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The local backward heat problem

Thi Minh Nhat VO *

April 15, 2017

Abstract

In this paper, we study the local backward problem of a linear heat equation
with time-dependent coefficients under the Dirichlet boundary condition. Pre-
cisely, we recover the initial data from the observation on a subdomain at some
later time. Thanks to the “ optimal filtering ” method of Seidman, we can solve
the global backward problem, which determines the solution at initial time from
the known data on the whole domain. Then, by using a result of controllability
at one point of time, we can connect local and global backward problem.

Keywords. inverse problem, global backward, local backward, controllability,
observation estimate, heat equation.

1 Introduction and main result

1.1  Ouwur motivation

Inverse and ill-posed problems (see [I, [P|, [K|) are the heart of scientific inquiry and
technological development. They play a significant role in engineering applications, as
well as several practical areas, such as image processing, mathematical finance, physics,
etc. and, more recently, modeling in the life sciences. During the last ten years or
so, there have been remarkable developments both in the mathematical theory and ap-
plications of inverse problems. Especially, in various industrial purposes, for example
steel industries, glass and polymer forming and nuclear power station, the "backward
heat problem", which recovers the temperature in the heating system from the obser-
vation at some later time keeps an important position. On the other hand, from the
mathematical point of view, it is well-known to be an ill-posed problem in the sense
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of Hadamard (see [H]) due to the irreversibility of time. That is, there exists no so-
lution from the given final data, and even if a solution exists, the small perturbations
of the observation data may be dramatically scaled up in the solution. Hence, the in-
terest of constructing some special regularization method is motivated. This topic has
been studied extensively with lots of methods released such as: Tikhonov reqularization
[F], [M], [TS], [ZM], [IMFH]|, Lavrentiev regularization |NT|, [JSG]|, truncation method
[INTT], |[KT|, [ZFM|, filter method |S|, |TKLT|, [QW|, the quasi-boundary value method
[DB], [KT], [QTTT] and other methods [AE|, [LL1], [LL2], [HX], [TQKT], ... In [S],
Seidman uses a so-called "optimal filtering" method in order to recover the solution at
time ¢ > 0 with an optimal result. The idea of improving his outcome to reconstruct the
solution at time 0 is an interesting issue. Furthermore, the question that if we restrict
our observation on a subregion inside the domain then how the local problem will be
solved is also attractive.

1.2 Our problem

Let © be an open bounded domain in R"(n > 1) with a boundary 99 of class C%; T
be a fixed positive constant. Let p € C' ([0; +00)) such that 0 < p; < p(t) < p,Vt €
[0,4+00), where p; and ps are some positive real numbers. Let w be a nonempty, open

subdomain of 2. We consider a linear heat equation with time-dependent coefficients,
under the Dirichlet boundary condition with the state u € C* ((0,T); H3(Q)):

{ Ou—p(t)Au =0 in Q x (0,7,

u=0 on 082 x (0,7). (1.1)

Our target is constructing the initial solution u(-, 0) when the local measurement data of
u(+,T) on the subdomain w is available. In practice, the data at time 7" is often measured
by the physical instrument. Therefore, only a perturbed data f can be obtained. Let
0 > 0 denote the noisy level with the following property

[u(-, T) = fllrzw) < 6. (1.2)

Moreover, in order to assure the convergence of the regularization approximation to the
initial data u(-,0), some a priori assumption on the exact solution is required

u(+,0) € Hy(Q). (1.3)

We will determine an approximate output g of the unknown exact solution u(-,0) such
that the error estimate ¢(d) in

[u(-,0) = gllL2(@) < e(0) (1.4)

tends to 0 when ¢ tends to 0.



1.3 Relevant works

Now, we consider how our problem can be solved so far in the past. In fact, there
are lots of papers on the global backward problem but the works on the local one are
restricted. There has been a sizeable literature on the special case p = 1 with various
methods. From now on, we will denote by ¢ the noisy level.

1. In 1996 (see [S]), Seidman considers the heat equation which has the following
form

Ou—VaVu+qu=0 on Qx(0,7) with u=0 on 002 x (0,7) (1.5)

where a and ¢ belong to L>(2). He succeeds in constructing the solution at a
fixed time ¢ € (0,7) from the observation f satisfying [lu(-,T) — f|lr2@) < 9,

under the assumption u(-,0) € L*(€2). His strategy is using a "filter" with respect
to the spectral decomposition of operator A : u — —VaVu+ qu, which is defined

as
¢ -0 -7
F(t)e; = min {1, e M0 (—”“( (3””“’)) } e; (1.6)

where {\;};>1 and {e;};>1 are respectively denoted by the eigenvalues and the
corresponding eigenfunctions of the operator A. Then, he can get the optimal
result, which is

t 1-4
[u(- ) = gellz2(@) < 07 [Jul-, 0)[| 12y - (L.7)

The regularization solution g; at time ¢ is constructed as
go=y NI ( / f(:c)ei(:c)d:c) F(t)e;. (1.8)
i=1 &

2. By generalizing the result of Seidman, in [T'S|, Tautenhahn and Schréter provide
us a definition of the term "optimal method", in a sense the error of the estimate
between the exact solution and the approximate one defined from the optimal
method can not be greater than the best possible worst case error (see Definition
1.1, page 478). Their interest is finding the optimal results in different regulariza-
tion methods for solving the backward heat equations. According to this sense,
the result of Seidman is optimal.

3. In 2007, Trong et al. (see [TQKT]) improve the quasi-boundary value method to
regularize the 1D backward heat equation. They succeed in recovering the initial
data with the following error:

1
1

u(-, 0 a
u(,0) ~ gl a0y < VBCVT (m%) (1.9)
where C' is a positive constant depending on [lu(-,0)[| g1 (q) (see also [AP]).
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The problem with case p #Z constant is recently concerned, which can be mentioned in
some following writings:

1. In 2013, Tuan et al. in [TQTT]| consider the 1D backward heat equation with
time-dependent coefficients. They use a so-called "modified method" to get the
result below

24
i

[u(-,t) = gillr2) < (1+ [[ul, 0)|| 120 (m) L (1.10)

2. In 2014, Zhang, Fu and Ma (see [ZFM]) also study on the 1D backward heat
equation with time-dependent coefficients, but use the truncation method. They

can recover the solution at time ¢ € (T(l -5 T) satisfying

p2(T—t)

_t ¢ -,O T (p2—p1)T+pat
) = 1l < e OV (4 1oy 4 (1) 7 gt
(1.11)

for some constant 7 > 1.

3. In 2016, Khanh and Tuan (in [KT]) solve an initial inverse problem for an inho-
mogeneous heat equation by using high frequency truncation method. Under the
assumption that u(-,0) € Hj(£2), they can recover the initial data with the below
erTor:

- <||u<-,0)||Lz(m>
J )QT 0 +\/2P2T||U(',O)||H3(Q)
[[ul-, 0)] 2@ V2pT \/ln <||u(~70>||Lz<m> .

§

(1.12)

(- 0) — gl < (

For the local inverse problem, we can pick up some of following works:

1. In 1995, Yamamoto in [Y]| proposes a reconstruction formula for the spatial de-
pendence of the source term in a wave equation dyu — Au = f(x)o(t), assuming
o(t) known, from local measurement using exact controllability.

2. In 2009, Li, Yamamoto and Zou in [LYZ] study the conditional stability of inverse
problems. Here, the known data is observed in a subregion along a time period
which may start at some point, possibly far away from the initial data.

3. In 2011, Garcia and Takahashi (see |GT|) present some abstract results of a general
connection between null-controllability and several inverse problems for a class of
parabolic equations.

4. In 2013, Garcia, Osses and Tapia in [GOT] succeed in determining the heat source
from a single internal measurement of the solution, thanks to a family of null
control functions.



1.4 Owur method of solving the global backward problem (GBP)
and the local backward problem (LBP)

Firstly, we deal with the global backward problem (GBP), which recovers the initial
data from the observation on the whole domain at some later time 7 > 0. Here, we
assume that there exists solution of the (1.1) satisfying the a priori condition (1.3) and
f be the known data on 2 at time 7 such that ||u(-, 7) — f|| 2@y < & for some § > 0. We
will determine a function g which approximate the initial data. Our idea of constructing
such function g is from the “optimal filtering method” of Seidman (see [S]): First, we
define a continuous operator depending on a regularization parameter o

Re: LX(Q) — L*Q)
o v Sominfe 0 ([ oo (o) e
i=1 Q

Then, the function R, f will be closed to the exact solution u(-,0) in L*(Q2) where o is
the minimizer of the problem mi{)l u(-,0) = Rafll2)-
a>

Secondly, for the local backward problem (LBP), whose observation is measured on a
subdomain, we need to use a tool of controllability to link with the (GBP). Precisely,
we use the assertion about the existence of a sequence of control functions to get the
information of solution on the whole domain €2 from the given data on the subdomain
w: For each i = 1,2, ..., for any € > 0, there exists h; € L*(w) such that the solution of

O — p()Ap; =0 in Q x (0,27)\ {T},
w; =0 on 092 x (0,27,
21(0) = e in Q. (1.13)

0i(,T) = oi(-,T7) + 1,h; in Q

satisfies [|¢i(+,2T)|[;2(q) < €. Here, 1, presents for the characteristic function on the
region w and ¢;(7T~) denotes the left limit of the function ¢; at time 7. Multiplying
Ovpi — p(t)Agp; = 0 by u(-, 2T — t) and using some computation technique, we can get
the approximate solution f at time 7 = 37", which is

lu(-,3T) = fll2@) < €().

Here, f is computed by known data h; and f and £(§) is a function of & such that
E(5) — 0 when § — 0. Lastly, applying the result of (GBP) with the information at
3T on the whole domain, the initial data of (1.1) is reconstructed.

1.5 Spectral theory

As a direct consequence of spectral theorem for compact, self-adjoint operators (see
Theorem 9.16, page 225, [HN]), there exists a sequence of positive real eigenvalues of
the operator —A, which denoted by {\;}i=12. . where

goos

{0<>\1§)\2§>\3§....,

A — 00 as i —» 0. (1.14)
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of L*(Q), where ¢; € HJ () is

Moreover, there exists an orthonormal basis {e;};—1 2
an eigenfunction corresponding to \;

geu-

(1.15)

—Aei = )\Z-ei n Q,
e; =0 on 0f).

When uy € L*(Q) and ug = Y. aze; with a; = [, ug(v)e;(v)dx and Y |a;” < oo, then
i=1 =1

u(-,t) = Z ;e Jop(s)dse, (1.16)
i=1

is the unique solution of

Ou—p(t)Au =0 in Q x (0,7),
u=0 on 02 x (0,7, (1.17)
u(-,0) = up in €.

1.6 Main result

Theorem 1.1. Let u be the solution of (1.1) with the a priori bound (1.3). Let f €
L*(w) and 0 < & < |lu(-,0)| 12 satisfying

Ju(-,T) = fllr2w) < 0. (1.18)

There exists a function g € L*(Q) and a constant C = C(Q,w,p) > 0 such that the
following estimate holds

Ce%ﬁ”“('a())HHé(Q)

l[w(,0)ll 2
n 2w

||u(>0) _g||L2(Q) < (1.19)

Remark 1.1. 1. When § < De_D(TJr%)Hu(-,O)Hp(Q) for some positive constant
D = D(Q,w,p), the approximate solution of the initial data satisfying (1.19)
15 constructed as below

g = _ Z mln{e)\z ngp(s)dS’ a}e—)\i f23gp(8)ds (/ hl(x)f(x)d[)f) 6i (120)
i=1 v

where {h;}i>1 is a sequence of control functions (see Section /) and « is the
reqularization parameter given by

. A(B_l( V3T (- 0) g0 )) o)

1T u(-, 0)l| 2y~ 0

with



A:[0;400) — [?;jtoo)

v (1.22)
(it)
B:(0;4+00) — (0;400)
T = ze® (1.23)

The existence of the function B~' dues to the bijection property of the func-
tion B on (0, +00),

(iii) K1 = K1(Q,w,p) > 1 and ky = k1(Q,w,p) € (0,1). All these constants can
be explicitly computed when € is convex or star-shaped with respect to some
xgy € €.

