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Abstract

The role of environmental heterogeneity in the evolution of biological diversity
has been studied only for simple types of heterogeneities and dispersals. This arti-
cle broadens previous results by considering heterogeneities and dispersals that are
structured by several environmental factors. It studies the evolution of a metapop-
ulation, living in a network of patches connected by dispersal, under the effects
of mutation, selection and migration. First it is assumed that patches are equally
connected and that they carry habitats characterized by several factors exerting
selection pressures on several individual traits. Habitat factors may vary in the
environment independently or they may be correlated. It is shown that correlations
between habitat factors promote adaptive diversification and that this effect may
be modified by trait interactions on survival. Then it is assumed that patches are
structured by two crossed factors, called the row and column factors, such that
patches are more connected when they occur in the same row or in the same col-
umn. Environmental patterns in which each habitat appears in each row the same
number of times and appears in each column the same number of times are found
to hinder adaptive diversification.

Keywords: Adaptation; Adaptive dynamics; Migration; Multivariate evolution; Spatial
heterogeneity; Structured populations.
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1 Introduction

Adaptive diversification is the evolution of different types of organisms under the effects
of evolutionary forces such as selection and mutation (Doebeli, 2011). In natural popula-
tions, it may play a role in the evolution of biological diversity (Kocher, 2004; Johnson,
2007). In agrosystems, it may allow some genotypes to have higher performances in some
environments (Rhoné et al., 2008; Gautier et al., 2009) but also some pathogens to better
develop on some hosts and possibly to be more damaging (Pariaud et al., 2009; REX Con-
sortium, 2013; Fabre et al., 2015). In medicine, it may be involved in the emergence of
drug resistance (REX Consortium, 2013; Roemhild et al., 2015). It is therefore important
to identify the circumstances that promote diversification.

Biotic and abiotic conditions are often variable within environments. Various fea-
tures of this environmental heterogeneity may influence adaptive diversification. The
overall level of heterogeneity generally promotes diversification, although intermediate
levels sometimes maximize diversification propensity (Meszéna et al., 1997; Geritz et al.,
1998; Doebeli and Dieckmann, 2003; Débarre et al., 2013; Haller et al., 2013). When ge-
ographical sites are equally connected by dispersal, balancing the frequencies of the habi-
tats resulting from environmental heterogeneity promotes diversification (Geritz et al.,
1998). When dispersal is more important between neighbouring sites, gradients and land-
scapes isolating populations into large spatially continuous habitats promote diversifica-
tion (Débarre and Gandon, 2010; Birand et al., 2012; Haller et al., 2013; Papäıx et al.,
2013). When dispersal is more important within groups clustering patches than between
groups, diversification is hindered by making within-group habitat distributions equal
(Papäıx et al., 2013).

Most theoretical works on the role of environmental heterogeneity in adaptive diversifi-
cation have studied the influence of a single environmental factor. However the complexity
of environments makes it likely that many factors are involved in adaptive diversification
(Poisot et al., 2011; Laughlin and Messier, 2015). For example such factors could be
related to temperature, rainfall, soil type, host genotype etc. Gavrilets and Vose (2005)
studied how populations adapted to their environment when habitats were charaterized
by several environmental factors and were assigned to patches with equal probabilities.
However habitat factors may be associated in a landscape in various ways: they may
vary independently between patches or they may be correlated. An exploration of the
consequences of the relationships between habitat factors is needed.

Most theoretical studies of the diversifying effects of environmental heterogeneity have
considered simple models of dispersal, in particular models in which dispersal rates are
constant, decay with spatial separation or depend on an environmental factor. However
dispersal may be more complex in reality (Karlin, 1982). For example, plant pathogens
may be dispersed by air, rain, water, soil, or by vectors such as animals, pollen, mi-
crobes, people, machinery (West, 2014). The spread of human diseases may depend on
the clustering of hosts into species or age classes (Sloan et al., 2011; Johnson et al., 2015).
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Animal diseases may spread between farms at a regional scale through animal movements
due to animal trade (Beaunée et al., 2015). An exploration of the interactions between
environmental heterogeneity and various forms of dispersal would be welcome.

In this article, we study how environmental heterogeneity promotes the gradual evo-
lution of polymorphism when this heterogeneity and dispersal depend on several factors.
We consider a population of individuals living on a network of patches holding different
habitats (Section 2). We restrict ourselves to models that are sufficiently simple to be
analyzed analytically. We study how the allocation of habitats to patches influences diver-
sification when habitats are characterized by several factors and when patches are equally
connected by dispersal (Section 3). Then we study how it influences diversification when
dispersal depends on two crossed factors (Section 4).

2 Model

2.1 Individuals and environment

Individuals are characterized by a vector x = (x1, . . . , xd)
T of d ≥ 1 continuous adaptive

traits, where T denotes transposition. They are assumed to reproduce asexually and to
have the same trait vector x as their parent, unless mutations occur.

The environment comprises P patches, each holding K individuals, with K sufficiently
large that demographic stochasticity can be neglected. Each patch belongs to one habitat
among H possible ones. Each habitat is characterized by a vector β = (β1, . . . , βd)

T , that
corresponds to the optimal phenotype for this habitat. As will be detailed below, the
growth of a juvenile in this habitat is optimal if x = β. The allocation of habitats to
patches is called an environmental pattern.

2.2 Life cycle

Juvenile dispersal. Juveniles are assumed to disperse after birth. A proportion mii′ of
juveniles move from patch i′ to patch i during a life cycle, with

∑
imii′ = 1 and mii′ = mi′i.

All patches are assumed to be connected.
Growth and selection. After dispersal, a juvenile either develops into an adult or dies.

The proportion g(x, β) of juveniles with trait vector x in a habitat selecting for phenotype
β that become adults is assumed to have a d-dimensional normal shape (Geritz et al.,
1998; Doebeli and Ispolatov, 2010):

g(x, β) = α exp
(
−(x− β)T B (x− β)/2

)
,

with d× d inverse variance-covariance matrix B, that is symmetric and positive definite.
An individual is more adapted to a habitat when its phenotype is closer to the optimal
phenotype of this habitat. The normal shape of g(x, β) imposes a trade-off between the
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growths in the habitats: adaptation to a habitat causes maladaptation to the other habi-
tats. The non-diagonal elements of B quantify the interactions between traits on juvenile
development. When B is diagonal, ln(g(x, β)) is simply a sum of trait contributions:

ln(g(x, β)) = ln(α)−
d∑
j=1

Bjj(xj − βj)2/2,

where Bjj′ is the element of B in row j and column j′. When B has some non-zero
non-diagonal elements, ln(g(x, β)) also involves contributions from pairs of traits, i.e. the
sum −

∑
j<j′ Bjj′(xj − βj)(xj′ − βj′), so that traits interact.

