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ABSTRACT. The description and computation of fine scale localized phenomena arising in a mate-
rial (during nanoindentation, for instance) is a challenging problem that has given birth to many
multiscale methods. In this work, we propose an analysis of a simple one-dimensional method
that couples two scales, the atomistic one and the continuum mechanics one. The method in-
cludes an adaptive criterion in order to split the computational domain into two subdomains,
that are described at different scales.

RÉSUMÉ. Pour décrire des solides qui subissent des déformations peu régulières, mais dont les
irrégularités sont localisées, beaucoup de méthodes multi-échelles ont été développées. Elles
s’attachent en général à coupler un modèle continu (ou macroscopique), qui décrit les zones
où la déformation est régulière, et un modèle discret (ou atomique), qui décrit les zones où la
déformation présente des singularités. Nous présentons ici une étude théorique et une analyse
d’erreur de ce type de méthode en dimension un.

KEYWORDS: Multiscale methods, variational problems, continuum mechanics, discrete mechan-
ics.

MOTS-CLÉS : Méthodes multi-échelles, problèmes variationnels, mécanique du continuum, méca-
nique discrète.
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1. Introduction

The traditional framework in mechanics is the continuum description. However,
when nanoscale localized phenomena arise, the atomistic nature of material cannot be
ignored: for instance, to understand how dislocations appear under a nanoindenter,
one has to describe the deformed atomistic lattice. The situation is the same when
one wants to have a detailed understanding of the behaviour of grain boundaries in
a polycristal. In all these examples, an appropriate model to describe the localized
phenomena is the atomistic model, in which the solid is considered as a set of discrete
particles interacting through given interatomic potentials.

However, the size of materials that can be simulated by only using the atomistic
model is very small in comparison to the size of the materials one is interested in.
Fortunately, in the situations we considered above, the deformation is smooth in the
main part of the solid. So, a natural idea is to try to take advantage of both models,
the continuummechanics one and the atomistic one, and to couple them. In this work,
we analyze a method that couples these two models into a single one, and which
is a toy example for more advanced methods such as the Quasi-Continuum Method
(Knap et al., 2001, Miller et al., 2002, Shenoy et al., 1999, Tadmor et al., 1996). A
recent overview of some mathematical results on atomistic to continuum limits for
crystalline materials can be read in (Blanc et al., 2007b). Other coupling methods
have been proposed in (Ben Dhia, 1998, Ben Dhia et al., 2005, E et al., 2003, Feyel
et al., 2000, Park et al., 2005, Van Vliet et al., 2003, Zhang et al., 2002). See also the
monographs (Bulatov et al., 1999, Liu et al., 2004, Raabe, 1998).

An alternative to multiscale methods is to use continuum mechanics models in
which the elastic energy depends not only on the strain, but also on higher derivatives
of the displacement (Triantafyllidis et al., 1993), or to add a surface energy (Del Piero
et al., 2001). Another alternative way consists in the approximation of the variational
problems with a Γ-limit approach (Braides et al., 1999). Time-dependent methods
based on mixed hamiltonians have also been proposed in (Broughton et al., 1999).

1.1. The atomistic and continuum mechanics models

Let us consider a one-dimensional material occupying in the reference configu-
ration the domain Ω = (0, L), submitted to body forces f and fixed displacement
boundary conditions on ∂Ω. In the atomistic model, the solid is considered as a set of
N + 1 atoms, whose current positions are (ui)N

i=0. The energy of the system is given
by

Eμ(u0, . . . , uN) = h

N−1∑
i=0

W

(
ui+1

− ui

h

)
− h

N∑
i=0

f(i h)ui, [1]

where W is an interacting potential between atoms, and h is the atomic lattice param-
eter, which is linked to the number of atoms and the size of the solid by L = Nh.
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We have assumed only nearest neighbour interaction. The potentialW is such that its
minimum is attained at 1, so, at equilibrium without body forces and boundary con-
ditions, the interatomic distance is h. The microscopic equilibrium configuration is a
solution of the variational problem

inf
{
Eμ(u0, . . . , uN), u0 = 0, uN = a, ∀i, ui+1 > ui

}
. [2]

Note that we look here for a global minimizer of the energy. Another approach would
be to look at local minimizers (see for instance (E et al., 2007, Rieger et al., 2007)).

In the continuummechanics model, the solid deformation is described by the map
u : Ω → R, and the elastic energy associated with the deformation u reads

EM (u) =

∫
Ω

W (u′(x)) dx −

∫
Ω

f(x)u(x) dx. [3]

The equilibrium of the solid is defined by the minimization problem

inf
{
EM (u), u ∈ H1(Ω), u(0) = 0, u(L) = a, u is increasing on Ω

}
. [4]

We assume here that the energyEM (u) is well defined as soon as u ∈ H1(Ω).