2. The estimate (1.19) connects to the well-known following estimate

Cy/1+T + %HWH@HH&(Q)

o ; . 1.24
[ ( )||L2(Q) | [u(-0)llz2 (o) | |

Tt 200,

for some positive constant C' = C(Q,w,p) (see Appendiz for the proof).

1.7 Outline

Section 2 will give us a result of the (GBP) (see Theorem 2.1), where the known data
is observed on the whole domain. In section 3, we construct an observation estimate
at one point of time for the parabolic equations with time-dependent coefficients (see
Theorem 3.1 and Theorem 3.2). This is an important preliminary of the approximate
controllability (see Theorem 4.1), which is studied in section 4. Lastly, combining the
result of controllability and global backward, we get the proof of the Theorem 1.1,
mentioned in section 5.

2 Global backward problem

First of all, we need to consider the special case, that is w = . In [S], Seidman succeeds
in recovering the solution at time ¢ > 0 by an optimal filtering method, under the a
priori condition u(-,0) € L*(€2). Here we will use his method to recover the initial data
at time 0 but with the stronger assumption u(-,0) € Hg ().



Theorem 2.1. Let u be the solution of (1.1) satisfying the a priori condition (1.3). Let
f € L3Q) and 6 > 0 having the following property

(-, T) = fllr2) < 0. (2.1)
There exists a function g € L*(Q) such that for any ¢ > 2)\1p2T||u5(2 Ol , the following
2(0)
estimate holds
V (14 Q)p2T |u(-, ||H1

920y < |
L2(Q lu(-0)ll 2 (o)
In (V20 po T ——F5—

Remark 2.1. 1. When § < |ju(-,0)| r2@e 7", the approzimate solution of the
initial data satisfying (2.2) is constructed as

g = i min {e)"' fOTp(S)dS, 64} /Q f(x)ei(z)dwe;. (2.3)

Here, the regularization parameter & is given by

. <B_1 (mnug, o>HH5<m>> o

with A and B being respectively defined in (1.22) and (1.23).

2. When 6 < |lu(-,0)|| 12, we can choose { = ﬁ in order to get

poT + g [, 0)ll g1

o . | 25
lu(,0) = gll 2o 1 P20y 7

This connects to the well-known following estimate

VP2T||U('>0)||H1(Q)
||“('=O)HL2(Q)§ Ol = (2.6)

1 NL2(0)

luC D)l 2 (o)

Proof of Theorem 2.1

Proof. For the case § > [lu(-,0)| z2@ye” 7?7, the estimate (2.2) holds with g = 0.
Indeed, combining with the fact that \/2C\ p,T < e$MP2T V(¢ > 0, we get

oW 7l ||L2(Q < O+ONPT (2.7)



It implies that

1 < (1+ QOpT
\/7 \/111\/%)\7 [u(-,0) ”LZ(Q)

Hence

[u -, 0)ll e
VAL
V(1 + OpaTl|ul-, 0) ||y

(0l 2 <

< (2.8)
\/].Il W ( O)HLQ(Q)
The main purpose concerns the case when
5 < [[u-,0) pa(eye 7T (2.9)

In this case, we will determine the regularization solution at time 0 as follows: First of
all, Step 1 will provide us the construction of a continuous operator Rz depending on
a parameter [, which will be chosen later. The regularization solution g is defined by
applying this operator on the known-data f. Secondly, in Step 2, we compute the error
between the exact solution and the approximate solution defined in Step 1. Lastly, by
minimizing the error in Step 2 with respect to 3, we can obtain the final result in Step
3.
Step 1: Construct the regularization solution.

Let us define a continuous function Rg depending on a positive parameter 3, which will
be chosen later:

Re: Q) — I*(Q)
- imn{ 053 ([ fope(ora ) e

Put g := Rsf. We will prove that such defined function g approximate the exact solu-
tion u(-,0) with some suitable choice of .

Step 2: Compute the error ||u(-,0) — g||r2().
Put gr := Rsu(-,T'), we will compute the error by using the following triangle inequality

|lu(-,0) — 9||L2(Q) < flu(-,0) — 9T||L2(Q) + |lgr — 9||L2(Q)- (2.10)

On one hand, we have

lg — gT||L2(Q)

)\fo p(s)ds. 5}/ —uxT))da?e,-

L2 ()

5Hf—u D[ oy < 50 (2.11)

VAN
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On the other hand

||u aO) gTHL2
= Z/ u(z,0)e;(z)dre; — me{e’\ iJo ds;ﬁ}e"\ifgp(s)ds/u(x,O)ei(x)dxei
i=1 7 Q L2(Q)

_ - . i f() p(s)ds. i fO ds ) )
Z( min{e™ i Ble” >/Qu(x,0)el(:c)d:cel

=1

X (1- e / w(w, 0)es(x)dze;
Q

i JOT p(s)ds>5

_ 3 <1_Be\/;ps \/’/ (z,0)e;(x)dwe;

6)\". fOT p(s)ds>B

(1 — ﬂe_AfoTp(s)ds
< sup

Mo \/X ||u(7O>HHé(Q)

< sup LB (1—56 rT) ) JorT T (-, )l 3 ey - (2.12)
A> A \/

L2(2)

L2(Q)

L2(Q)

- (1—Be=>r2T)
Now, we solve the problem of finding 5;1)1\)1 T
Define
F:[Ai;400) = (0;400)
A o L)
)\pgT .

Obviously, F is differentiable and
5p2T6_)‘p2T(1 + 2)\p2T) — pgT

F'(\) = TN (2.13)
The equation F'(\) = 0 is equivalent to
AT
f= T ol (2.14)

We will choose 3 such that the equation (2.14) has a unique solution A > \;. Let us
remind the function A defined in (1.22):

A [0;+00) — l§;+oo)




Note that the equation (2.14) has a unique solution A > \; if and only if

Suppose the condition (2.15) is satisfied then there exists a unique A > \; such that
F'(A\) =0 and 8 = A(Ap>T). We can write A\p,T = A~(S). On the other hand, the
fact that F'(A;) > 0 leads us to the conclusion: the function F is strictly increasing on
(A1, A) and strictly decreasing on (A, +00). Consequently, F gets supremum at A, i.e

F(N) = sup F(A). (2.16)

Step 3: Minimize the error with a suitable choice of 3.
Combining the two above steps, we get

(1= et
[46,0) = glla@) = A+ ———=v/PT [[u(, O)ll g

VApT
! Tl '70 1
= Odcr ¥ 4 (1— @)\/Z?H ( )HHO(Q)
A~L(B)

(2.17)

where © = ﬁe_’_\mT. Note that
OA+(1-0)B>min{A;B} V AB>0,0¢€(0,1).

The equality occurs when and only when A = B. Hence, in order to minimize the
right-hand side of (2.17), we will choose ( such that

_ VT ||U('=O)HH3(Q)
ATB)

Vo -0l 71
4

SeA B

(2.18)

The choice of B=a := A B!

satisfies the condition (2.15) (dues

to the assumption (2.9) on the smallness of §) and the estimate (2.18). Therefore, we
get the following estimate

VP2 [l 0) | g1
A~ @)
V2T [[u(-; 0)|| g3 @)

[u(,0) = gll 2y <

. (2.19)
\/ 5 (w—mTuu:muHa(m )
Due to the definition of the function B (see 1.23), (2.19) becomes
P2T”“("°)”2}101(9>
VT [[u(:, 0l g1 ) _ \/p2T||u('aO)||H3(Q)€m%. (2.20)

0 ~ u(+,0) _g||L2(Q)
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Using the fact that /2¢z < s’ V(¢ > 0 Vx > 0, one obtains

2
A+OR Tl Ol

vP2THU('70)||H5(Q)< 1 .
0 TV

llu(,0)—gll?

IO (2.21)

It is equivalent to

(L+ OpT ||u('>0)||§13(9) > 1o V2T [|ul:, 0) 3.0 (2.29)
Ju(-,0) — 9”?;2(9) - 0
. 52 .
With ¢ > T T it deduces that
V(1 + Op2T [[u(-, 0)]
lu(-,0) = gll 120 < - — 0)||H5(Q) . (2.23)
\/ In (VIO T )
]

For the local case w € €2, it is required the existence of control functions on the sub-
domain at some point of time in order to link with a global result. This controllability
problem has a sustainable connection with the observability one, which will be studied
in the next Section.

3  Observability at one point of time

The issue on constructing an observation estimate is widely studied. It can be solved by
global Carleman inequality, which is presented in [FI|; by using the estimate of Lebeau
and Robbiano (see [LR]) or by transmutation (see [EZ]). Recently, Phung et al. provide
a different method which is based on properties of the heat kernel with a parametric of
order 0. In [PW1] and [PW2]|, the authors work on a linear equation which has form

ov—Av+av+bVu=0 in Qx(0,7).

Here, a € L>((0,7T), LY(2)) with g > 2ifn=1and ¢ > nifn > 2;b € L*(Qx (0,17))"
and ) must be convex. Then, by using some geometrical techniques, Phung et. al
improve their previous results by working on a general domain (i.e 2 is even convex or
not). For the following form of linear equation

Ov—Av+av=0 in Qx(0,7)

where a € L*(2 x (0,T)), see [PWZ]. For the parabolic equations with space-time
coefficients
0w — V(AVY) +av+bVu =0 in Qx (0,7)

12



where a € L>(2 x (0,7)), b € L>*(Q2 x (0,7))" and A is a n x n symmetric positive-
definite matrix with C2(Q2 x [0,T]) coefficients, see [BP]. Here, we also deal with the
problem of determining an observation estimate in the general case of domain but for
a linear heat equation with time-dependent coefficients

O —p(t)Av =0 in Qx (0,7)

where p € C1(0,T). In this section, we will study two results of observation estimates
in two different geometrical cases: The general case (Theorem 3.1) and the special case
(Theorem 3.2) when  is convex or star-shaped with respect to some zy such that
B(xzg,r) == {x;|xr — 29| <71} Cw,0 <r < R :=max|r — xg|. For the special case, we
make a careful evaluation of the constants Whichx(ezgn be explicitly computed. First of
all, we state an observation result in general case of domain ).

Theorem 3.1. There exist constants K = K(Q,w,p) > 0 and p = p(Q,w,p) € (0;1)
such that the solution of

O —p(t)Av =0 1inQx (0,7),
v=>0 on 092 x (0,7, (3.1)
U(',O) < L2(Q)7

satisfies

lo( D)2y < KeT ol T [0, 0) | 2ty (3-2)
@) ()

Corollary 3.1. For any € > 0, there exist positive constants ¢y and co depending on
Q,w and p such that the following estimate holds

(-, T) 720 <016T—||?f( D)2 + ellv(, 0) 72 (3-3)

Proof of Corollary 3.1

Proof. Tt implies from (3.2) in Theorem 3.1 that

2K 2(1
o0 )220y < K25 [[o(, T) |70, 100 025

Applying the Young’s inequality ab < % + % with

1K 1 L\
a=KrerT|lo(, T)|ze@)y— 1 —p) > |



1 1
m=— and ¢=-—01,
7 I—p
we get
2 2k ] lou
(-, D20y < pE ke —— (1= p) # o, T)ll72w) +ellv(, 0)l[720)-
E K

Therefore, we obtain the estimate (3.3) with

1—p 2K 1 -
c1 = maX{NK%(l — ) v—} and ¢y = ( M)- (3.4)
o K

O

Our next theorem will provide us an observation result in a special geometric case
with specific constants.