Density regulation. After growth, density dependence makes the size of each patch
equal to K.

Reproduction. Finally, each adult gives birth to f juveniles before dying. Thus,
generations are non-overlapping.

No other assumptions are done at this stage but later when we address some specific
issues.

2.3 Adaptive dynamics

We use the adaptive dynamics framework (Geritz et al., 1998; Diekmann, 2004). Let us
consider a monomorphic resident population, i.e. a population in which all the individuals
have the same trait vector x. The population evolves thanks to the recurrent fixation of
mutants. Mutations are assumed to be rare so that the population has time to reach its
demographic equilibrium between mutation events. They are also assumed to have small
effects so that evolution is gradual.

Adaptive dynamics is based on the definition of an invasion fitness that indicates if a
mutant can invade a resident population. To define fitness, the initial demography of a
mutant population is approximated by a matrix model (Appendix A). Invasion fitness is
then defined as the dominant eigenvalue of the projection matrix. The mutant is assumed
to replace the resident when its fitness is larger than one and to go extinct when its fitness
is smaller than one.

Evolutionary singularities (ESs) are evolutionary equilibria. It is shown in Appendix D
that our model has a unique ES that is equal to:

x̂ =
∑
h

p1...d(h) β(h),

where p1...d(h) is the frequency of habitat h, i.e. the proportion of patches with this
habitat, and β(h) is the optimal phenotype of habitat h. This ES depends on the envi-
ronmental pattern through habitat frequencies only.

An ES x̂ is attracting (or convergence stable) if the resident trait converges to x̂ by
gradual evolutionary changes. It is shown in Appendix E that x̂ is an attractor. In the
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following sections, we study how environmental heterogeneity destabilizes x̂ when habitats
and dispersal are patterned by factors.

3 Diversification in multi-dimensional environments

Multi-dimensional habitats. Environments are likely to exert selection pressures through
several variables in nature. Thus, we assume that habitats are multi-dimensional in the
sense that they are characterized by d factors. Here each factor has two levels, so that
there are 2d possible habitats, that are denoted by the row vectors h = (h1, . . . , hd), where
hj = 1, 2 is the level of the jth factor for j = 1, . . . , d. The optimal phenotype of habitat h
is assumed to be equal to β(h) = ((−1)h1 , . . . , (−1)hd)T θ, where θ is a positive scalar. The
jth factor influences the jth component of β(h) and thus exerts a selection pressure on the
jth trait, but it may also affect other traits through trait interactions. The discrepancy
between habitats h and h′ can be quantified by the distance:√

(β(h)− β(h′))TB(β(h)− β(h′)). (1)

The more distant habitats h and h′, the stonger the selection pressure exerted on an
individual adapted to habitat h when it is in habitat h′. For example when d = 2,
the distance between habitats (1, 1) and (2, 2) (respectively (1, 2) and (2, 1)) is equal to
2θ
√
B11 + 2B12 +B22 (respectively 2θ

√
B11 − 2B12 +B22). A positive interaction (B12 >

0) increases (respectively decreases) the distance between habitats (1, 1) and (2, 2) (re-
spectively (1, 2) and (2, 1)). A negative interaction has the opposite effect.

Juvenile dispersal. Dispersal parameters are assumed to be equal to mii′ = µ1 + µ2

if i = i′ (philopatry) and mii′ = µ1 otherwise (dispersal), where 0 < µ1 ≤ 1 to ensure
that all patches are connected and 0 ≤ µ2 ≤ 1. Thus, patches are assumed to be equally
connected and a juvenile has more chance to remain in its birth patch than to move to
another patch when µ2 > 0. This dispersal is called a Deakin’s dispersal in this article
(Karlin, 1982). As patches are equally connected, the spatial distribution of habitats is
not relevant and an environmental pattern can be defined by its habitat frequencies only.

Factor correlation. Habitat factors may vary in the environment independently or
they may be correlated. Factors j and j′ are independent when they satisfy:

pjj′(l, l
′) = pj(l) pj′(l

′), (2)

for l, l′ = 1, 2, where pj(l) (respectively pjj′(l, l
′)) denotes the frequency of level l of factor j

(respectively pair of levels (l, l′) of factors j and j′), i.e. the proportion patches with this
level (respectively pair of levels). For example, factors are independent for patterns D(0)

in Tables 1 and 2. The dependence between factors j and j′ is quantified through the
correlation coefficient:

ρjj′ =
pjj′(1, 1)− pj pj′√

pj (1− pj) pj′ (1− pj′)
,
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Table 1: Frequencies of two-dimensional habitats. There are four habitats that are de-
noted by row vectors (h1, h2), 1 ≤ h1, h2 ≤ 2. Patterns D(1) and D(−1) involve a fraction
of these habitats whereas D(0) involves these habitats in equal frequency. For each habitat
factor, the frequency of level 1 is 1/2. The subscript of a pattern denotes the value of
factor correlation.
Habitat D(−1) D(−1/3) D(0) D(1)

(1, 1) 0 1/6 1/4 1/2
(1, 2) 1/2 2/6 1/4 0
(2, 1) 1/2 2/6 1/4 0
(2, 2) 0 1/6 1/4 1/2

for 0 < pj, pj′ < 1, where pj denotes pj(1). The frequency of a pair of levels can be written
as follows:

pjj′(l, l
′) = pj(l) pj′(l

′) + (−1)l+l
′
ρjj′
√
pj (1− pj) pj′ (1− pj′), (3)

for 1 ≤ j 6= j′ ≤ d and l, l′ = 1, 2. According to (3), factors j and j′ are independent
iff ρjj′ = 0. A positive value of ρjj′ increases (respectively decreases) the frequencies of
the pairs of levels (1, 1) and (2, 2) for factors j and j′ (respectively (1, 2) and (2, 1)). A
negative value has the opposite effect. When factor correlations ρjj′ are all equal, their
common value is denoted by ρ: ρjj′ = ρ for 1 ≤ j 6= j′ ≤ d. An environmental pattern
such that factor correlation ρjj′ is equal to ρ whatever the pair of factors is denoted by
D(ρ). For example, factor correlations are all equal to 0 for pattern D(0) in Table 2. Several
patterns may have the same value of ρ. Pattern D(ρ) may not exist for given values of ρ,
d and pj.

