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RÉSUMÉ. L’un des pilliers principaux du cadre multi-modèle Arlequin est la transmisson inter-
modèles. Ce point est discuté et analysé dans cette contribution et son lien avec la partition des
énergies est souligné.

ABSTRACT. One of the main pillar of the multimodel Arlequin framework is the transmission
between models. This point is discussed and analyzed in this contribution and its link with the
energy partition is underlined.
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1. Introduction

Based on a super-imposition technique, the Arlequin method (Ben Dhia,
1998, Ben Dhia, 1999) stands for a convenient and flexible tool for the practical
modeling of multimodel and multiscale problems. Sticking to a pre-defined goal,
it consists basically in adapting locally by a priori knowledge or, more accurately,
by a posteriori error estimates, a global model, aiming to represent the behaviour
of a material system occupying a domain Ω. The Arlequin adaptation consists in
superposing and gluing the appropriate local model to the locally inapropriate global
one. The resulting Arlequin solution is obtained as a partition of the solutions of the
super-imposed models.

Relying on basic pillars that will be recalled in the sequel, the Arlequin family of
methods actually constructs a (multi)-modeling framework that extendes the classical
(mono)-modeling one. It has a large range of applications in many fields of interest.
In the computational mechanical field, in particular, it leads to formulations of
mechanical problems that allow for local discrete multimodel and multiscale analyses
(e.g. (Ben Dhia et al., 2002, Ben Dhia et al., 2005)).

This contribution aims at giving basically an overview of the Arlequin frameworkwith
further insights concerning its essential ingredients, particularly the transmission of
information between the different models. Some theoretical analyses of the Arlequin
problems with defined transmissions and some other possible applications are also
given.

2. The Arlequin framework

2.1. Preliminaries, definitions and notations

Let us assume that the domain Ω is partitioned into two overlapping domains Ω1

and Ω2. That is :

Ω = Ω1 ∪ Ω2 [1]

The overlap denoted by S, also called the superposition zone, is defined by : (see
Figure 1)

S = Ω1 ∩ Ω2 [2]

with meas(S) > 0.

The superposition zone S is also partitioned either into two non overlapping volume
domains (the gluing configuration) or into the boundary ∂S of S and its interior, (a
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Figure 1. Overlapping domains

more classical welding configuration). In both cases, we use the same notations to
refer to the two parts. The first part is denoted by Sc. That is the models coupling or
transmission zone whose boundary has to satisfy : (see Figure 2 in the right)

∂S ⊂ ∂Sc [3]

The second, denoted by Sf , is the free zone. That is generally the part of interest in
enrichment applications, namely the part in which the underlying model is changed.
In this second zone, the models are super-imposed but no communication is activated
between them.

Sc Sc

Figure 2. Transmission zones Sc in the hole overlap in the left and in a sub-part of
the overlap in the right
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2.2. Transmission in the Arlequin framework

The first pillar of the Arlequin method consists in allowing for the co-existence in
S of two models having (roughly) all their own attributes (geometry, material proper-
ties, behaviour laws, mechanical hypotheses, etc.). Notice that more than two models
can be super-imposed with no particular difficulty (Ben Dhia, 1999, Ben Dhia et al.,
2002).

As a rather natural consequence of the co-existence of models in S, weight parameter
functions are activated, as a second pillar of the approach, to let the energies in S or
more generally the virtual works of actions in S (Ben Dhia, 1998) be shared between
the co-existent models. For instance, when static mechanical problems are considered,
internal and external couples of weight parameter functions are introduced. They are
denoted by (α1, α2) and (β1, β2), respectively. The weight parameter functions αi

and βi are defined in Ωi, i = 1, 2 and verify a kind of partition of unity : (see Figure
3 for a representation of the couple (α1, α2))

αi ≥ 0 in Ωi [4]

αi = 1 in Ωi \ S [5]

α1 + α2 = 1 in S [6]

βi ≥ 0 in Ωi [7]

βi = 1 in Ωi \ S [8]

β1 + β2 = 1 in S [9]
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Figure 3. Weight parameter functions α1 and α2

Other couples of weight parameter functions have to be introduced when one takes
into account other virtual mechanical actions such as virtual works of inertial forces
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in dynamic regimes or virtual works of dumping forces, etc.. Notice that if ever neces-
sary, the weight parameter functionsmay be vector fields or even second order tensors.