Theorem 3.2. Let zy € Q and R := max |v—x|. Suppose all the following assumptions
z€f)
hold:

(i) Q is convex or star-shaped domain with respect to x,

(ii) R* < ;;T% if p # constant where |p'|o = sup |p'(t)];
o te[0,T]

then the solution of (3.1) satisfies (3.2) with

w={z;|r — x| <r} where 0 <r <R,

1
K = max <41+Co(1+52)(1 4 €>n+200(1+52)€201(1—1—5()62%) 245 7 7“7%
4p1 (14 Sy)
and
B 1
h=5a+s,)
Here P2l
Cy = Ipzloo7
2p1
/
C1:=(2+n) p |°O,
P
1
(B )™ 1 wee ) i Co=0,
€ = _1
_arear |0 1 if Cy>0
r2(1-(2)7) 0
and .
S, o nl(HJ'%r b G0,
=€ (1+6)% .
1_(%)00 Zf CO > 0

—_
s



Remark 3.1. In the special case when p = 1, the observation estimate (3.2) can be
written as

142 ln(li‘fl)

1 In 5
In(1+4¢)

n ﬁ(l_,_;) Q(HTé_) 2(1+“ﬁ%)
oDl < (40407 Do D) U o, 004

1
where £ := (M> —1>1 forany & € (0,1).

£ln 3r2
The interested readers can compare this result with Proposition 2.1 in [PW1], Proposi-
tion 2.2 in [PW2] or Theorem 4.2 in [BP].

The main idea of the proof of both theorems is based on the logarithm convexity
method (see [Ve]). In order to check a kind of logarithm convexity for a suitable
functional, it requires that some boundary terms must be dropped or have a good sign.
This is possible under the assumption (i) in Theorem 3.2. But for the general case
(Theorem 3.1), we need a local star-shaped assumption (to get a good sign of boundary
terms) and a suitable cut-off function (to drop some boundary terms). Then, thanks
to the covering argument and the propagation of smallness, we get the global desired
result. First of all, we need some preliminary results in the first subsection. Then,
the proof of Theorem 3.2 and Theorem 3.1 will be devoted in two next subsections,
respectively.

3.1 Preliminary results

The strategy of the proof of Theorem 3.1 and Theorem 3.2 consists on choosing a
suitable function whose logarithm can be a convex function and considering the dif-
ferential inequalities associated to this function (see Lemma 3.1). Then by choosing
a suitable weight function inspired by the heat kernel (see Corollary 3.2) and solving
ODE inequalities (see Lemma 3.2), we obtain a Hélder type inequality (see Corollary
3.3). The localization process in the proof of general case makes appear the function F'
in Corollary 3.2, which will be treated due to the technical Lemma 3.3.

Lemma 3.1. Let ¥ be an open set in R", xy € 9, 2 € HY0,T; H}(V)) and ¢ €
C%*Q x (0,T)). We define two functions from [0,T] on (0,+00) by

= / |z(x, t)|26¢(x’t)dz

\Vz(z,t)[2e?@) dr
N(t) = ()f} et
g l2(z,t)Pe?@dx

With the notations Go := 0,0 +p(t)Ad+p(t)|[Vo|* and w := 0,z —p(t) Az, the following

assertions hold for any times t > 0:

i/

V04 2N(00(0) = [ Gola, D]t Do + 2 [ i )z(e. ¥,
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p(t)’
p(t) y(t)
@ 2z, )PGd(z, t)e® @D da b w(x, t))?e? @ dx
50 [T OPGe(e e s+ gy [t e
p(t2
y

pit /g¢> (2, ) e ¢(“d:c/|szt)|2¢“
y(t)?

where v is the unit outward normal vector to OV and V> is the Hessian matriz of ¢.

N'(t)

IN

\V2(z, )0, (x, t)e? @ dx
a9

[\D@

/ Va(z, t)\V2¢(z, t)Vz(z, t)e? ™) dr
9

Proof of Lemma 3.1

Proof. First of all, we will prove the assertion i/.
We have

y'(1) :2/Z(x,t)atz(x,t)e¢(w’t)dx+/\z(Lt)|28t¢(x’t)e¢(w,t)dx.
9 9

With w := 0,z — p(t)Az, one has

y'(t) = 2/92(z,t)w(x,t)e¢(x’t)d$+2p(t)/ﬁz(z,t)Az(z,t)e‘b(x’t)d:E
—i—/ﬂ|z(x,t)\28t¢(x,t)ed’(m’t)dx. (3.5)
Let us compute the second term of (3.5) by using integration by parts:
2p(t)/ﬁz(a:,t)Az(a:,t)e‘b(x’t)d:z
= —2p(t)[9|Vz(x,t)|2e¢(m’t)dx—2p(t)/19z(x,t)Vz(x,t)V¢(a:,t)e¢(x’t)d:c
= —2p(t)/9|Vz(:v,t)|2e¢(m’t)d:£—p(t)/ﬂV(|z(:v,t)|2)V¢(x,t)e¢(w’t)dx. (3.6)

We use the fact that 2:Vz = V(|z]?) to get the second equality. Integrating by parts
the second term in (3.6) gives

“p(t) [ V(ata, )Tl e
9
= p(t)/ﬁ|Z(£l?,t)|2A¢(I,t)€¢(x’t)dlL'—l—p(t)/ﬁ|Z(£l?,t)|2|v¢(£l?,t)|26¢(x’t)dl'. (3.7)

16



Combining (3.5) and (3.7), we obtain:
y/(t) = _2p(t)/|VZ($,t)|2e¢(x’t)dx+p(t)/\z(m,t)|2A¢(:c,t)e¢(x’t)dx
¥ 9
+p(t) / |2(x,8)*| V(. 1) ?e? "D da + / I2(z, )20, (, 1) @D de
v 9

+2/z(:)s,t)w(:z,t)e‘b(x’t)dx.
9

Thus, we can get the assertion i/. Now, we move to next step with the proof of assertion

ii.

Step 1: Compute £ (p(t) [, |Vz(z, t)[?e?@Ddx).

d (p(t)/|Vz(x,t)|2e¢(m’t)dx)
dt g
= p'(t)/|Vz(x,t)|26¢(x’t)d:)s—l—2p(t)/Vz(a:,t)at(Vz(:B,t))e‘b(x’t)dx
9 9

+p(t) / |VZ((L‘7 t)|28t¢(flf, t)eqﬁ(x,t)dx
9
= P+P+ P (3.8)

where P;(i = 1,2, 3) is the i term in the right-hand side of (3.8). For the second term
P,, we use integration by parts, with the note that 0,z = 0 on 9V, to get:

Py = 2p(t)/VZ(:L’,t)V(@tz(;p,t))eMx,t)dz
9
- _2p(t>/Az(x’t)atz(%t)ed)(m’t)dx—2p(t)/Vz(x,t)ﬁtz(x,t)vqﬁ(x,t)e‘i’(mvt)dx
v 9
= —2/|at2(l’,t)|26¢(x,t)d1’—|—2/w(l’,t)atz(l"t)ﬁ)(ﬁ(@t)dx
v 9

—2p(t) /19 O2(x, )V z(z,t)Vo(z, t)e? ™D dx. (3.9)

The last equality is implied from the fact: p(t)Az = 0,z — w. For the third term Pj,
since G 1= 0,0 + p(t)Ag + p(t)|Vo|?, we get

Py = p(t)/|VZ(CL’,t)|2at¢(gj’t)e¢(xvt)dx
9
- p(t)/|Vz(x’t>|2g¢($at)€¢(x’t)d$—P(t)2/|Vz(x,t)|2A¢(x,t)e¢(:v,t)dx
v 9

p(t)? / Va(,£) Vbl )2 d (3.10)

17



Integrating by parts the second term in (3.10) gives
—p(t)? [9 IV 2(z, )|*2Ad(x, t)e? ™) da
= p(t)? /ﬁ V([ Va(x,t)P)Ve(x, t)e? D d + p(t)? /ﬁ Va(, )PV (w, t)[*e? " da
—p(t)? y IV 2(z,1)|20,6(z, t)e? @D dz. (3.11)
Now, we compute the first term in (3.11) by using standard summation notations
)2 [9 V(|Vz(z, t)[})Vo(x, t)e? ™D dx
() / 0.0y, D)6z, )= da
= /8 2, 1) 2(x )0 6(z, 1)e? ™) da
— _op(t) / 2, )02z, ) Oh(x, ) ¥ dar — 2p(t) /8,2 £, 8)0s2(z, 1), 1)
—2p(t)? /ﬁajz(x,t)@z(x,t)aiqﬁ(:v,t)ajgb(a?,t)e @0 g
2p(t)? | 0j2(x,t)02(x, 1) D (x, t)v;e? @D . (3.12)

oY

Thus, we can write
)2[9V (IVz(z, )% Vo(x,t)e? @) dzx
= —2p(t)2[9Az(m,t)Vz(x,t)V¢($,t)e¢(w’t)dx—2p(t)2/Vz(x,t)V2¢(:L’,t)Vz(x,t)e¢(x’t)dx
—2p(t)? /|Vz(a: t\Vo(x,t)|2e?@dx + 2p(t)? / |V z(z, )20, ¢(x, t)e? @V dz. (3.13)
Combining (3.10), (3.11) and (3.13), the third term Pj in (3.8) can be computed as

Py = p(t)/ﬁ\Vz(:c,t)ﬁ@qﬁ(x,t)ed’(m’t)dx—2p(t)2[9Az(x,t)Vz(x,t)V¢(:c,t)e¢(w’t)dx

_2p(t)2 /19 VZ(.ZL’, t)v2¢(m‘7 t)VZ(;U, t)efi)(m,t)dx _ 2p(t)2 /19 ‘VZ(SL’, t)v¢(x7 t) |2€¢>(m,t)

+p()?* [ |Vz(z,t)|?0,6(x, t)e? @V dz. (3.14)
09
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Thus, from above results (3.9) and (3.14), (3.8) can be written

d (p(t) / \Vz(x,t)\2e¢(””’t)dx)
dt 9
= p/(t)/|Vz(x,t)|26¢(m’t)dx—2/|8tz(x,t)|26¢(m’t)dx+2/w(x,t)@tz(x,t)ed’(m’t)dx
9 9 9
—2p(t)/Otz(x,t)Vz(:)s,t)VaS(:E,t)ed’(m’t)d:z+p(t)/|Vz(a:,t)|2g¢(x,t)e¢(w’t)d:)s
9 9
—2p(t)2/Az(a:,t)Vz(:B,t)ng(x,t)e‘z’(x’t)da:—2p(t)2/Vz(:z,t)Vng(x,t)Vz(x,t)e‘z’(x’t)da:
9 9
—2p(t)2/|Vz(x,t)V¢(x,t)\2e¢(x’t)dx +p(t)2/ IV 2(z,1)|*0,¢(x, t)e? @ dz. (3.15)
9 o9

Since p(t)Az = 0;z — w, one has
—2p(t)? / Az(x, )Vz(z, t)Vo(x, t)e? @V dr
9

= —2p(t)/19atZ(SL’,t)VZ(l’,t)ng(x,t)efi)(m,t)dx—|—2p(t>/19w(;p7t)vz(x7t>v¢($’t)e¢(x,t)dx.

