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voux, 91020 Évry
{renaud,feng}@iup.univ-evry.fr

RÉSUMÉ. Cet article traite de la modélisation numérique des problèmes de contact avec frotte-
ment en élasticité linéaire. La méthode des éléments de frontière et la méthode des éléments
finis sont présentées et comparées du point de vue algorithmique. L’analyse d’un problème de
contact entre deux corps élastiques est effectuée afin de démontrer la validité des algorithmes
développés et d’évaluer leurs performances.

ABSTRACT. This paper is concerned with the numerical modeling of contact problems in elas-
tostatics with Coulomb friction. The boundary element method (BEM) and the finite element
method (FEM) are presented and compared from an algorithmic point of view. Analysis of a
contact problem between two elastic bodies is preformed so as to demonstrate the developed
algorithms and to highlight their performance.
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1. Introduction

Contact problems have received much attention as may be seen in the monographs
by Johnson (Johnson, 1985),Wriggers (Wriggers, 2002) and Laursen (Laursen, 2002).
Many numerical methods have been developed in the past twenty five years for solving
such problems. These problemsmay be dynamic with nonlinear material behavior and
geometrical nonlinearities (Feng et al., 2003, Feng et al., 2005). The finite element
method (FEM) is no doubt the most popular one. However, modeling of frictional
contact problems by the boundary element method (BEM) remains limited. Renaud
et al. have solved frictionless and frictional contacts between an elastic body and a
rigid body (Renaud et al., 2003a, Renaud et al., 2003b). The aim of the present paper
is to briefly outline the BEM and FEM developed for contact modeling between two
elastic bodies in elastostatics with Coulomb friction. Characteristics of each method
are discussed. A test numerical example is performed in this study to show the validity
of the developed algorithms.

2. Contact kinematics

For the sake of simplicity, let us consider contact between two bodies Ω1 and Ω2.
The displacements of the particles of Ω1 and Ω2 being respectively u1 and u2, the
relative displacement is : u = u1 − u2. Let r be the contact traction acting at P from
Ω2 onto Ω1. Let n denote the normal unit vector at the projection point P ′ directed
towards Ω1, and T(t1, t2) denotes the orthogonal plane to n (Figure 1)

Figure 1. Contact projection and gap vector

The unilateral contact law is characterized by a geometric condition of non-
penetration, a static condition of no-adhesion and a mechanical complementary condi-
tion. These three conditions are known as Signorini conditions expressed, for each
contact point, in terms of the contact distance xn and the normal contact force rn by

xn = un + g, xn ≥ 0, rn ≥ 0 and xnrn = 0 [1]

where g is the initial gap. The classic Coulomb friction rule is used and defined by

if ‖u̇t‖ = 0 then ‖rt‖ ≤ μrn else rt = −μrn

u̇t

‖u̇t‖
[2]
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where rt is the tangential contact forces, u̇t is the relative tangential velocity and μ is
the coefficient of friction.

3. The finite element method

The finite element method is often used in computational mechanics. Without
going into all the details, we present here just the algorithm for contact modeling.
After finite element discretization in the context of small displacements, the global set
of equilibrium equations of two contacting elastic bodies can be written as

KU = F + R [3]

where K is the stiffness matrix, F the vector of external loads, R the vector of contact
reaction forces and U, the vector of nodal displacements. As U and R are both unk-
nown, Eq.[3] cannot be directly solved. In the popular penalty method, K is modified
by introducing contact elements and the global set of equations is solved at each itera-
tion. The resulting numerical algorithms are not very reliable. In this work, we adopt
an alternative way. The key idea is to determine iteratively the contact reactions vector
R in a reduced system which only concerns the contact nodes. Then, vector U can
be computed in the whole structure, using contact reactions as external loading. The
advantage is that the stiffness matrix is not changed as opposite to the penalty method
or to the Lagrange multiplier method.

For computation of contact forces r in the local coordinate frame (t1, t2, n), we
adopt the bi-potential method proposed by de Saxcé and Feng (de Saxcé et al., 1998).
They have shown that the contact law is equivalent to the following differential inclu-
sion : (

− u̇t − (u̇n + μ‖ − u̇t‖)n
)
∈ ∂ΨKμ

(r) [4]

where ΨKμ
(r) denotes the so-called indicator function of the convex Coulomb cone

Kμ. In order to avoid non-differentiable potentials that occur in nonlinear mechanics,
such as in contact problems, it is convenient to use the Augmented LagrangianMethod
(de Saxcé et al., 1998) which leads to an iterative process involving one predictor-
corrector step :

Predictor τ
i+1 = r

i + �i
(
− u̇

i
t − (u̇i

n + μ‖ − u̇
i
t‖)n

)
,

Corrector ri+1 = proj(τ i+1, Kμ) .
[5]

It is worth noting that, in this algorithm, the unilateral contact and the friction are
coupled.