In principle, the equilibrium configuration of the solid is given by (1)-(2), but the
huge number of particles to be considered makes the problem impossible to solve in
practice. For a given smooth deformation u, it has been shown in (Blanc et al., 2002)
that the microscopic energy Eμ(u(0), u(h), . . . , u(Nh)) converges to EM (u) when
the atomic lattice parameter h goes to 0 and the number of atoms goes to infinity such
that Nh remains constant, Nh = L (see (Arndt et al., 2005) for some other possible
ways for deriving continuum energies from the atomistic level). Thus, solving (3)-
(4) gives a good approximation of the solution of the atomistic problem, when the
equilibrium deformation is smooth.

1.2. A coupled model

When non regular deformations are expected to play a role, following (Tadmor et
al., 1996), we approximate the solution of the atomistic problem with the solution of
a coupled model. A partition Ω = ΩM ∪ Ωμ of the domain being given, a natural
expression for a coupled energy reads

Ec(u) =

∫
ΩM

[W (u′(x)) − f(x)u(x)] dx

+ h
∑

i; ih,ih+h∈Ωμ

W

(
ui+1 − ui

h

)
− h

∑
i;ih∈Ωμ

f(ih)ui.
[5]

The equilibrium of the solid is given by the minimization problem

inf

⎧⎨
⎩

Ec(u), u|ΩM
∈ H1(ΩM ), u|Ωμ

is the discrete set of variables
(ui)ih∈Ωμ

, u is continuous at the interface ∂ΩM ∩ ∂Ωμ,

u(0) = 0, u(L) = a, u is increasing on Ω

⎫⎬
⎭ [6]
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The questions we address here are:

– is the previous definition (5) of the coupled energy always the most appropriate?
– how to (adaptively) define the partition Ω = ΩM ∪ Ωμ such that the solution of

the coupled problem (5)-(6) is a good approximation of the solution of the atomistic
problem (1)-(2)?

– can error bounds be derived?

The error analysis of such coupled models has also been addressed in (Lin, 2003, Lin,
2007).

2. Results

We study both the general case of a convex energy density W , and a specific
example of nonconvex energy, the Lennard-Jones case. More precise and detailed
statements of the following results are given in (Blanc et al., 2005) and (Blanc et al.,
2007a).

2.1. The convex case

In this case, we propose an a priori definition for the partition which is only based
on properties of the body forces f . Vaguely stated, the subdomain ΩM (in which the
continuummechanics model will be used) is the part of the domainΩ where the body
force f and its derivative f ′ are small.

With this definition, we show that the solution of the coupled problem (5)-(6) is a
good approximation of the solution of the atomistic problem (1)-(2): when the atomic
lattice parameter h goes to 0, the deformation uc and the strain given by the coupled
model converge to the deformation uμ and the strain given by the atomistic model.

2.2. A nonconvex case: the Lennard-Jones case

In this case, we show that expression (5) for the coupled energy might be inappro-
priate, and we thus propose a modified expression.

If the material is submitted to an extensional loading (i.e., if u(L) = a > L in the
case of no body forces), the displacement at equilibrium is discontinuous both with
the macroscopic model and with the atomistic model (there is a fracture in the solid).
With the natural coupled model (5)-(6), the equilibrium also exhibits a fracture, but
this fracture is always located in the macroscopic subdomainΩM . However, we would
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rather like the atomistic subdomainΩμ to contain the fracture. To solve this issue, we
propose to work with the coupled energy

Eh
c (u) =

∫
ΩM

[
Wh

LJ(u
′(x)) − f(x)u(x)

]
dx

+ h
∑

i; ih,ih+h∈Ωμ

WLJ

(
ui+1

− ui

h

)
− h

∑
i;ih∈Ωμ

f(ih)ui,

with Wh
LJ(t) = WLJ(t) + hα(t − t0)+, where WLJ is the Lennard-Jones potential,

t0 is some threshold and α is any real number in (0, 1). Finally, the algorithm we
propose consists in two steps:

– compute a solution uM of the macroscopic problem (3)-(4), and from the prop-
erties of uM , define a partition Ω = ΩM ∪ Ωμ.

– with this partition, minimize the coupled energy Eh
c (u) to find uc.

We show that the resulting solution uc is a good approximation of the atomistic so-
lution. In particular, if the solid is submitted to extensional loadings, the atomistic
subdomain Ωμ contains the fracture.
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