Moreover, we also have

—2/|atz(x>t)|2e¢(x’t)dx_l_2/w(xat)atz(l',t)6¢(x7t)dx
[

0,

_4p(t)/08tz(:c,t)Vz(x,t)V¢(x,t)efb(m,t)dx+2p(t)/0w(x,t)Vz(Lt)v¢(x’t)e¢(:c,t)dx

—20(0? [ V(009 (a. 0 e
[V,

2
= —2/ <8tz(:v,t) +p(t)Vz(z,t)Vo(x,t) — %w(m,t)) e¢(x’t)d:£+%/|w(a:,t)|26¢(x’t)da:.
9 9
(3.16)
Thus, (3.15) and (3.16) imply that

& (00 [ 19tmpereoa)
dt ;
= ) / |V z(z, t)|2€¢>(m,t)dx + p(t) / IV 2(z, t)|2g¢e¢(:v,t)dx
v 9
2l / Vz(z, )V2o(x, t)Vz(x,t)e? @ dr + p(t)* | |V2(z,1)?0,6(x,t)e? ™) dx
v a9

2
_2/ (@z(z,t) +p(t)Va(z, t)Ve(z,t) — %w(m,t)) €¢(x’t)d:£+%/|w(:r,t)|26¢(x’t)da:.
’ 9

(3.17)
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Step 2: Compute y/(t)p(t) [, V2 (x, t)]2e?@D .
From the result i/, we have

V@) [ Vet npetOds

= -2 [p(t) 19|VZ($,t)|2€¢(m’t)dxr+2p(t) /19 2(x, Hw(z, t)e? ™D dy /,9 (Vz(z,t)|?e?@D dx
#2(0) [ Gote. Ol e [ 920,00

= 2A(=A+B)+p(t) /19 Go(z,1)|2(z, 1) Pe? ™ da /19 IV 2(x, 1) [0 du. (3.18)

Here

A= p(t) / Vs, £) P
9

and
B::/Z(I,t)W(x,t)6¢(x’t)dl'
9

Our target is making appear the term 9,z(z,t) + p(t)Vz(z,t)Vo(x,t) — sw(x, t). First
of all, we compute A by integrating by parts

A = p(t)/|Vz(:E,t)|26¢(xvt)d;E
9
— _p(t)/AZ(l’,t)Z(LE,t)ed)(m,t)dl’—p(t)/VZ(LL’,t)z(x’t)v¢(x7t)e¢(m,t)dx
v 9
— /w(x,t)z(x,t)e¢(:v,t)dx—/8tz(x’t)z(x7t)e¢(m,t)dx
v 9
_p(t)/VZ(:L',t)z(:E,t)Vqﬁ(x’t)eMx,t)dx
9
N _/ <0tz(x,t) +p)Va(z, ) Ve(z,t) — %w(i’f,t)) 2(z,t)e? @D dy
9

+= /w(:c, t)z(z, t)e? @D dg. (3.19)
9

B—A = /19 <0tz(x,t) +p(t)Vz(z,t)Vo(z,t) — %w(gj’t)) oz, 1)e? @D dz

/ w(z, t)z(z, t)e? @V dz. (3.20)
J
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Combining (3.18), (3.19) and (3.20), one gets

/|Vz z,t)[2e? @
([9 (z,t)z(z,t)e “dx)

1 2
- (/ (atz(x’t) )Vl Vel 1) - §w<x,t>) Z(x,t)efi’(mvt)dx)
9
v 9

N —

(3.21)
Step 3: Compute N'(t).
We have

V(0 = i (w0 (000 [ 1950 ) o) [ 19sGape).

The result (3.17) in Step 1 and (3.21) in Step 2 provide us

Nt = t)N(t)+Z;(§)) IV 2(z, )20, 0(z, £)e? @D dz +—z/|Vzat 1) 2G e dz

i Vz(z,t) V2o (x, 1)V (x,t)e ¢(“dx+—/\w z,t)[2e?@h
9

%/ﬁ (atz s t +p( )Vz(x t)V(b(:c t) ;w(x,t)) @) 1o

Qyéf) (/19 w(w, t)z(z, 1)’ dx) 2

_Lé/g¢|2’(:1;',1§)|2€<15(:c7t)dx/|VZ($’t)|2€q§(:c7t)dz
y(t)* Jo 9

Thanks to Cauchy-Schwarz inequality:

<

i~

(/ﬂ (atz(x’t) +p(t)Vz(z, 1) Ve(z,t) — %w(af, t)) Z(x,t)emx,t)dif)z
) [9 (@Z(% DV Vet - %w(x’t))2 ed)(m’t)dI/ﬁ |2(z, t)[?e? ™ dx

we receive the assertion ii/. U
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Now, by choosing an explicit weight function e? inspired from the heat kernel, we
get the following result.

Corollary 3.2. Under the same assumption in Lemma 3.1, put R := max |z — zg|.
ey
Assume that 9 be a convexr domain or star-shaped with respect to xo. For any p > 0,

with ¢ is chosen as below

_ _ 2
[z = ol (T —t +p), (3.22)

)= Tt ) 2

we obtain two following estimates:

i/
/ Co b(c.)
' (1) +2N(t)y(t)| < | 7——+C1 | y(O)+2 [ Jw(z,t)z(z,1)|e” " dx, (3.23)
T—t+p 9
ii/
14+ Cy lf lw(z, t)|>e? @D dy
! < | =— .
N(t)_(T_t+p+Cl)N() 5 y(t) (3.24)
where ] e |
P oo P loo
Cy = and C;=(2+n )
’ 217% ' ( ) P1

Proof of Corollary 3.2
Proof. Obviously, we can easily check the following properties of the function ¢:
(1) 9 +p(T)Ad +p(T)|Ve|* =0,
(2) V6 = g

) T—t47)”
(8) A = g

(4) V¢ = WI where I, is the identity matrix of size n.

Remind that G¢ = 9,0 + p(t)A¢ + p(t)|V¢|*>. Thanks to properties (1), (2) and (3), we
get

Gol < |p(t) = p(T)| Ad + [p(t) — p(T)| V]
nlp'le | P[eR? 1

<
= o2p(T)  Ap(TR2T—t+p
/ - / 00R2 1
2p p; T —t+p
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Hence, from result i/ in Lemma 3.1, we get the assertion ¢/. Now, we turn to prove the
assertion ii/. Thanks to the assumption that ¢ is star-shaped with respect to xq, one

has
(x — x)v

()T — 1)
Furthermore, property (4) implies

Oy = — <0 Vzeow. (3.26)

~1
2p(T) (T =t +p)

/Vz(:v,t)Vzng(a:,t)Vz(z,t)e‘b(x’t)dx: /|VZ(ZL',t)|26¢(x’t)dZL'.
Q 0

(3.27)
Consequently, combining result ii/ in Lemma 3.1 with (3.25), (3.26) and (3.27), we get
the assertion ii/. O

Now, the following lemma will solve the ODE inequalities getting from Corollary
3.2.

Lemma 3.2. Let p > 0, F € C°[0,T]). Suppose two positive functions y, N €
CY([0,T]) satisfy the following conditions

1
Co
"+ 2Ny(t)| < | ——— 4+ C, + F(t t 3.28
W0+ 2N < (= s PO )y, 2)
- 1+C 1
+ Cp
N () < [ ——=0 N _F 2
0= (718 o) N+ 3F0) (3.20)
where Cy, C7 > 0. Then for any 0 <t; <ty <t3 <T, one has
T _¢ +p Co(14+M) u
)M <G (10 t t 3.30
(y(t2)) " <e i~ y(ts) (y(t1)) (3.30)
with . o
3 et1s
v Je s hyrFog 45
e %2 oC1s dS;

t1 (T—s+h)1+%

G = (14 M) l(tg —tl)/tS F(s)ds + /tg F(s)ds + (ts — t)Ch

t1 t1

Proof of Lemma 3.2

Proof. From (3.29), we get:

(NE(T —t + p) e < ZF(t)(T — t + p) e, (3.31)

N —
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For t; <t < ts:

Integrating (3.31) over (t;ty) gives

14+C
T —ty+p ’ o Cilta—)
T—t+p

N(t) > N(t2)<

14C,
—leclt b O /t2 F(s)(T — s+ p)'t%e%5ds.  (3.32)
2 T—t+p ¢

Using the fact that (T'— s + p)1t@e=C1s < (T —t + p) Tt Vs > ¢, one gets

eCit 1 [t
N 2 Q) gy 5 ) Flds (3.33)
where Q(ty) = e=“12(T — ty + p)'TON(3). From (3.28), we also have
C
y'(t) + 2N (t)y(t) < (T—7t()+p +Ci + F(t)) y(t). (3.34)

Combining to (3.33), we obtain:

(1) + (2@@2) — teJ:tp)HCO - /t " F(s)ds — T_Ltoﬂ) —Cy - F(t)) y(t) < 0.

It is equivalent to

C1

s /
(y(t)e2Q(t2)fot (T—stp)FC0 dse_(ftflz F(s)ds+C1)t(T —t4+ p)Coe— I F(s)ds) <0. (335>

Integrating (3.35) over (t1;t2), one has

eC s C
Y1) > y(ta)e I T (i o)t (amtr) (%ip) " R R
o

(3.36)
For t, <t < t3:

Integrating (3.31) over (ta;t) gives

14+-C
T — t2 + P ’ e—Cl(tz—t)
T—t+p

N(t) < N(t2)<

1 . 1 1+Co t e c
=ttt <7> / F(s)(T — s+ p)T0e™“"ds.  (3.37)
2 T - t + p tz

Using the fact that (7' — s + p)1 T8 < (T —ty + p)tTC0e=C1t2 s > ¢, we obtain

N(t) < Q(ty) | =——— Gt p —ehlt-t) (22 7 / F(s)ds.(3.38
waw () et (Fel) [ Feisea
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From (3.28), we also have

VO + 28002 — (=S G (0 )l (3.39)

— i+
It deduces from (3.38) and (3.39) that

60115

- T—t2+p 1+Co t3
)+ 2Q +01<ttz><7) /F d
y() (Q(Q)(T_t+p)l+00 € T_t+p " (S)S

> (T_LH/) +C 4 F(t )) y(t). (3.40)

It is equivalent to

(y(t)e2 2 J§ Gty A i Fo)ds [y o1 () T P as v f F(s)ds;),
(I'—t+ p)co n
Integrating (3.41) over (to;t3) gives (3.
y(t2) < y(ts)e 20(2) ] afw 5 13 F(s)ds {3 eCr(emta) (Ttatey 0 g
X (%)% ecl(tg—tz)eff; F(s)ds (3.42)

Combining to (3.36), one gets

M MC
y(ts) < y(ts) <y(t1)) <T — 11+ P) ’ 6([512 F(s)ds+cl)M(t2_t1)€Mf§12 F(s)ds

y(t2) T—ty+p
C
Xecl(ts_t2)€ftt23 F(S)ds ftt; 601(57t2)(%)1+00 ftS F (T — t2 —I— p) 0
T—t3+p
(3.43)
where
L2 (T sflsuco ds
M = C’; (3.44)
j;fl (T—s+p)I+C0 dS
We also have
. t3 eC1s
t3 Crot) T—ty+p 14Co b b 7@ T ds
‘ T—s+p o eCit2
" (T—ta+9) 700
t3 Cys
e s
T—s 1+C
<ty —ty) ST
t1 (T_s+p)1+Co‘dS
< (tg—t)M. (3.45)
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Hence, it is deduced from (3.43) that

(y(t2))"

< y(tg) (y(tl))M 6M(t2—t1) fttlz F(s)dseClM(tg—tl)eM fttlz F(s)ds
w oM (t2=11) [13 F(s)ds ,C1 (ts—t2) p Jug F(s)ds
(T —tatp QT — b+ p\ M
T —13+ P T —1y+ 1%
t — (1+M)Co
< y(ts) (y(t:)™ p(HM)[(ta—t) [/ F(s)ds+ [ F(s)ds+(ta—t)C1] (%) _
(3.46)
0

We move to an application of this Lemma with specific choice of time.