Example. In plant epidemiology, a patch may be an agricultural plot and a habitat
may be the variety grown in a plot. A plant leaf may be divided into healthy sites that can
be colonized by a pathogen (Papäıx et al., 2014). It may be assumed that K healthy sites
become infected in each plot during a pathogen life cycle, while the sites infected during
the previous life cycle become removed, thereby making patches of size K and generations
non-overlapping. A habitat factor may be a plant locus, whose levels are different alleles,
and in this case factor correlation ρjj′ corresponds to linkage disequilibrium (Hartl and
Clark, 1997). Our framework could give insight into how the deployment of some varieties
in an agricultural landscape influences pathogen adaptation to these varieties (Papäıx
et al., 2011; REX Consortium, 2013; Fabre et al., 2015).

3.1 Influence of factor correlations

The ES is uninvadable if no nearby mutant can invade a monomorphic resident population
with trait x̂. In this case, selection is stabilizing at x̂ and if x̂ is also attracting, the
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Table 2: Frequencies of four-dimensional habitats. There are eight habitats that are
denoted by row vectors (h1, . . . , h4), 1 ≤ h1, . . . , h4 ≤ 2. Patterns D(1) and D(−1/3) involve
a fraction of these habitats whereas D(0) involves these habitats in equal frequency. For
each factor, the frequency of level 1 is 1/2. The subscript of a pattern denotes the value
of factor correlation.
Habitat D(−1/3) D(0) D(1)

(1, 1, 1, 1) 0 1/8 1/2
(1, 1, 2, 2) 1/6 1/8 0
(1, 2, 1, 2) 1/6 1/8 0
(1, 2, 2, 1) 1/6 1/8 0
(2, 1, 1, 2) 1/6 1/8 0
(2, 1, 2, 1) 1/6 1/8 0
(2, 2, 1, 1) 1/6 1/8 0
(2, 2, 2, 2) 0 1/8 1/2

population evolves into a monomorphic population with trait x̂. We first study how factor
correlations influence ES invadability when there are no trait interactions on juvenile
development. It is shown in Appendix F that x̂ is then uninvadable if the matrix with
jth diagonal element:

4

(
1 + 2

µ2

1− µ2

)
pj (1− pj)B2

jj θ
2 −Bjj (4)

and with element in row j and column j′ (j 6= j′):

4

(
1 + 2

µ2

1− µ2

)
Bjj Bj′j′ θ

2 ρjj′
√
pj (1− pj) pj′ (1− pj′) (5)

is negative definite. Correlations between factors introduce non-diagonal elements in the
matrix defined by (4) and (5), which tends to increase the eigenvalues of this matrix and
to destabilize evolutionary equilibria (Débarre et al., 2014; Svardal et al., 2014).

To study the influence of factor correlations on diversification further, we focus on the
case when the frequency of level 1 (pj) is equal to p whatever the factor, factor correlations
(ρjj′) are all equal to ρ and the diagonal elements of B are all equal to τ . It is shown in
Appendix F that x̂ is then uninvadable if:

4

(
1 + 2

µ2

1− µ2

)
p(1− p)τθ2 max(1− ρ, 1 + (d− 1)ρ)− 1 < 0. (6)

This condition is the same as that when a single trait evolves (d = 1, ρ = 0) iff ρ = 0.
Thus, although traits do not interact, they do not evolve in isolation from one another

8



unless ρ = 0. When d = 2, factor correlation increases the left-hand side of (6) whatever
its sign (γ = 0, Fig. 1). Increasing (respectively decreasing) ρ increases the frequency of
habitats (1, 1) and (2, 2) (respectively (1, 2) and (2, 1)), which strengthens the selection
exerted by these habitats, destabilizing x̂. When d = 4, factor correlation has the same
effect on invadability when ρ = −1/3 but has a stronger effect when ρ = 1 (γ = 0, Fig. 2).

3.2 Joint influence of factor correlations and trait interactions

The traits of an organism may show interactions in nature (Hartl and Clark, 1997; Barton
et al., 2007). Thus, we now let traits interact, but we focus on the case when B is
completely symmetric to simplify, i.e. its diagonal elements are equal to τ > 0 and its
non-diagonal elements are equal to τγ. The parameter γ quantifies trait interactions and
satisfies −1/(d − 1) < γ < 1 to ensure that B is positive definite, which introduces a
dissymmetry in its domain when d > 2. We also assume that the frequencies of level 1
are all equal to p and that factor correlations are all equal to ρ to simplify. It is shown in
Appendix F that x̂ is then uninvadable if:

4

(
1 + 2

µ2

1− µ2

)
p(1−p)τθ2 max((1−γ)(1−ρ), (1+(d−1)γ)(1+(d−1)ρ))−1 < 0. (7)

Thus, trait interactions and factor correlations jointly affect invadability. When d =
2, increasing γ increases the left-hand side of (7) when ρ = 1 but have the opposite
effect when ρ = −1 (Fig. 1). This is because increasing (respectively decreasing) both
ρ and γ increases the frequency of and the distance between habitats (1, 1) and (2, 2)
(respectively (1, 2) and (2, 1)), which strengthens selection, destabilizing x̂. Conversely
increasing ρ while decreasing γ increases the frequency of habitats (1, 1) and (2, 2) but
decreases the distance between these habitats, which weakens selection, stabilizing x̂.
Thus, trait interactions and factor correlations may jointly stabilize the ES (negative
invadability criterion). When d = 4, the effect of trait interactions is stronger for ρ = 1
and is monotonous for ρ = −1/3 (Fig. 2).

