the frequency range 0–5. As the system’s state space is five-dimensional,

the Poincaré sections for the displacement and impact velocity spectra are

four-dimensional. The displacement section is taken at once per period of the excitation

whereas the impact velocity is sampled when x1 =0 and ẋ1 � 0, where impact occurs.

Hence, the number of branches in the displacement spectrum corresponds to N forcing

cycles, whereas those in the velocity spectrum give P impacts. It can be seen from Figure 3

that relatively narrow windows of chaotic motion are imbedded between regimes of

harmonic response.

The chaotic windows, labelled D, are near the integer values of frequency, but it is

possible to discern that the windows are gradually displaced to higher frequency slots as

Figure 13. Velocity ẋ1 versus time: (a) 1-4 motion, �=0·50; (b) 1-2 motion, �=0·60; (c) 1-1 motion,
�=1·00; (d) 2-1 motion, �=2·50; (c) 3-1 motion, �=3·50.
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Figure 14. Phase diagrams, ẋ1 versus x1: (a) 1-4 motion, �=0·50; (b) 1-2 motion, �=0·60; (c) 1-1 motion,
�=1·00; (d) 2-1 motion, �=2·50; (c) 3-1 motion, �=3·50.

the frequency is increased. Furthermore, the width of the chaotic windows seems to

increase with the frequency. Outside the chaotic windows, N−1 motions, where N seems

to equal the adjacent lower integer frequency, are prevalent and these become chaotic by

undergoing a series of period-doubling bifurcations.

Figures 4(a) and (b) show the displacement and impact velocity spectra for frequencies

of 0·45 to 1. Here, again, chaotic slots are embedded into broader regions of periodic

response. The prevailing periodic responses are of the 1-P type, where P ranges from 1

to 3 and increases with decreasing frequency. The response here is qualitatively the same

as that in Figure 3, but the results show that chaotic regions are not necessarily close to

integer values of frequency.
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There is period one motion at the natural frequencies of 0·618 and 1·618, as might be

intuitively expected. As the frequency increases, the impact velocity decreases. For

excitation frequency larger than one, motions with N generally larger than P are present

in the periodic regimes, and the reverse is true for the freuqency region less than one.

The first bifurcation takes place at a frequency of 1·69, according to the time integration

results. This confirmed by the stability analysis, which shows that an eigenvalue of the

transition matrix G leaves the unit circle at −1·0 within the frequency range of 1 to 1·8,

as shown in Figure 5(a). Furthermore, a plot of the spectral radius in Figure 5(b) indicates

that the bifurcation is at the frequency of 1·69.

The window D1 as shown in Figures 6(a) and (b) contains more details on the bifurcation

behaviour. The 2-1 motion undergoes a sequence of period-doubling bifurcations, with the

longest discernable motion being 8-8, on the road to chaos in window D11. The chaotic

band D11 at frequency 1·8, as shown in Figure 7, is characterized by high displacement and

Figure 15. Phase diagrams showing route to chaos, ẋ1 versus x1: (a) �=1·500; (b) �=1·750; (c) �=1·780;
(d) �=1·794; (e) �=1·796; (f) �=1·800.
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Figure 16. Poincaré maps showing route to chaos, ẋ1 versus x1: (a) �=1·500; (b) �=1·750; (c) �=1·780;
(d) �=1·794; (e) �=1·796; (f) �=1·800.

velocity excursions. Two more chaotic windows, as shown in Figures 8 and 9, exist at

higher frequencies. Both the displacement and velocity excursions show decreasing

magnitudes with increasing frequency, just as in the case for the periodic regimes. The

chaotic windows D2 and D3 at higher frequencies have progressively higher bandwidths,

contain more periodic-doubling bifurcations, and more chaotic bands. Low velocity or

grazing impacts, indicative of movement close to the wall, are present in all the chaotic

windows, and the propensity for this type of motion increases with increasing frequency,

as is evident in Figure 3. Figures 10 and 11 show the impact velocity spectra of the thin

chaotic bands at frequencies of 0·9 and 0·5. Using the former as a reference, it can be seen

that the number of grazing impacts also increases in the direction of decreasing frequency.
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Previous studies have concentrated on one impact motion, and these are evident in the

major periodic regimes outside of the chaotic bands for frequencies larger than one. Inside

the chaotic windows, and for the entire frequency range of less than one, there are motions

with more than one impact. In particular, high N, low P motion can be observed in several

instances; for example, there are 5-3, 6-2 and 8-2 motions at frequencies of 2·8, 3·25 and