Corollary 3.3. Under the assumption of Lemma 3.2, for any p > 0 and ¢ > 1 such
that £p < min{3; T}, one has

(T — Lp)) " < (1 + 20)2C0FMIy (T (y(T — 2¢p)) ™ (3.47)
where o
s
M, = fiﬁ p@std 7t (3.48)
f —2Up (T—s+p)1+Co ds
and .
Gy = (1 + Mg) <2/ F(S)ds + Cl) . (349)
T—20p

Moreover, the upper bound of M, can be given as

S i Go=0
M, < Sp:=e9 .
¢S Dy ﬁJé))CO if Cop>0

Proof of Corollary 3.3

Proof. Now, for ¢ > 1 and ¢p < min{%; %}, applying Lemma 3.2 for t; =T — 2lp; ty =
T —1lp; t3="T , we get

(T — £p)" M < y(T) (y(T — 26p))™ 1M Jran, FEEHCL) (1 4 9)(1M0 (3 50)

with

Cls
T lp (T—s+p)t+Co

T—lp eC1s
T—2¢p (T—s+p)'+C0 dS

ds
M, =
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If Cy =0 then
Cls

—_— e
T— Zp eC1s — 1 1420 — 1 3
n ns
T—20p (T—s+p)d 14+£ 2

M, =

If Cy > 0 then

Co
atpcy (1+0)0 =1 o (1+1
M, <e ! (1520 ~(15050 <e 1_1 o Co
(142¢)C0 - (5)

O

Lemma 3.3. Let 7y € Q, 0 > 0 and 0 < ¢ < Z. Let v be the solution of (3.1). Then
there exist constants £y > 1, Ey > 0 and E3 > 0, which all depend on o and €, such
that the following estimate holds

,0)[*d T
Jolv@Ode _pos o T o poci<r
fQﬂB(xo,g) |U([L’,t)| dx 2

2
%:m (Ege’? I lo(2, 0) da )

2
fQﬁB(zo7Q—25) |’U(.§L’, T)‘ dx

Here

Proof of Lemma 3.3

In order to get a local estimate, we need to use a weight function e (h will be
chosen later) and a cut-off function ¥ on B(zg, ). After finding an ODE inequality for

me(mO 2 U (z)v(z, )] e el dx (see Step 1) and solving it (see Step 2), we can get

the final result with a suitable choice of & (see Step 3). Now, we start the proof with
the definition of the following cut-off function.

Proof. Let W € C§°(B(xo, 0)) such that

=1 in B(xg,0—¢),
Ve (0;1) in B(x,0).

—Jz—xg|?
Step 1: For i < 1, find an ODE inequality for me |\If(:)3)v(93,t)|2 e d.
We have
d 2 —|z—wq|?
— |V (z)v(z,t)| e 7 dx
dt QNB(zo,0)
e
_ 2/ O ()2 vl D)0, e T da
QNB(zo,0)
_ 2
— (1) / ()] 0(z, ) Av(z, e T da, (3.51)
QNB(zo,0)
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By integrating by parts with the fact that Wv = 0 on 9(Q2 N B(zy, ¢)) one obtains

/ W (2) 2 o(z, ) Av(z, t)e
QNB(zo,0)
_/QmB( )Vv(i’falf)V(I‘I’(ﬂf)|2 vz, t)e =

P+ P, + Ps

9 /Q V)T e )

- [ @R Ve
QNB(zo,0)

—I-Q/ |\If(:)3)|21)(:£, H)Vo(z,t)(x — o)
QNB(zo,0)

72
—lz—=g|

dx

—|z—ag|?

)dx

—lo—zq|?

dx

—|z—wq|?
7

dx

1 —le—ag?
_ i3 d
he T

(3.52)

where P;(i = 1,2,3) is the i term in the right-hand side of (3.52). Now, thanks to

Cauchy-Schwarz inequality, we get

—|z—aq|?

P o= -2 / U ()Y () Vo, o, e 7 da
QNB(zo,0)
< 2( [ @il re dx) ( [ e nveep e d:):)
QNB(z0,0) QNB(zo,0)
and
P o= 2 / 0 () 2ol ) Voo, 1) (2 — 29)~e T da
QNB(zo,0) h
<2 @il )
QNB(zo,0)
(ZL’—I’()) 2 —|z—zg|? 2
X U (z)v(z,t) e dr
QNB(zo,0) h
Thus

P+ P < 2(/ U () Vo(z, 1) e
QNB(zo,0)

X [(/QQB(%Q)| (2, )VU(z)[* e S

“(/
QNB(zo,0)

28

U (z)v(z,t)

NI

2 *\1*9”0\2

dx)
dx)

2 5 2
—lz—zg|
e~ & dx

(SL’ — Io)
h

(3.53)

1
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It follows from 2ab < a® + b* and (a + b)* < 2a® + 20* Va,b > 0 that

P+ P < / () Vo(z, 1) e da
QNB(zo,0)

Ceme? .\ 2
+ (/ l(z, t)V(z)|" e e d:z:)
QNB(zo,0)

1 2
(z — z0) |? e “le—sgl? ’
+ U(z)v(x,t) dz
QNB(zo,0) h
Clz—znl|? —|z—ap|?
< / U (2) V(e ) e 7™ d:c+2/ (e, )V ()% e 7 da
QNB(zo,0) QNB(z0,0)
(z —xz0)|* —le- —le—sql?
+2 U(z)v(x,t) dz (3.54)
QNB(zo,0) h
Combining (3.51), (3.52) and (3.54), we can conclude
d 9 —lz—ug|?
— |V (z)v(z,t)| e » dx
dt QNB(zo,0)
—lz—xp|?
< 4p(t)/ (2, )V ()P e 7 da
QNB(zo,0)
(. — x0)|° —lo—sol?
+4p(t) U(x)v(z,t) e” » dr
QNB(zo,0) h
—Jz—xg|?
< 4p2/ lu(z, 1)V (z)|*e T
QNB(zo,0)
Q2 2 —lz—zq?
+4p2h2 S U(x)v(x,t)] e ® du. (3.55)
zo,
Moreover, due to V¥(-) =0 in Q@ N B(xg, 0 — €), one has
—|z—z —lo—=zq|?
/ o, HVE()P e T dr = / (e, V()P e 7 da
QNB(z0,0) Qn{|z—zo|>0—¢€}
oo
< VU e S /‘U(:L’,t)|2dl’
< V\If|ooe e /|v z,0)|* d. (3.56)
Thus
d 9 —lz—azg)?
— U (z)v(z, t)| e » dz
dt QNB(zo,0)
Upd? s sl ) =
< |V (z)v(z, t)| e dx + 4po| VY| e
"2 JanB(o.0)
(3.57)
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Step 2: Solve ODE inequality.
It deduces from (3.57) that

d —4p ﬁt/ 2 )
— [ e 252 1
dt( mB(m| (e)ole, 1) e

/ lv(z,0)|” d. (3.58)

< Apa| VU2 e 4p2_gt

Integrating (3.58) over (t;7T) gives

—|z—zg|2
/ 0 (2)o(z, T e+ dr
QNB(zo,0)

92 r—a 2
< G / (@), )P e w0 da
QNB(zo,0)
o? —(0—¢)? 2 T o>
+4p, | VT2 22T e /Q|v(:c,0)\ d:c/ e 225 (s, (3.59)
t
It implies from the fact ¥(-) =1 in B(zo, 0 — €) that
Cle—zn|? —|z—zq|?
/ (), T e v dr > / U (2)o(e, T) e v de
QNB(zo,0) QNB(zo,0—¢)
xr—x 2
- / o(z, T e 72 da
QNB(zo,0—¢)
—|z—zq|2
= o, TP ™5 d
QNB(zo,0—2€)

(o—20)2
e / (e, T) de. (3.60)
QNB(zo,0—2€)
Combining (3.59), (3.60) and the following estimate

T 2 1 2 2 1 2 1 2
_ o _ o _ o _ o _ o
/ N 4p2h28dS: . (6 4p2h2T_e 4p2h2t) < 26 4p2h2t< 26 4p2h2t
o — >
t 4p2ﬁ 4p2 ) 4P2Q

(3.61)
for h < 1, we obtain

/ lv(z, T)|? dz:
QNB(zg,0—2¢€)

2 902
< RS [
QNB(zo,0)
AVA/; 2 2 202 o2
%64102;’72@—06(9 e / lu(z,0)* dx. (3.62)
0 Q
Let <T —nh<t<T,it yields

20 (o— 2¢)2

/ (o, TP < et / (e, )2 da
QNB(zo,0—2€) QNB(zo,0)

27 o 52 gs
Vv °°e4p Gttt )/|v:c0\d:c (3.63)
0
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€(20—3e¢)
8p20? 7

We choose n = that is 4py0°n = %e(—?)e + 20) in order to get

220

Apag™n + (0 = 2¢)° — (0 —¢)
Then, (3.63) becomes

(=€) +(0—2¢)2

/ oz, T\ de < e 2 / v(z,t)|* da
QNB(z0,0—2¢) QNB(z0,0)

V\II2 9*52* 9*62
| 2|0067< 2 )/|v(x,0)|2dx. (3.64)
0 Q

Step 3: Choose A for minimization problem.
Now, for the purpose of minimizing the right-hand side of inequality (3.64), we choose
h such that

[V
92

—26)2_(p—e)? 1
eW/ v(z,0)* dv < _/ o(z, T)[” dx
o 2 QNB(x0,0—2¢€)

or
2
(9*25)2 (Q;;)2 Q2 fQﬂB(qu,Q—Qe) |U(I? T)| dz
AVIE. [l 0)P da
The choice of h also satisfies the condition that A < 1 and nh < min{l, %} Such A
exists by choosing

€(20—3¢)
h= 2 _
2|V¥|2, Jolv(@,0)|*da (20—3¢
ln( | a )+“’2 J[1+n (14 2)]

0? fQQB(107972€)|v(:v,T)\2dm

With this choice, it implies from (3.64) that

2
/ o T)\2d:c - 0° 6(9736)2 fQﬂB(mo,g—2e) v(z, T d:c/ lo(z t)\zdx.
QNB(zo,0—2€) N |V\I]|go fQ |U(QE‘, O) |2 dx QNB(zo,0)

This is equivalent to

[y (2, 0) da _ 0 S
(e, ) de ~ VI

fQﬂB(wo,g

. 2(0—2¢)%
\vfmgov 5(59—35)’ 1} > 1 and

1 2|VU|? 2 L0)2d 90 — 9
L m<|va Jo oG, O & )+e<g 1 (1+2)]
9 anB(xo,g—2e) [v(z,T)|" dx 2 T