It can be verified that pattern D(ρ) with ρ = − γ
1+(d−2)γ , when it exists, minimizes the

left-hand side of (7) for a given value of p and thus hinders diversification. For example
patterns D(0) in Tables 1 and 2, that balance habitat frequencies, limit diversification
when trait interactions are low (Fig. 1 and 2). Alternatively when traits show a moderate
positive interaction and d = 2, pattern D(−1/3) in Table 1 limits diversification. Pattern
D(1) maximizes the left-hand side of (7) for a given value of p when γ ≥ 2−d

2−d+d2 and thus
promotes diversification. This result is in agreement with intuition since D(1) maximizes
the frequencies of habitats (1, . . . , 1) and (2, . . . , 2), and a large γ value increases the
distance between these habitats. When d = 2, D(−1) maximizes the left-hand side of (7)
for a given value of p when γ ≤ 0.
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Figure 1: Influence of trait interaction (γ) and of factor correlation (ρ) on the invadability
of the ES when two traits are under selection (d = 2). The figure shows the invadability
criterion (left-hand side of (7)) for the patterns of Table 1. The horizontal line locates the
threshold value of 0: the ES is invadable when the invadability criterion is positive and
uninvadable when the invadability criterion is negative. Parameter values were chosen so
that the ES is on the brink of invadability when a single trait is under selection (the left-
hand side of (7) vanishes when γ = ρ = 0). Parameter values: p = 1/2, Pµ1 = µ2 = 1/2,
τθ2 = 1/3.
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Figure 2: Influence of trait interaction (γ) and of factor correlation (ρ) on the invadability
of the ES when four traits are under selection (d = 4). The figure shows the invadability
criterion (left-hand side of (7)) for the patterns of Table 2. The horizontal line locates the
threshold value of 0: the ES is invadable when the invadability criterion is positive and
uninvadable when the invadability criterion is negative. Parameter values were chosen
so that the ES is on the brink of invadability when a single trait is under selection (the
left-hand side of (7) vanishes when γ = ρ = 0). The axes have the same scale as in Fig. 1
to facilitate comparison. The parameter γ is larger than -1/3 to ensure that B is positive
definite. Parameter values: p = 1/2, Pµ1 = µ2 = 1/2, τθ2 = 1/3.
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4 Diversification with a structured dispersal

Juvenile dispersal. Patches are not always equally connected in the real world (Karlin,
1982). To gain insight into the effects of a nonuniform dispersal, we now assume that
patches are structured by two crossed factors affecting dispersal, that are called the row
and column factors. It is assumed that there is a single patch at the intersection of a
row and a column, thus patches can be arranged in a lattice with R rows and C columns
(P = RC). Dispersal parameters are assumed to be equal to:
mii′ = µ1 + µ3 if i and i′ are different patches in the same row,
mii′ = µ1 + µ4 if i and i′ are different patches in the same column,
mii′ = µ1 + µ2 + µ3 + µ4 if i = i′ (philopatry),
mii′ = µ1 otherwise,
where 0 ≤ µ1, µ2, µ3, µ4 ≤ 1 and µ1 > 0 or µ3 µ4 > 0 to ensure that all patches are
connected. When µ3 > 0 and µ4 > 0, a juvenile that leaves its birth patch has more
chance to move to a patch in the same row or in the same column. This dispersal is called
a row-column dispersal in this article.

For example, individuals could disperse according to independent between-row and
between-column Deakin’s dispersals with parameters µ

(r)
1 and µ

(r)
2 (respectively µ

(c)
1 and

µ
(c)
2 ) for the between-row (respectively between-column) dispersal. It can be verified

that the resulting dispersal is a row-column dispersal with parameters µ1 = µ
(r)
1 µ

(c)
1 ,

µ2 = µ
(r)
2 µ

(c)
2 , µ3 = µ

(r)
2 µ

(c)
1 and µ4 = µ

(r)
1 µ

(c)
2 . It also corresponds to a Kronecker product

dispersal, as the matrix of dispersal parameters can be written as the Kronecker product
of a between-row dispersal matrix and a between-column dispersal matrix (Karlin, 1982).

Habitats. We assume that habitats are one-dimensional and that a single trait evolves
(d = 1) to simplify. Two habitats are present in the environment, their optimal phenotypes
are equal to ±θ and B is a scalar. We denote by p the frequency of habitat 1.

Example. In human epidemiology, some pathogens may spread more easily between
persons in the same geographical region and in the same age class, as individuals may
have more contacts within such classes (Karlin, 1982; Watts et al., 2005; Wallinga et al.,
2006; Sloan et al., 2011; Liccardo and Fierro, 2013). Thus, a patch may be the com-
bination of a geographical region and an age class. As before, it may be assumed that
K individuals become infected in each patch during a pathogen life cycle while the in-
dividuals infected during the previous life cycle become removed. The habitats may be
different medicines. Our framework could give insight into how treatment strategies in-
fluence pathogen adaptation to some medicines (REX Consortium, 2013; Roemhild et al.,
2015).

Evolutionary branching. An attracting and invadable ES is a branching point when
some phenotypes on either side of the ES can mutually invade each other (mutual invad-
ability) and when the distance between these phenotypes increases over time (evolutionary
divergence) (Geritz et al., 1998). We compare pattern D1, in which patches in the same
row have the same habitat, and pattern D2, in which each habitat appears in each row
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Table 3: Environmental patterns for a population living on a lattice with four rows and
four columns. The habitats are denoted by 1 and 2. Pattern D1 is rowwise whereas
pattern D2 is balanced in the sense that habitat 1 appears in each row and in each
column once and habitat 2 appears in each row and in each column thrice. The frequency
of habitat 1 is 1/4.

D1 D2

2 2 2 2 1 2 2 2
1 1 1 1 2 1 2 2
2 2 2 2 2 2 1 2
2 2 2 2 2 2 2 1

the same number of times and appears in each column the same number of times, for a
given value of p (Table 3). In Appendix G, it is shown that the ES is a branching point
for the rowwise pattern D1 when:

4

(
1 + 2

µ2 + C µ3

1− (µ2 + C µ3)

)
p(1− p)Bθ2 − 1 > 0, (8)

whereas the population evolves into a monomorphic population with phenotype x̂ when
the left-hand side of this equation is negative. The branching condition becomes:

4

(
1 + 2

µ2

1− µ2

)
p(1− p)Bθ2 − 1 > 0, (9)

for the balanced pattern D2.
It follows that D2 is less favorable to branching than D1 (i.e. left-hand side smaller

for (9) than for (8)) (Fig. 3). It can be verified that (i) D2 is the least favorable pat-
tern to branching among all the patterns with the same value of p and that (ii) D1 is
the most favorable pattern to branching among all the patterns with the same value of
p when C µ3 ≥ Rµ4. Pattern D2 reaches the same branching criterion value as that
when patches are equally connected with philopatry parameter µ2; D1 reaches the same
branching criterion value as that when rows form large patches that are equally connected
with philopatry parameter µ2 + C µ3. By symmetry, columnwise patterns have similar
properties to those of rowwise patterns.