4·47, respectively, as illustrated in Figures 8 and 9.

The time histories and phase diagrams of representative N-P motions for the mass m1

are shown in Figures 12–14. For 1-4 motion, there is a high speed impact followed by a

lower speed one and then grazing impacts. Then the decaying motion abruptly speeds up

to initiate another cycle, showing traits of jerky movement. Grazing impacts are absent

from the 1-2 motion, which also features one high speed collision. The 1-1 motion has a

slightly lower impact speed, and this trend continues for the 2-1 and 3-1 motions. The mass

m1 undergoes secondary looping responses, as can be seen in Figure 14; for N smaller than

P the secondary loops are close to the wall, resulting in more impacts, whereas for N
greater than P, the looping motion is away from the barrier, causing fewer impacts.

A picture on the transition to chaos at a frequency of about 1·8 is illustrated by phase

diagrams and Poincaré sections in Figures 15 and 16. The period one motion undergoes

a series of flip bifurcations to become chaotic.

A basin of attraction at a frequency of 2·755 is shown in Figure 17. The shaded areas

correspond to 2-1 motion and the blank areas are for 17-10 motion. The initial

displacement and velocity for m2 are −1·0 and 1·0, respectively. The basin is roughly

divided into two halves, but there are scattered spots of 2-1 motion in the 17-10 region,

and there is a substantial island of 17-10 motion in the 2-1 regime. It follows that in parts

of the basin, small changes in initial conditions can lead to significant changes in motion

quality. A basin of attraction for motion at frequency of 4·25 is shown in Figure 18.

Periodic 12-8 motion exists in the shaded areas, whereas chaotic motion is present in the

blank spaces. The overall pattern is largely irregular, as the two motions are mostly mixed

Figure 17. Basin of attraction for 2-1 (shaded), 17-10 (blank) motions, ẋ1(0) versus x1(0).
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Figure 18. Basin of attraction for 12-8 (shaded), chaotic (blank) motions, ẋ1(0) versus x1(0).

with no major distinctive boundaries. Clearly, small deviations in initial conditions can

cause a periodic motion to shift to a chaotic one and vice versa.

4. CONCLUSIONS

The equations of motion for period N motion with P impacts for a multi-DOF impact

vibrator subject to harmonic loadings were formulated. The variational equations for

determining the stability of such motion were also obtained. The equations were applied

to a two-DOF example, and different regimes of N-P response were obtained.

Observations concerning the evolution of the dynamics with frequency were made, and

in particular it is noted that, as the excitation frequency departs from the natural

frequencies, grazing impacts become more numerous. High N, low P motions were found

to exist at the transition boundaries between harmonic and chaotic behaviour. Two basins

of attraction were computed, and in one case it was shown that two very different types

of motion can exist in a mixed pattern. The consequence is dynamics that is sensitive to

initial conditions. This aspect was reinforced by the results of the second case, where

periodic response is mingled with chaotic motion.

For frequencies larger than one, the major periodic windows contain period one or

greater one impact motion. In contrast, for frequencies less than one, similar windows

contain period one, one or more impacts motion. That such a wide range of dynamics

exists is beneficial for applications, and one can infer from the displacement and velocity

time histories useful characteristics for qualifying such motions from an engineering

perspective. The 1-4 motion offers a high speed impact followed by hits of lower speed,

the 1-1 motion gives high impact velocity and appears to be relatively smooth, whereas

the 3-1 motion exhibits low impact velocity.
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