2
— In 2|V\2D|go 2 fQ |'U([l§', 0)| dx . e@[Hn(H%)]
0 fQﬁB(Z'O7Q_2E) lv(x, T)|" dx

This completes the proof with F;, = max{
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Thus, there exists a constant F3 > 0 such that

=1In (Ege}if3 fQ [v(= | du )
fQﬂB(xo,g—2e)| (I’T)| dx

On the other hand, nh = 6°< (1262_55 Hence, Ey = %- O

3.2 Proof of Theorem 3.2
Proof. Let xq € 2, p> 0 and ¢ > 1 such that ¢p < min{%, %}, Corollary 3.2 gives

Co
! 2N < (=0 '
v (E) + 2N ()] < (T "t + Cl) y(t) (3.65)
and e
/ + Cy
O N(b). .
(t) < (T—t—l—p+cl) (t) (3.66)
Here 1 2
—lz—aq|
ylt :—a/ v(z, t)Pew@T—ti0) dz,
() (T—t—l—p)z Q|( )|
N(t) = p(t) g |Vv(x,t)|2e%dx
/ 2 ,
Cy= |p|ooR and 01:(2+n) |p|oo‘

2pt P
Now, thanks to Corollary 3.3, one has

y(T — Lp)+Me < ee(1 4 20) UMy (T)y(T — 20p)™e (3.67)
where
Gy = Ci(1+ M)

and

ln—
< Sp=e4
MesSe=e 0% i o s

1—(3)00
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Then (3.67) is equivalent to

l—I—M(
</|vxT (p)|? )

(1+M¢) 5 2
(L+24)p) 2n %gﬂuw)(l + 20)Co1+Mo)
pz ((1420)p)"e2

</ lv(x,t)[e ‘LPMT) dI) </ lv(x, T — 2p) |264(1+‘3)PP(T) dx)

R2(14M,)
9Co(1+Me) (1 +g) 5 +Co(1+My) (1+M€)0164P(T)(1+Zl)p

« ( /Q (o (, )26 5B da:) ( /Q |v(:)3,0)|2da7) " (3.68)

On the other hand, for 0 < r < R such that B(zq,7) C w, one has

IN

—|z—zq[®
/|v z,T)|%e i) dl’ < / |v(x,T)|2dx+/ lv(x, T)|%e ™ d
B(zo,r) QN {z;|z—z0|>1}
2
< / |U(:L’,T)|2dl'—|—64”7’(T)/|’U(:L’,T)|2d£l7
B(zo,r) Q
2
< /|v(x,T)\2dx+e4PP<T>/\U($,O)|2d:€. (3.69)
w Q
Moreover, we also have
—le—zg|?
/|v x, T — Llp)| d:c>/|v x,T)|%e T da (3.70)

Combining (3.68), (3.69) and (3.70), it yields

l—I—M(
(/ |v(:£,T)|2dx)
Q
R2 (14 My)

< 200(1+Me (1 +£) +C() (1+Mpy) (1+M5)016W

[/w\v(x,T)Pd:c (/Q\v(:c,o>|2dx)m 4D (/Q |U(x’0)‘2dx) 1+M1 |

(3.71)

With the notice that M, < Sy, we can write (3.71) as below, thanks to the energy
estimate [, |v(z,0)|*dx > [, |v(z,T)|*dx

1+S,
</ |v(x,T)|2d:£)
Q
R2(1+5,)

< 20()(14-5’@ (1 +£) +C() (1+Se) (1+Sg)clem

[/w lv(z, T)|*dx (/Q |v(:c,0)\2dx>SZ 4D (/Q |U($,0)\2dx) 1+s1 |

(3.72)
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Now, in order to minimize the right-hand side of inequality (3.72), we will choose ¢ > 1
as

(M> 1 Vee(0,1) if Cy=0,

£ln 372

(= =

The assumption (i) follows Cy < 1. Hence, such choice of ¢ provides us

R2(1 -+ Sz) < 7”2
A1+ 0)pp(T) ~ 8pp(T)

Thus, (3.72) becomes:
1+Sg
(/ |v(:c,T)\2dx)
Q

r2 Sl

< 200(1+S‘3)(1—l—f)g+CO(1+S‘3)6(1+S‘)01ESP(T)h/|U(I,T)|2d:1:' (/ |U(I,O)|2d:ﬁ)

w Q

2 1+S,

+ 200(1+Sl)(1‘l‘f)%+co(1+sl)6(1+50016—81’(;)’1 (/ |U(l’,0)|2dl') ' (373)

Q

This estimate is true for any p > 0 satisfying p < 3 min{3;Z}. For p > Jmin{3; T
7“2
8pp(T) — 4p(T)

( /Q o(z, T)|2d:c) o

Se
< 200(1—1—5@)(1_'_g)%+Co(1+Sg)e(1+Sl)Cleisp;?T) (/ |v(a:,T)\2da:) (/ |U(:L’,0)‘2d$)
w Q

1+S,
+ 200(1+Sl)(1+f)%+CO(1+SZ)€(1+SZ)016#2TZ)(1+%)68;”?;) (/ |'U(1',0)|2dl’) ) (374)
Q

which implies (1 + ) we can get the followmg estimate be true for any

p>0.

Now, we choose p such that

1+S,
QCU1H80)(1 1 0)5+C0(1+50) (14500 oty (1+F) et ( / [v(z,0)] 2dff)

% ( /Q |v(:)s,T)|2da:) o

2 f |U 1+S,
e — 99Co(1+50) (1+0)3 5 +C0(14S5¢) o (14+5¢)C1 4p(T) ( Q ‘ ) )
T)|%dx

Jolv(z

that is
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Therefore, we get

2

2(1+50) B
(/ |U($,T)|2dl') S 4.40()(14-55)(1 +g)n+200(1+55)62(1+55)016W(1+7)
Q

x (/w|v(a:,T)|2d9:) (/Q |v(x,0)|2dx)l+m.

Thus, we can state

/Q|U(I,T)|2dx

1
< (41+Co(1+se)(1_I_E)n+200(1+se)62(1+se)0164;?:,‘1)(1+§)/|U(x’T)|2dI) 3A+50)

1+2S,

« (/Q \U(x,0)|2d:c)w. (3.75)

This completes the proof. O

3.3 Proof of Theorem 3.1

Let us move to the proof of Theorem 3.1 with the structure as: Thanks to Preliminary
results in the previous subsection, we can get a Holder type estimate in Step 1. Further-
more, thanks to the technical Lemma 3.3, we get an estimate for the term containing
F(t), which is presented in Step 2. Step 3 will make appear a small ball, which is
related to the presence of w later, by using a splitting technique. Next, dealing with
a minimization problem, Step 4 provides us a localized observation estimate. Due to
propagation of smallness by constructing the sequence of balls, w will appear in Step 5.
Lastly, in Step 6, by using an adequate covering of () with a finite number of balls, we
will get the desired result.

Proof. Step 1: Get Holder type inequality.

Let xg € Q and R be small enough such that 2 N B(xg; R) is star-shaped with respect
to xg. Such choice of o and R will be mentioned in Step 6. Let 0 < € < ’f.

Define ¢ € CZ(B(zo; R)) satisfying v = 1 in B(zo; R —¢€) and 0 < ¥(t) < 1 Vt €
B(wo; R). Then ¢ € H'((0,T); H} (2N B(zo; R)). For any p > 0 and ¢ > 1 such that
lp < min{%, %}, Corollary 3.2 gives

[y (t) + 2N (t)y(t)| < (A - C'l) y(t) + 2/ lw(z,t)z(x,t)|e?@Vds  (3.76)
T—1+ 14 9
and
1+ O 1 [, |w(z, t)[2e?@Ddx

(3.77)

N'(t) < < + Cl) N(#) + 3

T—t+p y(t)
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Here

z = w/U’
w = atz _ AZ
o2
y(t) = Py 2 /| z(x,t ‘2 4p(T)(T tﬂ’)dx
_ )3
7‘171
N = PO V2 (o, £) P dy
(T -2+ o)} 10 ’
IOOR2 ,oo
00:|p| and 01:(2+n)|p| .

2]9% P1
Thanks to the Cauchy-Schwarz inequality and the fact that 2ab < a® + b* Va, b, one

gets
2 [ (e, )x(a. )"z
9

< 2 </|w(17,t)|2e¢(x’t)dx) (/|Z(x’t)|26¢(x,t)dx)

< /|th|2¢“dz+/| t)|2e? @ d, (3.78)
Thus, we can write (3.76) as below
() + 2Ny < (—S e v 1 P ) () (3.79)
y vl < (=77, + O y :
with 2
Pty = Jolv@ P
y(t)
Now, thanks to Corollary 3.3, one has
y(T — Lp)+Me < et (1 4 20) UMy (T)y(T — 20p)™e (3.80)
where .
G = (1+ M) (C’1—|—1+2/ F(s)ds)
T—2¢p
and
Ci+1 ml(ig) if Co =0,
< —
My < Sp=e 1(1%))030 if Cy> 0.
—(3
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Step 2: Estimate fTT_%pF(s)ds.
Remind that

,,/;9|w 2 o(x,s dSL’

F
(s) AL |26¢ e

(3.81)

with

w(z,s) = Oz(x,s) —p(s)Az(z,s)
= —p(s)v(x, s)A(x) — 2p(s)Vu(x, s)Vip(x). (3.82)

Note that Vi = Ay =0 in QN B(xg, R — €), so
/|w z, s)|%e ¢@:5)
— p(s)? / (v(z, $)Ab(z) + 2V (z, ) V()2 XD da
9

- p(s)2/ (v(z, $)A(z) + 2Vu(z, ) )V (x))* e?@dz. (3.83)
QN{x;|z—x0|>R—e€}

—|z—zq|?

It implies from the fact that e?("*) = ———pemmm- 57 and (a+b)? < 2(a®+b%) Va,b

that (T—s+p)2
a
/|’UJ z, S |2 d)ms

(
ﬁe‘mmz s+p) (|Aw|2 /|v z, s)|2dz + 4| V|2, / |Vo(z,s)| dx)
—54p
(3.84)
Moreover, thanks to the following energy estimate
1
/|Vv(x, §)2de < —/ lo(, 0)2dz Vs > 0,
Q 2p15 Jo
we obtain:
—(R—c)? 1
/|w(3:, s)[2e?@) dy < Lﬁe@mfﬂsw) <1+ )/\U($,O)|2dx (3.85)
9 (T —s+p)2 2pis) Jo

where Cy = 2p3 max{|Av|%,,4|V|% }. On the other hand, due to ¢ = 1 on B(zg, R—¢),

one gets

/ (2, 5)Petedy = / 0(z, 5) 2= dy
9 QNB(zo,R—¢)

1 —(R—2¢)?

> e mMT i) / lv(x, s)|*dx.(3.86)
(T'—s+p)2 QNB(xz0,R—2e)
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Combining (3.81), (3.85) and (3.86) gives

—(2R—3¢) 1 ,0)]2d
F(s) < Coe 1222;(% (1 + ) fQ vz, 0)f"dz 5 (3.87)
2p1s me(xo,R—2e) |v(z, 5)|dx

with s € [T'—20p, T]. Now, apply Lemma 3.3 with o = R—2¢, under condition 2¢p < E»0
for some Ey > 0 depending on R and ¢, there exists a constant £y = F1(R,€) > 1 such

that ,
v(x,0)]" dx
Jo 1otz 0) 2 <Ee? VT —lp<s<T. (3.88)
fQﬂB(gco,R—2e) v(z, s)|" dx

Thus, from (3.87) and (3.88), one has

T —€(2R—3¢) T 1
/ F(s)ds < Eye@ 2 Coe 120op1 / (1 + ) ds.
T—24p T—2¢p 2p1s

In order to get £+ — R8I ), we take 20p < cE,f with ¢ = min {G(QR_?’G)' 1}. On

124pp1 6p1E1E2

the other hand, due to f§_2£p (1 + 5 S) ds = 2lp + 2%1 In T_T%p <1+ 2%1 In 2, there

exists a constant C's > 0 which does not depend on ¢, p and 7T such that

/ : F(s)ds < Cs.