5 Discussion

This article studies how environmental heterogeneity influences adaptive diversification in
a multivariate framework. Previous studies on the diversification of several traits found
that interactions between traits and the number of ressources promoted diversification
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Figure 3: Influence of frequency of habitat 1 (p) and of environmental pattern on the
diversification of a lattice population. The figure shows the branching criterion (left-hand
sides of (8) and (9)) for a rowwise pattern D1 and a balanced pattern D2 (Table 3). The
horizontal line locates the threshold value of 0: the population is polymorphic when its
branching criterion is positive and monomorphic when its branching criterion is negative.
Parameter values were chosen so that the population is on the brink of diversification
for pattern D2 and p = 1/2 (the left-hand side of (9) vanishes). Parameter values:
RC µ1 = C µ3 = Rµ4 = µ2 = 1/4, Bθ2 = 3/5.
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(Doebeli and Ispolatov, 2010; Débarre et al., 2014; Svardal et al., 2014). This article
complements these studies by considering multi-dimensional habitats. It shows that as-
sociating the levels of some habitat factors across patches (factor correlation) promotes
diversification in the absence of trait interactions. Conversely mixing the levels of such
factors across patches makes these factors independent, hindering diversification when
trait interactions are low. In addition, factor correlations interact with trait interactions,
so that they may jointly either increase or decrease the strength of selection. As a result,
the patterns that are optimal for hindering or promoting diversification depend on trait
interactions.

Our study on multi-dimensional habitats provides explicit invadability criteria, mak-
ing the influence of environmental heterogeneity easier to study than using a sensitivity
analysis. We restricted ourselves to study invadability rather than evolutionary branching
because an analytic theory of multi-dimensional branching seems to be currently lacking
(Vukics et al., 2003; Durinx et al., 2008). Considering invadability only left many issues
unsolved, in particular if evolutionary branching does occur when the ES is invadable,
how many types coexist at the end of the diversification process, how many traits become
polymorphic and how multi-dimensional habitats influence evolutionary speed.

It has recently been shown that evolutionary trajectories are less likely to converge
to an ES and are more likely to be chaotic in multi-dimensional trait spaces (Doebeli
and Ispolatov, 2014; Ispolatov et al., 2016). Our model has a unique ES that is always
attracting, so that its trajectories do not seem to be chaotic. It has also recently been
shown that diversification may occur from other points than ESs in multi-dimensional
trait spaces (Ito and Dieckmann, 2014; Ispolatov et al., 2016). For example traits may
evolve at different speeds so that the fast traits may branch while the slow traits may still
be under directional evolution. Our study considered diversification at the ES only, but
diversification is perhaps possible from other points of evolutionary trajectories.

The influence of environmental heterogeneity on diversification depends on the man-
ner individuals disperse. Previous studies found that when dispersal rates decreased with
distance, landscapes showing large spatially continous habitat clusters promoted diversi-
fication (Débarre and Gandon, 2010; Birand et al., 2012; Haller et al., 2013; Papäıx et al.,
2013). When patches clustered into groups such that patches in the same group were
more connected, diversification was found to be hindered by making the within-group
habitat distributions equal (Papäıx et al., 2013). Our study extends the latter result to a
dispersal involving two crossed factors, called the row and column factors. Diversification
is found to be hindered by making habitat distributions equal both within rows and within
columns. These environmental patterns are reminiscent of Latin squares in the domain
of experimental designs (Bailey, 2008).

In our study, habitat differentiation promotes diversification (invadability and branch-
ing criteria are increasing functions of θ), in agreement with some earlier results (see e.g.
Geritz et al., 1998; Débarre and Gandon, 2010; Papäıx et al., 2013). This result pre-
sumably partly comes from the assumption that patch sizes are fixed and equal. When
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population size is variable, intermediate levels of heterogeneity may maximize branching
propensity (Doebeli and Dieckmann, 2003; Débarre et al., 2013; Haller et al., 2013). A
possible explanation is that when habitat differenciation is too pronounced, dispersers
cannot persit long enough in hostile habitats to adapt. However, polymorphism may
evolve even if population size is variable and heterogeneity is high, if mutations have
large effects, the initial population is polymorphic or demography is stochastic (Débarre
et al., 2013).

Our results are valid when patches are large. When patch number and size are both
small, demographic stochasticity, that was not taken into account by our deterministic
model, may delay or even prevent branching and reduce diversity within diverging pop-
ulations when branching occurs (Claessen et al., 2007; Débarre et al., 2013; Wakano and
Iwasa, 2013). When patches are numerous, demographic stochasticity at the level of the
whole metapopulation may be safely ignored. However if in addition patches are small
and dispersal is low, interactions between mutant individuals within patches during the
initial growth phase of the mutant population, that were neglected in our quantification
of fitness (Appendix A), may become influential. In our model, they could lead to kin
competition and could hinder branching (Wakano and Lehmann, 2014; Mullon et al.,
2016).

We focused on a discrete-time model in which dispersal occurs between density reg-
ulation and selection. It corresponds to a soft selection model with philopatry (Débarre
and Gandon, 2011). Our results are presumably highly dependent on this choice. The
evolution of polymorphism in discrete-time models is influenced by the life cycle chosen
and in particular the order of demographic events (Débarre and Gandon, 2011). For ex-
ample placing dispersal between selection and density regulation leads to a hard selection
model with philopatry in which polymorphism is unlikely to evolve.
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Appendix

A Invasion fitness of a mutant in a resident popula-

tion

Let a mutant with trait vector y appear in the resident population with trait x. To
model the dynamics of the mutant’s population, we take account of the patch structure
and consider that time is discrete with one time step corresponding to a life cycle. The
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number ni(t + 1) of mutant individuals in patch i at time t + 1 satisfies (Papäıx et al.,
2013):

ni(t+ 1) =

∑
i′ g(y, β(h(i)))mii′ ni′(t)∑

i′ g(x, β(h(i)))mii′ (K − ni′(t)) +
∑

i′ g(y, β(h(i)))mii′ ni′(t)
K,

where h(i) is the habitat of patch i. As ni′(t)� K when the mutant is rare and
∑

i′ mii′ =
1, the initial demography of the mutant population in patch i is approximated by:

ni(t+ 1) ≈
∑

i′ g(y, β(h(i)))mii′ ni′(t)

g(x, β(h(i)))
,

for i = 1, . . . , P . This system of equations is written as a matrix model (Caswell, 2001;
Ellner and Guckenheimer, 2006):

n(t+ 1) ≈ A(x, y)n(t),

where n(t) = (n1(t), . . . , nP (t))T is the vector of population sizes and A(x, y) is a P × P
projection matrix with non-negative and constant coefficients (given x and y). The entry
in row i and column i′ of the projection matrix is equal to:[