4. The boundary element method

The BEM resolution is based on the approach (Renaud et al., 2003a) which
consists in determining contact zone sizes (slip and stick areas) at the same time as
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the usual unknowns (displacements and surfaces forces in BEM). This method has
already been tested on some classical contact problems (Renaud et al., 2003a, Renaud
et al., 2003b) with or without friction. The position of the contact zones is defined
through geometrical parameters. Introduction of these extra unknowns requires addi-
tional equations in the same number. Under the assumption of regular bodies boun-
daries and loads in the vicinity of the contact zone, additional equations are given by
limit contact and limit slip conditions which allows to reduce the unilateral contact
problems to a nonlinear equations system. The contact zones are defined by P contact
parameters ρq, q = 1 to P and adhesion areas by Pa contact parameters ρ̄r, r = 1 to
Pa, then overabundant conditions will be given by the contact limit conditions :

σn(Mq) = 0 q = 1 toP [6]

where Mq are boundary points between contact zones and no contact ones and by the
limit sliding conditions :

u · t(1)(Ir) + u · t(2)(Ir) = 0 r = 1 toPa [7]

where Ir are the boundary points between sliding zones and adhesion ones. So the
contact and sliding areas positions are defined by P ′ = P + Pa contact parameters.
In the contact between two elastic bodies, a node to node scheme is considered. The
action and reaction principle leads to following equations : σn(1) = σn(2). Moreover
in the example (Figure 2), the normal displacement is the same for both bodies such
as : u(1)n(1) = −u(2)n(2). The boundary ∂Ωb of the domain Ωb(b = 1, 2) is divided
into four parts : Γb

u where displacements are given, Γb
F where forces are imposed, Γa

and Γs are respectively the adhesion subareas and the sliding subareas of the contact
zone. The formulation of the unilateral frictional contact problem whose contact state
can be described by the P ′ contact parameters reads :

div σ(ub) = 0 in Ωb

u = ub on Γb
u

σ nb = F
b

on Γb
F

body 1

{
u t(1) = −u t(2)(
σn(1)

)
t(1) =

(
σn(2)

)
t(2)

body 2

{
u n(2) = −u n(1)(
σn(2)

)
n(2) =

(
σn(1)

)
n(1)

⎫⎪⎪⎬
⎪⎪⎭

on Γa − {Ir}

body 1

{
u t(1) + u t(2) = −eα σn(1) t(1)

u n(1) = −u n(2)

body 2 σ n(2) = σ n(1)

⎫⎬
⎭ onΓs − {Mq, Ir}

u t(1) + u t(2) = 0

u n(1) = −u n(2)

σ2
t = μ2 σ2

n

⎫⎬
⎭ at {Ir}

u n(1) = −u n(2)

σ
(1)
n = 0

}
at {Mq}

[8]
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The above equation is reduced to an algebraic form using the approximation of the
boundary ∂Ω(1) (resp. ∂Ω(2) ) by a set of N (1) (resp. N (2)) constant elements. The
final form of the nonlinear system solved by the Newton Raphson method is then :

N(1)∑
m=1

2∑
j=1

A
(1)
jmk(ρ, ρ̄) p

(1)
jm −

N1∑
m=1

2∑
j=1

B
(1)
ijmk(ρ, ρ̄)u

(1)
jm = 0

N(2)∑
m=1

2∑
j=1

A
(2)
jmk(ρ, ρ̄) p

(2)
jm −

N2∑
m=1

2∑
j=1

B
(2)
ijmk(ρ, ρ̄)u

(2)
jm = 0

σn(1)(Mq) = 0

u t(1)(Ir) − u t(2)(Ir) = 0
σ2

t − μ2σ2
n = 0 on each sliding node of body 1

[9]

where the coefficients A
(b)
ijmk and B

(b)
ijmk depend on contact parameters. More details

are given in (Renaud et al., 2003a). In a more general form, this new discretized for-
mulation of unilateral contact problems with friction leads to the following nonlinear
equations

Fi(X) = 0 i = 1, . . . , 2N (1) + 2N (2) + P ′ + Ns [10]

where X is a 2N (1) + 2N (2) + P ′ + Ns vector composed of P ′ contact parameters,
2N (1) + 2N (2) classical unknowns and Ns values of α when sliding is considered.
Ns is the number of sliding nodes and the parameter α comes from a rewriting of
Coulomb law (Renaud et al., 2003a).

5. Numerical results

A test example with a linearly elastic law is considered in this study. The example
concerns the contact between two elastic plates Ω1(10 × 10 × 1 mm) and Ω2(20 ×
24× 1 mm) under the assumption of plane stress. The problem is displayed in Figure
2. The upper surface of Ω1 is given a vertical rigid motion of 0.5 mm. The lower
surface comes into contact with the upper surface of Ω2. The characteristics of this
example are : Young’s modulus : E = 100 MPa, Poisson’s ratio : ν = 0.3, Friction
coefficient : μ = 0.1 and μ = 0.2. Symmetry conditions are imposed on two lateral
sides of the plates as shown in Figure 2. The analysis was performed by means of
both FEM and BEM developed above. The finite element discretization includes 320
eight-node isoparametric elements and 1062 nodes. Each element has nine integration
points. The boundary element discretization includes 162 nodes. Figure 3 shows the
contact pressure distribution. The results obtained by BEM and FEM are in good
agreement.
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Figure 2. Contact between elastic plates Figure 3. Contact pressure

6. Conclusions

In this work, contact problems with friction have been solved by the finite element
method and the boundary element method. The BEM consists of solving a nonlinear
system of equations involving displacements, contact tractions and geometrical para-
meters on the boundary. The FEM developed solves the contact problem iteratively in
a reduced linear system and computes the displacements in the whole structure, using
contact reactions as external loading. The numerical test shows that both methods
yield accurate results.
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