T—20p

Step 3: Make appear a small ball.

Remind that
/| :L’t e4p(T‘;c(Tth‘+p)
—t+p)

From (3.80) in Step 1, we have

1+M(
(/ |z(x, T — Ep)|2dx)
[
R? (14 M)

< 1+2£) 5 +Co(14Mp) (1+Ml)(C1+1+203) e TAT0(T)

—lo—aol? P —Jz—q 2 Me
/\ (z, )2 ™) da /\ z(x, T — 20p)| e ™ dy | (3.89)

From the fact that |z| < [v] in QN B(xo, R) and [, |v(z, T — 20p)[*dz < [, |v(z,0)*dz,
we can write

( /19 (2, T — 6p)\2d3:) o

R2 RE(14+My) —Jz—zg ‘2 M,
< (142032 53 +Co(14+Mp) o (14+Me)(CL+142C3) o T3 0)5p(1) (/‘U z,t)| 2¢ T dx) (/ ‘U($,0)|2d:€) .
Q

(3.90)
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On the other hand, thanks to ¢» = 1 on B(zg, R — €), we obtain
/ |2(z, T — lp)|Pdx > / lv(z, T — £p)|*d. (3.91)
9 QNB(z0,R—2e)

From inequality (3.88), one gets

1 1
/ o, T — )P > — 2 / fo(z, 0)[2dz > — 1 / jo(a, ) Pde.
QNB(x0,R—2¢) Eie7 Ja Eieo Jo
(3.92)

Combining (3.90), (3.91) and (3.92), it yields

R?(1+My)

1+M5
(/ |U($,T>‘2d$) < (E e 9 )1+MZ(1 _'_2£) 5 +Co(1+My) (1+MZ)(Cl+1+2CS)674(1+2)pp(T)
Q

(/|v (z,1)|%e i) dx) (/Q|v(x,0)|2d:E)MZ. (3.93)

Furthermore, for 0 < r < g such that B(zg,r) C €, one has

—lz—aql? —lz—zq |
/|v(x,T e A dg < / |v(:L',T)|2d:E+/ lv(x, T)|%e TieD g
9 B(zo,r) QN {z;|z—z0|>1}
2
< / (e, T)2dx + e / (e, 0) 2z (3.94)
B(zo,r) Q

Thus, we obtain that

( /Q lv(a, T)|2d:r) o

< (B 6%)1+Mz(1+2£)2+00(1+M5) (14+M;)(C1+1+2C5)

R?(1+M,) M, R2(11M)) 1+M,
e ITFDPp(T) |v z, T)|*dx |v z,0)2dx + eTTFDep(T) ¢~ 7ot lv(x,0)|*dx :
Q

(3.95)

Notice that M, < Sy, therefore we can write (3.95) as below

( /Q o(a, T)\2dx) o

S (Ele%)l—i_se(]. ‘l’ 26)24-00(1-1-5[) (1+55)(C1+1+2C3)

R2(1+5)) Se R2(1ys,) 2 145
e A0 pp(T) Iv z, T)|*dx |v z,0)2dx + e40+0ep(T) e 4pp(T) |v(z, 0)]da :
Q

(3.96)
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Step 4: Choose suitable ¢, p and solve a minimization problem.
With R is small enough such that Cy := % < 1, we will minimize the right-hand
1

side of the estimate (3.96) by choosing ¢ as below

£ln 372

= ( AR2C1+1 ) =G5 e
AL L —1 i >0
0= ’

(M) 1 vee(0,1) if Cy=0;

in order to get
R2(1 + Sg) < r?
A1+ 0Opp(T) ~ 8pp(T)
With this choice of ¢ and the fact that £y, > 1, we can conclude from (3.96) that: there
exists a constant Cy; > 1 not depending on p such that

1+S,
([ 1t mpar)
0
cy _r2 St oy =12 1+5
< C4eTeSP<T>P/|v(:£,T)|2d:E (/ |v(x,0)|2d:£> + Cye eeMr (/ |v(x,0)|2d:£> :
9 Q 0

This estimate is true for any p > 0 satlsfymg p < smin{3; T;cEo0}. For p >

%mm{w T cl0} which implies 8pp(T) < 8p( ) (2 +7+ 35 9), we can get the following
estimate be true for any p > 0.

1+S, 4 2 Sy
(/ |v(x,T)|2dat) < (e eser(D (/ |v(x,T)|2dat) (/ |v(:£,0)|2d:£)
O B(zo,r)

2 1+Se
—|—C4€ 2 e8p(T )<2+ +cE20>68PP(T) </ |,U x, 0 ‘2dx) .

Now, we choose p such as

c 20 1+Sg 1 1+Se
046 9468p(T) <2+ +CE29)68PP(T) (/ "U x, O 2d,f1j‘) = 5 (/ ‘U x, T |2d$) 3

that is

2 1+S,
€8PP?T) = 204666; eBP(T) (2+ +aBe 9) fQ |U ;
|2d1’

Jolv(@

in order to get

2(1+S¢)
</ o(z, T)|2d:c)
Q

1425,
< 4025 o (P a) (/ \v(m,T)|2dx) (/ \v(m,0)|2d:c) |
B(zo,r) Q
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Thus, there exists a constant C5 not depending on 7" and ¢ such that

9 C5 Cs 9 m 9 2}%2%)
/ lv(z, T)|*de < Cse o eT / |v(z, T)|*dz / lv(z,0)|*dx )
Q B(zo,r) Q

On the other hand, Lemma 3.3 says that there exists F3 > 0 satisfying the following
estimate

_ E36% Jo [v(z,0)]2dz .
x, T)|2dz

=

e
fQﬂB(wo,R—4e) Kl

Hence, the following estimate holds

Cs
/|U(I T)|2d1' < 05E3056$% fQ |U($>0)|2d37
. - fQﬂB(IQ,R—4e) ‘U(I7 T)de

1425,

1
2(1+S,) 2(1+5Sy)
X (/ |v(x,T)|2d:)3) ‘ (/ |v(:)3,0)|2da7) o
B(zo,r) Q

Using the fact that [, (@, T)Pdz < [ |v(z, T)[Pdz, we obtain

zo,R—4€

1+C5
(/ |v(:£,T)|2d:£)
QNB(z0,R—4¢)

TS Cs+ 53ty

C5(Eg+1) ) ¢

< CsESSe T (/ |v(:)s,T)|2da:) (/ |v(:£,0)|2dx) .
B(zo,r) Q

Thus, there exist constants x > 0 and o € (0, 1) satisfying the following estimate

o 1-o
/ lv(z, T)|?dz < ket </ \U($,T)|2dx) (/ |v(:c,0)\2dx) .
QNB(zo,R—4e€) B(zo,r) Q

(3.97)
Step 5 Make appear w by propagation of smallness.
Let r > 0 be small enough and z; € Q(j = 1,2,...,m)(m € N), we can construct a
sequence of balls {B(x;,7)} ;17 such that the following inclusions hold

1. B(zpy,r) €w;
2. B(ZL’J’,T) C B(l’j+1,27’) Vi=1,2,...m—1;

3. B(zj,2r) €QVj=12..m.
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Then, thanks to (3.97), there exist oy, K1, 0y, Ky such that

/nnB N T)Pdx
</B (zo,r) (2 T)|2d:c) </ (. 0) 2d$>1_0
(/B (o1.27) v(a T)Izdx) (/ 0(2,0) de)l—o

(VAN
ﬂlx

H\R

1—01 g 1—0o
< ket </€16T lv(z, zdx) (/ lv(z,0)] de) ) (/ |v(z,0)|2dz)
B(z1,r) Q
Om l—om
< ke </ oz, T)\2dx) (/ o(z, 0)] d:c)
B(xm,r)
< Kme' T (/ |v(z, T)| de) (/ lv(z,0)| zdx) : (3.98)

Thus, we already prove that if Q N B(xg, R) is star-shaped with respect to zg, then we
obtain a local observation at one point of time, which has form (3.98). Now, in order to
get the global result, we will cover € by a finite number of balls B(xg, R — 4¢) satisfying
assumption that Q2 N B(xg, R) is star-shaped with respect to x.

Step 6 Cover ).
We can see that 2 is covered by a finite number of balls B(x, R — 4¢) which have one
of two following properties:

1. B(ZL’Q,R) C
2. B(ZL’Q,R) N 8(2 7é @

For the first case, obviously, the assumption that Q N B(xg, R) is star-shaped with
respect to xy is satisfied because of the convexity of the ball B(zg, R). For the second
one, we will use the result in [AEWZ] (see Theorem 8, page 2443), which says that
is locally star-shaped, i.e for each x € 0€2, there are z, in Q2 and R, > 0 such that

X € B(zy, Ry) and QN B(xzy, R,) is star-shaped with center z,.
Thus, we can choose ¢ = z,, and R = R, then QN B(x¢, R) is star-shaped with respect
to xg. U
4 Approximate controllability at one point of time

In [LR], Lebeau and Robbiano connect the controllability to an interpolation estimate
for an elliptic system. Then, in [FI], Fursikov and Imanuvilov use a global Carleman
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inequality and a minimization technique to construct the control function. Recently,
in [FCZ|, Ferndndez-Cara and Zuazua establish a null controllability for semilinear
heat equation. In [Vo|, the author succeeds in computing a control function for the
cubic semilinear heat equation in a constructive way. Those results are related to
the controllability in L?(Q x (0,T)). Here, we need to add a control at a fixed point
of time, which is well studied in [PWX], but for case p = 1. Now, our concern is
approximate controllability at one point of time for linear heat equation with time-
dependent coefficients. This control will lead the given data at the initial time to an
origin-center ball with a small radius at some later time.

Denote 1, be the characteristic function on the region w and ¢(7°7) be the left limit of
the function ¢ at time 7. Now, consider the following system.

=0 on 092 x (0,27,
(-, 0) =" in Q, (4.1)

o(\T)=¢(,T7)+1,h in Q.

The next theorem consists on the existence of the control function h at some fixed point
of time T" which leads the solution at final time 27" getting small.

Theorem 4.1. Let ¢ > 0 and ©° € L*(Q), there exists a function h € L*(w) such
that the solution of (4.1) satisfies |[¢(+,2T)|[f2q) < € ||g00||L2(Q). Moreover, there ezist
constants ¢z = c3(2, w,p) > 0 and ¢y = c4(Q,w, p) > 0 such that

3
1l 2y < o 19| ey - (42)

Proof of Theorem 4.1

Proof. Step 1: Define a functional which has a unique minimizer.

Let ¢; and ¢y be the constants from Corollary 3.1, put k := cleCTl 52%2 We consider
the following functional

k2 g2
Tao) = S Ty + Sl — [ P @ntn2nide @

where u(z,t) is the solution of
ou—p(t)Au=0 in Q x (0,7,
u=20 on 0 x (0,7, (4.4)
u(-,0) =uy in Q.