A(x, y)
]
ii′

=
g(y, β(h(i)))

g(x, β(h(i)))
mii′ . (A.1)

The matrix A(x, y) is assumed to be diagonalizable with eigenvalues, right and left
eigenvectors denoted by λ(i)(x, y), r(i)(x, y) and l(i)(x, y), i = 1, . . . , P , respectively. The
eigenvectors of A(x, y) are assumed to be scaled so that l(i)(x, y)? r(i)(x, y) = 1 and
l(i)(x, y)? r(i

′)(x, y) = 0 for i 6= i′, where l(i)(x, y)? denotes the complex conjugate trans-
pose of l(i)(x, y). As every patch can contribute to every other patch (Section 2), A(x, y)
is irreducible and has a dominant eigenvalue λ(1)(x, y) (Caswell, 2001). Since some of the
eigenvalues of A(x, y) may be complex, λ(1)(x, y) is defined as the eigenvalue with the
largest real part. It is real, simple and its associated left and right eigenvectors are posi-
tive. As it quantifies the growth of the mutant’s population (Caswell, 2001), the invasion
fitness s(x, y) of a mutant with trait vector y in a resident population with trait vector x
is defined as follows:

s(x, y) = λ(1)(x, y).

The mutant is assumed to replace the resident when its fitness is larger than one and to
go extinct when its fitness is smaller than one.

B Diagonalization of A(x, x)

From (A.1), the entry in row i and column i′ of A(x, x) is equal to:[
A(x, x)

]
ii′

= mii′ .
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For the row-column dispersal, the diagonalization of A(x, x) gives:

A(x, x) = (RCµ1 + Cµ3 +Rµ4 + µ2)S1 + (Cµ3 + µ2)S2 + (Rµ4 + µ2)S3 + µ2S4,

where S1 = (JR/R)⊗ (JC/C), S2 = (IR − JR/R)⊗ (JC/C), S3 = (JR/R)⊗ (IC − JC/C),
S4 = (IR−JR/R)⊗(IC−JC/C), IR is the R×R identity matrix, JR is the R×R matrix of
ones and ⊗ is the Kronecker product. Thus, the eigenvalues of A(x, x) are λ(1)(x, x) = 1
with multiplicity 1, λ(2)(x, x) = Cµ3 + µ2 with multiplicity R − 1, λ(3)(x, x) = Rµ4 + µ2

with multiplicity C−1 and λ(4)(x, x) = µ2 with multiplicity (R−1)(C−1). The dominant
right and left eigenvectors satisfy:[

r(1)(x, x)
]
i

= 1/P, (B.1)[
l(1)(x, x)

]
i

= 1, (B.2)

for i = 1, . . . , P . Fixing µ3 = µ4 = 0 yields the diagonalization of A(x, x) for the case
when patches are equally connected.

C Fitness derivatives

Let φu(x, y) denote the first-order derivative of the function φ(x, y) with respect to (w.r.t.)
the scalar (i.e. one-dimensional) trait u; for example when φ = s and u = y1, we obtain
sy1(x, y) = ∂s

∂y1
(x, y). The first-order derivative su(x, y) of fitness w.r.t. the scalar trait u,

or fitness gradient, is equal to (Caswell, 2001):

su(x, y) = l(1)(x, y)T Au(x, y) r(1)(x, y), (C.1)

for u = x1, . . . , xd, y1, . . . , yd. In (C.1), Au(x, y) is the P ×P matrix whose element in row

i and column i′ is equal to
∂[A]ii′
∂u

(x, y).
Let φuv(x, y) denote the second-order derivative of φ(x, y) w.r.t. the scalar traits u

and v; for example when φ = s, u = y1 and v = y2, we obtain sy1y2(x, y) = ∂2s
∂y1∂y2

(x, y).

Using (C.1), we find:

suv = l(1)v
T Au r

(1) + l(1)T Auv r
(1) + l(1)T Au r

(1)
v ,

where we have suppressed the dependence of quantities such as suv(x, y) on (x, y) for
notational convenience and Auv is the P × P matrix whose element in row i and column

i′ is equal to
∂2[A]ii′
∂u∂v

. According to equations 9.131 and 9.132 in Caswell (2001), we have:

r(1)v =
P∑
i=2

l(i)?Av r
(1)

λ(1) − λ(i)
r(i),

l(1)v =
P∑
i=2

r(i)?A?v l
(1)

λ̄(1) − λ̄(i)
l(i),
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where λ̄(i) is the complex conjugate of λ(i) and r(i)? is the complex conjugate transpose of
r(i). As l(1) is real, we have:

l(1)v
T = l(1)v

? =
P∑
i=2

l(1)T Avr
(i)

λ(1) − λ(i)
l(i)?,

so that the derivative suv(x, y) of fitness w.r.t. the scalar traits u and v is equal to:

suv = l(1)T Auv r
(1) +

P∑
i=2

(l(1)T Au r
(i)) (l(i)?Av r

(1)) + (l(1)T Av r
(i)) (l(i)?Au r

(1))

λ(1) − λ(i)
, (C.2)

for u, v = x1, . . . , xd, y1, . . . , yd.

D Evolutionary singularities

ESs x̂ are the solutions of the equation (Meszéna et al., 2002):

sy(x, x) = 0,

where sy is the vector of dimension d equal to the derivative of s w.r.t. the vector y. We
calculate sy(x, x) using (C.1). As the elements of A(x, y) satisfy (A.1) and the proportion
g(x, β) of juveniles that become adults can be written as follows:

g(x, β) = α exp

(
−
∑
j

Bjj(xj − βj)2/2− 2
∑
j<j′

Bjj′(xj − βj)(xj′ − βj′)/2

)
,

the derivatives of A w.r.t. the mutant’s traits are equal to:

Ayj(x, y) = −

(∑
j′

Bjj′∆
(j′)(y)

)
A(x, y), j = 1, . . . , d, (D.1)

where ∆(j)(y) is the P × P diagonal matrix whose ith diagonal element is equal to yj −
β(h(i))j, where h(i) is the habitat of patch i. Using (C.1), we obtain that ESs are the
solutions of the system of equations:∑

j′

Bjj′ l
(1)(x, x)T ∆(j′)(x) r(1)(x, x) = 0, j = 1, . . . , d.