The choice of the weight parameter functions plays a central part in the Arlequin
framework. As it could be guessed from the label "weight" parameters, it is expected
that the more a model is stressed by choosing the associated weight parameter func-
tion near from one, the more the Arlequin solution is near from the solution of this
stressed model. This expected result, depnding also on the transfert operators, third
pillar of the approach, has been proved for the superposition of a quite representative
local alterated model to a global sound one (Ben Dhia, 2007, submitted).

The transmission between the super-imposed models is the third and probably more
sensitive pillar of the Arlequin framework. Many transmission models were designed
in (Ben Dhia, 1998) and (Ben Dhia, 1999). When activated with the energies repar-
titions, these transmission models are required to satisfy the following criteria :

– (stability requirement) when the local model is similar to the global one, the
Arlequin problem has to have the same stability than the monomodel problem,

– (consistence requirement) the monomodel solution of the considered problem
can be recovered (at least as closely as desired) in the Arlequin framework,

– (extension requirement) the Arlequin framework extendes indeed the classical
mono-modeling framework in the sense that it leads, by local alterations, to efficient
and flexible local treatments of multimodel and multiscale problems that can hardly
be treated (if ever possible) in mono-modeling frameworks.

As a matter of fact, an effective transmission is achieved within two steps. The first
consists in listing the transmitted mechanical quantities between models in the trans-
mission zone. The second consists in describing the way this transmission is realized.
For a model static elasticity problem in the continuum mechanics framework, it has
been suggested to equate (weakly) the primal fields and/or the associated deformation
fields of the two models. More generally, it has been suggested to equate a transforma-
tion of these fields by means of operators called compatibility operators and denoted
by Π

Ω

S in (Ben Dhia, 1998, Ben Dhia, 1999). Such compatibility or accomodation
operators may prove to be important in situations where a continuum model has to
"dialogue" with another continuum but coarser or finer one in the transmission zone.
These operators are even more essential for the the coupling of a discrete model (say
granular or atomistic model) and a continuum one.
To clarify, let us denote by (Ei), i = 1, 2, the states or parts of the states of
(model)i, i = 1, 2, we wish to transmit in Sc. The restriction toSc of these (unknown,
in general) states, referring in each model to a representation of the same concept of
mechanical quantity (say the displacement, velocity, forces or stresses, etc.), are in
spaces we denote by ISi, i = 1, 2. These spaces may be incompatible. Indeed, the
two spaces may rely on incompatible meshes, or one space may be discrete (think to
the space of placement of discrete particles in a given granular or atomistic medium)
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and the other continuum (think to the space of continuous motions, defined as fields
for the continuum representation of the same medium). In such cases, what is sug-
gested in the Arlequin framework is to associate to ISi, i = 1, 2, a couple of other
spaces that are compatible or merely compatible with each other (see (Ben Dhia et
al., 2003) for a notion of (1 − ε)-compatible spaces). We denote these compatible or
merely compatible spaces by CSi, i = 1, 2. We assume, without significant restric-
tions, that the dual space of (say) CS1 is included in the dual space of CS2. We
denote the former by M and call it the Mediator space. Two compatibility operators,
denoted byΠ1→2 andΠ2→1, ranging from ISi, into CSi, i = 1, 2, are then defined.
Observe that the introduction of these two operators is an immediate extension of the
introduction of the single compatibility operatorΠΩ

S in our first references where, for
the sake of clarity, a model (the local one) was assumed to be "finer" than the other
(global) one.
Once the previous spaces and operators are fixed, the transmission is achieved by
activating a density of actions field, denoted by Φ. The latter is designed to control
(weakly) the deviation in Sc between Π1→2E1 and Π2→1E2. It belongs to the me-
diator space of actions M . The mediator field is derived from action models that can
be either of elastic type, rigid type (Lagrangemultiplier), rigid-elastic type (Ben Dhia,
1998, Ben Dhia, 1999) or of more "fuzzy" types, aiming to couple as "peacefully" and
as accurately as possible the super-imposed models.
All these aspects will be exemplified and the effectiveness of our choices studied theo-
retically during the conference.
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