Notice that .J is a strictly convex, C! and coercive. Therefore, J has a unique minimizer

®y € L*(Q) such that J(®g) = m12r(19) J(up). It implies that J'(®g)30 = 0 for any
upEL

30 € L2(), i.e the following estimate holds for any 3o:
KR, Tl 2lls( Tl 2w + € Roll 2oy 3ol 2y — /9900(56)3(5672T)d56 =0 (45)
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where ®(z,t) and 3(z,t) are respectively the solution of (4.4) corresponding to @ :=
®(-,0) and 30 := 3(-,0).

Step 2: Construct a control function.
On the other hand, multiplying 0y, — p(t)Ap = 0 by ®(+,27 — t) and integrating over
Q, we get
/ Do, )(x, 2T — t)da — p(t) / Ag(a, Bz, 2T — )dr = 0. (4.6)
Q Q
Integrating by parts (4.6) two times with the fact that ¢ = ® = 0 on 0f2, one has

/ Op(x, )P (x, 2T — t)dx — p(t) / o(z, t) AP (z, 2T — t)dx = 0. (4.7)

Since 0,® — p(t)AdP = 0, it yields

/ Oz, t)P(x, 2T — t)dx — / o(z,1)0,P(x, 2T — t)dz = 0. (4.8)
Q Q
It implies that
— [ o(x,t)P(z,2T — t)dz = 0. (4.9)
dt J,
Now, by integrating (4.9) over (0,7"), we obtain
/ o(x,0)P(z,2T)dx = / o(x, T7)®(x, T)dx. (4.10)
Q Q

Integrating again (4.9) over (7',2T) forces
/ oz, 2T)0(x, 0)dz = / oz, T)D(z, T)dz
Q Q
= /ap(x,T_)(I)(:):,T)d:B%—/h(x)@(z,T)d:)s. (4.11)
Q Q

Combining the above equality with (4.10), we conclude that

/Qcp(x,QT)éodzc:/QwO(x)é(z, 2T)d:£+/ﬂh(:£)(l>(x,T)d:E (4.12)
that is
- / h(z)®(z, T)dx + / o(z, 2T)Podx — / O (x)®(x, 2T)dx = 0. (4.13)

In addition, by choosing 30 = ®q in (4.5), it follows that
K9, T) 72w + €1 Poll 720 — /Qapo(x)q)(:c, 2T )dx = 0. (4.14)
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Thus from (4.13) and (4.14), if we choose h(z) = —k?*®(x, T) then p(x,2T) = 2®¢(x).
Moreover, using the Cauchy-Schwarz inequality

/Q|UO(:L’)<I>(x, 27| < (/9\4;)0(;5)\261:6)% </Q\<I>(x,2T)|2dx)é, (4.15)

F (Tl w) + €%l DollZ2i0) < 119" 2@ 190 2T) | 2. (4.16)

we get

On the other hand, Corollary 3.1 gives

120 D) L2y < K IC, Tl +°I12C, 0) 122 (q)- (4.17)
Furthermore, the fact that ||®(-, 2T)||%2(Q) < ||Q>(-,T)||2L2(Q) provides us

12(,27) [ 72() < K2 12(, T) 172 +€%[12(, 0)[[72(0)- (4.18)

Thus, combining (4.16) and (4.18), we conclude that

1

2

F (Tl + €1 PollZ2i0) < 19° 22w (kzllfb(-,T)II%z(w) +€2||q>o||%z(m)

It implies that
B2, T) 2wy + €21 Dol ) < 1971720 (4.19)

This is equivalent to

1 1
ﬁHhHiz(w) + 8_2||90('72T)||2L2(Q) < [€°lZ2)- (4.20)

Thus, we get the desired estimate (4.2) with c3 := max{,/c;, §} and ¢4 := cy. This
completes the proof. O

5 The local backward - Proof of the Theorem 1.1

For the case w € 2, we need to use the controllability result at one point of time
(Theorem 4.1) in order to get the information of the solution on the whole domain from
the known data on the subdomain. In detail, the proof of Theorem 1.1 is structured as:
Step 1 will provide us the approximate data of u(-,37") on whole domain dues to the
controllability result; Then, by some computation technique, we make appear f in Step
2; Lastly, applying the global backward result in Theorem 2.1, Step 3 will complete the
proof with the construction of the initial data.

Proof. Step 1: Use controllability result to link the knowledge on the whole domain 2
and on the subdomain w.
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Now, for each i = 1,2, ..., Theorem 4.1 says that for any € > 0, there exists h; € L*(w)
such that the solution of

Orpi — p(t)Ap; =0 in Qx (0,27)\ {T'},
w; =0 on 092 x (0,27,
25 0) = ¢, in Q. (5.1)

0i(,T) = oi(-,T7) + 1,h; in Q

satisfies [¢;(+, 2T)|| 2y < € for any @ > 1. Recall that e;(i = 1,2,...) is the eigen-
function of Laplace operator. Moreover, there exist constants cs,c, > 0 such that the
following estimate holds

€3
c3eT

Ihillay < 5= Wiz (52)

Multiplying both sides of the equation 0,p; —p(t)Ap; = 0 by u(-, 27 —t) and integrating
over {2, one gets

a i(z,t)u(z, 2T — t)dx = 0. (5.3)
dt Jq

Integrating (5.3) over (0,7) and (T, 2T) respectively and using the fact that o;(-,T) =
wi(+,T7) + 1, h;, one has

/Q i(z, 2T )u(z, 0)dx = /Q i(z,0)u(z, 2T)dz + / hi(z)u(z, T)dz.  (5.4)
Replacing )
(-, 27) :ie—kjfo”wds /Q u(z,0)e;(x)dze;
=
and ¢;(+,0) = ¢; in (5.4), we ge‘z
/Q wi(z, 2T u(z, 0)dx = e Jo p()ds ( /Q u(x,O)ei(x)dx) + / hi(z)u(z, T)dz. (5.5)

Now, multiplying both sides of (5.5) by e~ Jer P(s)dse, and take the sum from i = 1 to
oo, one has

u(-,gT)+Ze—Az-f§$ p(s)ds / hi(z)u(zx, T)dxe;

i=1 w
=S N s / iz, 2T u(z, 0)dzes. (5.6)
i=1 Q

It implies from [|¢;(+, 27| 2oy < € that

u(-,3T) + 3 e T pos / ha(2)u(z, T)dze:

=1

L2(Q)

1
2
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Step 2: Make appear f.
Now, we will make appear f by using a triangle inequality

u(-,3T) + Y e Nifar s / hi(z) f(2)dze;

i=1 « L2(2)
< |luam) - e B [ yute, e
i=1 “ L2(Q)
S e [ ) (ue ) = ) de (5.8)
i=1 w L2(Q2)
We got the first estimate in Step 1, let us estimate the second one.
‘ Z e fé}Tp(s)ds / hz(I) (u(;)j, T) — f) dre;
i=1 w L2(Q)
~ 3
_ . 3T s)ds
< Ze 2Ai Jor p(s)d ) ||hi||L2(w) ||u(,T) - f||L2(w)
i=1
1
> 5T (s o
< —2Xi Jor pls)ds 5. 5.9
< ; e = (5.9)

The last inequality in (5.9) is followed from (5.2) and the assumption (2.1). Thus, from
(5.7) and (5.9), we can conclude that

’u(.,gTHf:e—Aifff pls)ds / hi(z) f (z)dze;

i=1 w

L2(Q)

1
2

£

oo
< Z 6—2)\i f;gp(s)ds>
i=1

C 6%3
[6 [u(, 0)|| 20y + 3—5] : (5.10)

1
It is known that the function z + az+bz~* (a,b, s > 0) gets minimum at zo = ().
Hence, in order to minimize the right-hand side of (5.10) we choose € such that

04036%3 ﬁ
S s —) . (5.11)
<||u<-,o>||Lz(m )
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Therefore, (5.10) becomes

’ u(-,3T) + i e~V Jar p(s)ds / hi(x) f(x)dxe;

i=1

L2(Q)

1 1
f: —2);i [5r p(s)ds : cic3eT 8 e <1—|— 1) llu(-, 0)||
e N T — |l
[u(0) ooy 2 o
B C4C3€T 0 1

IN

i—1 70)||L2(Q)

Using the fact that e™® < (%)7 Vr > 0Vy >0and \; = in Vi> 1 ( by the Weyl
formula), we get:

i 6_2>\ip2T < Y ! i i < 9 K i 1
i=1 - \2nl') o AT \2peT i=1 <Z%)7
When v > 3, there exists a constant S > 0 such that Z S. Hence

10

OO 2
el
E e~ 2Xip2T < T G,

i=1

One can conclude that (5.12) can be written as below

Ky
< KieT ||u(s, )||L2k1 §F(5.13)
12(9)

u(-,37) + Z e~ Jar pls)ds / hi(x) f(x)dze;

i=1

for some positive constants Ky = K1(Q,w,p) > 1 and ky = k1(Q,w,p) € (0,1).
Step 3: Apply the global backward result.

From the facts that h; € L2(w), z € L2(w) and 3 e~ J2r P()85 < o0 one gets
i=1

_ Ze—/\i Jor p(s)ds / hi(x) f(x)dze; € L*(Q). (5.14)
i=1 v

Thus, Theorem 2.1 gives us the following estimate, where § in (2.1) is replaced by
e u(-, 0) | a(y 0"

V(L4 OpoT ul, ||H1(Q
lu(,0)ll2(q)
n 20\ poT 161

bl 1—-k
KieT a0l 50 %1

IN

(5.15)

[u(-,0) = gll 120y
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K2e T 5
2XA1p2T lu(-,0)]|?

2k1
for any ¢ > ) . With the assumption that ¢ < [|u(-,0)|/r2), We
12()

can choose ( as below

Ky
K2e*r
2>\1p2T

¢= (5.16)

in order to get

(1+ &t ) VAT IOl
HU(, O) - gHLZ(Q) < a0l . (517)

Using the fact that x < e* Va > 0, there exists a constant C' > 0 such that

(e}
Cem VT [[u(-,0)|| g1

u(-,0) — < s e
[u(-,0) = 9l L2y < EOIETS o

This completes the proof. O

5.1 Appendix

Proof of (1.24) in Remark 1.1
Let us remind the observation estimate (3.2) in Theorem 3.1 (see Section 3)

K.
a2y < Kae ™ -, 0) 120 lul- D), (5.19)

for some Ky = K5(Q,w,p) > 0 and ky = ko(2,w,p) € (0,1). Combining to the known
backward estimate below

paT|lu(:, O)HH1(Q)
llu(-,0)112
[u(, 0)l[ o) <€ 2@ ul, Tl 2y » (5.20)
we get
paT|lu(:, O)HH1(Q)
llu(-,0)112 —k
[ul-, 0)l| 20 <€ s e ™ ., 0|2 (-, D173 - (5.21)
It is equivalent to
B O o \ 2 e o
Y TN K.
(H ( T)||L2(Q)> <e "M@ Ke T (5.22)
A AT
It follows that
vy T|u(-, O)“Hl(ﬂ)_i_ﬁl_l_ L nK
HU('70)||L2(Q) 2 G0y o 2 T k2 : (5.23)

— = <e
||u('>T)||L2(w)
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Using the fact that O 0 > )\, there exists a constant C' = , /max Z—;, k[;fl} >0
such that
(o 0) oy R4 et
) L2(Q) < Hu(.,o)IILz(Q)‘ (5.24)
||u('7T)||L2(w)
Thus
C\/1+ T+ gllul-, 0) ]l o)
||u(> 0)||L2(Q) < . (5.25)
ln ||u('70)||L2(Q)
(-T2 (0
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