As B is invertible, we find that ESs satisfy:

l(1)(x̂, x̂)T ∆(j)(x̂) r(1)(x̂, x̂) = 0, j = 1, . . . , d.
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Using (B.1) and (B.2), we obtain:

x̂ =
1

P

∑
i

β(h(i)) =
∑
h

p1...d(h) β(h).

As β(h) = ((−1)h1 , . . . , (−1)hd)T θ, the ES is equal to:

x̂ = (1− 2 p1, . . . , 1− 2 pd)
T θ, (D.2)

where pj denotes pj(1).

E Attractivity

For a multi-dimensional trait, the attractivity of an ES depends on the variance-covariance
matrix of mutational steps. For clonally reproducing organisms, x̂ is attracting whatever
the mutational variance-covariance matrix (strong convergence stability) if:

sxx(x̂, x̂)− syy(x̂, x̂) > 0,

where sxx (respectively syy) denotes the d× d matrix equal to the second-order derivative
of s w.r.t. the vector x (respectively y) and the symbol > means positive definite (Meszéna
et al., 2002; Leimar, 2005).

We calculate sxx(x̂, x̂) − syy(x̂, x̂) using (C.2). The first-order derivatives of A w.r.t.
the mutant’s traits are given by (D.1). Those w.r.t. the resident’s traits are equal to:

Axj = −Ayj , j = 1, . . . , d.

Thus, the second term of the right-hand side of (C.2) is identical for sxjxj′ (x̂, x̂) and
syjyj′ (x̂, x̂), 1 ≤ j, j′ ≤ d, so that:

sxjxj′ (x̂, x̂)− syjyj′ (x̂, x̂) = l(1)(x̂, x̂)T Axjxj′ (x̂, x̂) r(1)(x̂, x̂)

−l(1)(x̂, x̂)T Ayjyj′ (x̂, x̂) r(1)(x̂, x̂).

Using (D.1), we find that the second-order derivatives of A are equal to:

Ayjyj′ (x, y) =

((∑
k

Bjk∆
(k)(y)

)(∑
k

Bj′k∆
(k)(y)

)
−Bjj′IP

)
×A(x, y), (E.1)

Axjxj′ (x, y) =

((∑
k

Bjk∆
(k)(x)

)(∑
k

Bj′k∆
(k)(x)

)
+Bjj′IP

)
A(x, y),
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whatever 1 ≤ j, j′ ≤ d. Thus, we obtain:

sxjxj′ (x̂, x̂)− syjyj′ (x̂, x̂) = 2Bjj′ l
(1)(x̂, x̂)T A(x̂, x̂) r(1)(x̂, x̂) = 2Bjj′ .

It follows that:
sxx(x̂, x̂)− syy(x̂, x̂) = 2B > 0,

and that x̂ is attracting whatever the mutational variance-covariance matrix, the matrix
B, the dispersal parameters and the environmental pattern.

F Diversification in multi-dimensional environments

If the fitness Hessian syy(x̂, x̂) is negative definite:

syy(x̂, x̂) < 0,

then the function s(x̂, y) attains a local maximum at y = x̂ and x̂ is uninvadable (Meszéna
et al., 2002; Leimar, 2005).

Using (C.2), we obtain:

syjyj′ (x̂, x̂) = l(1)(x̂, x̂)T Ayjyj′ (x̂, x̂) r(1)(x̂, x̂) (F.1)

+ l(1)(x̂, x̂)T Ayj(x̂, x̂)

(
P∑
i=2

r(i)(x̂, x̂) l(i)(x̂, x̂)?

λ(1)(x̂, x̂)− λ(i)(x̂, x̂)

)
Ayj′ (x̂, x̂) r(1)(x̂, x̂)

+ l(1)(x̂, x̂)T Ayj′ (x̂, x̂)

(
P∑
i=2

r(i)(x̂, x̂) l(i)(x̂, x̂)?

λ(1)(x̂, x̂)− λ(i)(x̂, x̂)

)
Ayj(x̂, x̂) r(1)(x̂, x̂).

Using (E.1), we find that the first term of the right-hand side of (F.1) is equal to:

l(1)(x̂, x̂)T Ayjyj′ (x̂, x̂) r(1)(x̂, x̂) =∑
h

p1...d(h)

(∑
k

Bjk(x̂k − β(h)k)

)(∑
k

Bj′k(x̂k − β(h)k)

)
−Bjj′ .

Using Appendix B, we obtain:

P∑
i=2

r(i)(x̂, x̂) l(i)(x̂, x̂)?

λ(1)(x̂, x̂)− λ(i)(x̂, x̂)
=

1

1− µ2

(IP − JP/P ).

Using (D.1), we obtain that the second and third terms of the right-hand side of (F.1)
are equal to:(

µ2

1− µ2

)∑
h

p1...d(h)

(∑
k

Bjk(x̂k − β(h)k)

)(∑
k

Bj′k(x̂k − β(h)k)

)
.
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It follows that:

syjyj′ (x̂, x̂) =

(
1 + 2

µ2

1− µ2

)
(F.2)

×
∑
h

p1...d(h)

(∑
k

Bjk(x̂k − β(h)k)

)(∑
k

Bj′k(x̂k − β(h)k)

)
−Bjj′ .

F.1 Influence of factor correlations

Equations (F.2), (D.2) and (3) lead to (4) and (5) when traits do not interact (B is
diagonal).

F.2 Joint influence of factor correlations and trait interactions

We focus on the case when the matrix B is completely symmetric to simplify: its diagonal
elements are equal to τ and its non-diagonal elements are equal to τγ. We also focus on
environmental patterns such that the frequencies of level 1 are all equal to p and such
that factor correlations are all equal to ρ. Using (F.2), it can be verified that the elements
of syy(x̂, x̂) are equal to:

syjyj′ (x̂, x̂) = 4

(
1 + 2

µ2

1− µ2

)
τ 2θ2p(1− p)

×
(
(2γ + (d− 2)γ2)(1− ρ) + (1 + (d− 1)γ)2ρ

)
− τγ,

syjyj(x̂, x̂) = 4

(
1 + 2

µ2

1− µ2

)
τ 2θ2p(1− p)

×
(
(1 + (d− 1)γ2)(1− ρ) + (1 + (d− 1)γ)2ρ

)
− τ,

for 1 ≤ j 6= j′ ≤ d. Thus, syy(x̂, x̂) is completely symmetric and its eigenvalues are equal
to:

ω(1) = 4

(
1 + 2

µ2

1− µ2

)
τ 2θ2p(1− p)(1− γ)2(1− ρ)− τ(1− γ),

ω(2) = 4

(
1 + 2

µ2

1− µ2

)
τ 2θ2p(1− p)(1 + (d− 1)γ)2(1 + (d− 1)ρ)− τ(1 + (d− 1)γ).

The matrix syy(x̂, x̂) is negative definite iff both eigenvalues are negative, i.e. iff (7) is
satisfied. When γ = 0, we obtain (6).

G Diversification with a structured dispersal

When a single trait evolves and when syy(x̂, x̂) > 0, an attracting ES is a branching point
(Geritz et al., 1998). Thus, we study when this condition is satisfied.
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Using (C.2), we obtain:

syy(x̂, x̂) = l(1)(x̂, x̂)T Ayy(x̂, x̂) r(1)(x̂, x̂) (G.1)

+ 2 l(1)(x̂, x̂)T Ay(x̂, x̂)

(
P∑
i=2

r(i)(x̂, x̂) l(i)(x̂, x̂)?

λ(1)(x̂, x̂)− λ(i)(x̂, x̂)

)
Ay(x̂, x̂) r(1)(x̂, x̂).

Using similar calculations as in Appendix F, we find that:

Ay(x, y) = −B∆(y)A(x, y), (G.2)

Ayy(x, y) = B (B∆2(y)− IP )A(x, y), (G.3)

where ∆(y) is the P×P diagonal matrix whose ith diagonal element is equal to y−β(h(i))
and h(i) is the habitat of patch i. Using (D.2), (B.1), (B.2) and (G.3), we find that the
first term of the right-hand side of (G.1) is equal to:

l(1)(x̂, x̂)T Ayy(x̂, x̂) r(1)(x̂, x̂) = B(4p(1− p)Bθ2 − 1). (G.4)

Using (G.2), we find that the second term of the right-hand side of (G.1) is equal to:

2B2 l(1)(x̂, x̂)T ∆(x̂)

(
P∑
i=2

λ(i)(x̂, x̂) r(i)(x̂, x̂) l(i)(x̂, x̂)?

λ(1)(x̂, x̂)− λ(i)(x̂, x̂)

)
∆(x̂) r(1)(x̂, x̂). (G.5)

Using Appendix B, we obtain:

P∑
i=2

λ(i)(x̂, x̂) r(i)(x̂, x̂) l(i)(x̂, x̂)?

λ(1)(x̂, x̂)− λ(i)(x̂, x̂)
= η2S2 + η3S3 + η4S4,

= (η2 − η4)S2 + (η3 − η4)S3

+η4(S2 + S3 + S4), (G.6)

where ηi = λ(i)(x̂,x̂)

λ(1)(x̂,x̂)−λ(i)(x̂,x̂) , i = 2, 3, 4, η4 = µ2
1−µ2 , η2−η4 = C µ3

(1−µ2)(RC µ1+Rµ4) and η3−η4 =
Rµ4

(1−µ2)(RC µ1+C µ3) . Using (D.2), (B.1) and (B.2), we obtain:

l(1)(x̂, x̂)T ∆(x̂) (S2 + S3 + S4) ∆(x̂) r(1)(x̂, x̂) = 4p(1− p)θ2, (G.7)

since S2 + S3 + S4 = IP − S1. Using (G.4)–(G.7), we obtain:

syy(x̂, x̂) = B

(
4

(
1 + 2

µ2

1− µ2

)
p(1− p)Bθ2 − 1

)
+ 2B2 l(1)(x̂, x̂)T ∆(x̂) ((η2 − η4)S2 + (η3 − η4)S3) ∆(x̂) r(1)(x̂, x̂).
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Using (D.2), (B.1) and (B.2), we obtain for the rowwise pattern D1:

l(1)(x̂, x̂)T ∆(x̂)S2 ∆(x̂) r(1)(x̂, x̂) = 4p(1− p)θ2,
l(1)(x̂, x̂)T ∆(x̂)S3 ∆(x̂) r(1)(x̂, x̂) = 0,

which leads to (8). For the balanced pattern D2, we have:

l(1)(x̂, x̂)T ∆(x̂)S2 ∆(x̂) r(1)(x̂, x̂) = 0,

l(1)(x̂, x̂)T ∆(x̂)S3 ∆(x̂) r(1)(x̂, x̂) = 0,

which leads to (9).
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Geritz, S. A. H., Kisdi, E., Meszéna, G., Metz, J. A. J. H., 1998. Evolutionarily singular
strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary
Ecology 12, 35–57.

Haller, B. C., Mazzucco, R., Dieckmann, U., 2013. Evolutionary branching in complex
landscapes. Am Nat 182 (4), E127–E141.

Hartl, D. L., Clark, A. G., 1997. Principles of population genetics. Vol. 116. Sinauer
associates Sunderland.

Ispolatov, I., Madhok, V., Doebeli, M., 2016. Individual-based models for adaptive diver-
sification in high-dimensional phenotype spaces. Journal of Theoretical Biology 390, 97
– 105.

Ito, H. C., Dieckmann, U., 2014. Evolutionary branching under slow directional evolution.
Journal of Theoretical Biology 360, 290 – 314.

25



Johnson, M. T. J., 2007. Genotype-by-environment interactions leads to variable selection
on life-history strategy in common evening primrose (Oenothera biennis). Journal of
evolutionary biology 20 (1), 190–200.

Johnson, P. T. J., de Roode, J. C., Fenton, A., 2015. Why infectious disease research
needs community ecology. Science 349 (6252).

Karlin, S., 1982. Classifications of selection-migration structures and conditions for a
protected polymorphism. Evol. Biol 14, 61–204.

Kocher, T. D., 2004. Adaptive evolution and explosive speciation: the cichlid fish model.
Nature Reviews Genetics 5 (4), 288–298.

Laughlin, D. C., Messier, J., 2015. Fitness of multidimensional phenotypes in dynamic
adaptive landscapes. Trends Ecol Evol 30 (8), 487–496.

Leimar, O., 2005. The evolution of phenotypic polymorphism: randomized strategies
versus evolutionary branching. American Naturalist 165 (6), 669–681.

Liccardo, A., Fierro, A., 2013. A lattice model for influenza spreading. PloS one 8 (5),
e63935.
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