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A note on the Clustered Set Covering Problem∗

Laurent Alfandari† Jérôme Monnot‡

Abstract

We define an NP-hard clustered variant of the Set Covering Problem where subsets
are partitioned into K clusters and a fixed cost is paid for selecting at least one subset
in a given cluster. We show that the problem is approximable within ratio (1+ ǫ)(e/e−
1)H(q), where q is the maximum number of elements covered by a cluster and H(q) =
∑q

i=1

1

i
.

Key-words: Integer Programming, Set Covering, Maximal Coverage, Approximation.

1 Problem statement

In the classical Set Covering Problem (SCP), we are given a set of elements C = {1, . . . , n},
a collection S = {S1, . . . , Sm} ⊆ 2C of subsets of C covering C and a non-negative weight
c(Sj) ≥ 0 for each set Sj ∈ S. The goal is to find a set cover S ′ = {Sj1, . . . , Sjt} ⊆
S, verifying ∪t

l=1Sjl
= C, and minimizing c(S ′) =

∑t
l=1 c(Sjl

). This problem has been
widely studied by the computer science community and the main results given on it are
the following: SCP is NP-hard, even in the unweighted case, i.e., c(Sj) = 1 ∀j = 1, . . . ,m

[8]. SCP is H(∆)-approximable where H(∆) =
∑∆

i=1
1
i

and ∆ is the maximum size of a set
of S, i.e., ∆ = maxj≤m |Sj| [4]; this gives a (1 + ln n)-approximation for SCP since ∆ ≤ n
and H(n) ≤ 1 + ln n. On the other hand, SCP is not (1 − ε) ln n-approximable for every
ε > 0 [7] closing the gap between positive and negative results on this problem. Finally, the
restriction of SCP where ∆ and δ are upper bounded by some constants is APX-complete
[12]; here δ is the maximum number of sets of S containing a given element of C, i.e.,
δ = max{p : ∃Sj1, . . . , Sjp such that ∩p

l=1Sjl
6= ∅}.

We define the following variant of SCP, called Clustered Set Covering Problem (Clustered-
SCP). Let C = {1, . . . , n} be a set of elements and S = {S1, . . . , Sm} be a collection of
subsets of C. A positive cost cj = c(Sj) is associated with every subset Sj ∈ S. More-
over, we assume that the index set J = {1, . . . ,m} is partitioned into K disjoint subsets
J = {Jk : k = 1, . . . ,K}, i.e., ∪K

k=1Jk = J and Jk ∩ Jk′ = ∅ for k 6= k′. For k = 1, . . . ,K,
cluster Fk ⊂ S is defined by Fk = {Sj ∈ S : j ∈ Jk}, and a fixed-cost fk ≥ 0 is paid as
soon as at least one subset is selected within cluster Fk for k = 1, . . . ,K. The Clustered
Set Covering Problem is to cover all elements of C by a collection of subsets S ′ ⊂ S mini-
mizing the sum of the costs of the selected subsets and the fixed costs. In other words, we
want to find a set cover S ′ minimizing c(S ′) plus the cost of the clusters used in S ′, i.e.,
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c̄(S ′) = c(S ′)+
∑

k:S′∩Fk 6=∅ fk; to simplify, such a value c̄(S ′) will be called the clustered set
value of S ′. The problem can be formulated as the following Integer Linear Program:

Minimize
K
∑

k=1

fkyk +
m
∑

j=1
cjxj (1)

s.t.
m
∑

j=1
aijxj ≥ 1 for i = 1, . . . , n (2)

yk ≥ xj for k = 1, . . . ,K, j ∈ Jk (3)

xj , yk ∈ {0, 1} (4)

where binary data aij = 1 iff i ∈ Sj. Various minimum-cost multi-commodity flow
problems in transportation planning can be formulated as Clustered-SCP. This is the case
for the Crew Pairing problem in air transportation when crews are partitioned into clusters
k = 1, . . . ,K according to their assigned airport basis for example ([6, 2]), or for fleet
scheduling problems when vehicles or planes are of different types k = 1, . . . ,K ([2]), and a
fixed cost is paid for using a given resource type. Also consider the labeled weighted Vertex
Cover problem defined as follows: given a simple graph G = (V,E) where each vertex v ∈ V
has a weight w(v) ≥ 0 and a label L(v) ∈ {c1, . . . , cK} (ie., a color) and each label ci has a
cost fi ≥ 0), we want to find a vertex cover V ′ minimizing its weight w(V ′) =

∑

v∈V ′ w(v)
plus the cost of the labels used by V ′ ie

∑

ci∈L(V ′) fi where L(V ′) = {L(v) : v ∈ V ′}.

Recall that a vertex cover of a graph G = (V,E) is a subset of vertices V ′ ⊆ V such that
∀e = (u, v) ∈ E, V ′∩{u, v} 6= ∅. Labeled optimization has been investigated for many graph
problems [3, 11, 9]. Clearly, the labeled weighted Vertex Cover problem is a particular case
of the Clustered Set Covering Problem.
As SCP is a particular case of the Clustered SCP where fk = 0 for all k = 1, . . . ,K (or
Clustered SCP is equivalent to solve SCP when J are the trivial partitions, i.e., either
K = m and Ji = {i} or K = 1 and J1 = {1, . . . ,m}), then the Clustered SCP is also
NP-hard. The approximation approach proposed in this paper extends in some way the
master-slave approach of [1] to more general fixed-charge covering problems.

2 Some complexity results

It is well known that SCP can be solved in polynomial time when ∆ = maxi≤m |Si| ≤ 2
(see for instance comment of problem [SP5] page 222 in [8]). For Clustered SCP, it is not
the case. It also depends on the structure of the clusters. For instance, Clustered SCP is
NP-hard even if ∆ = 1.

Lemma 1. Clustered SCP is NP-hard even if ∆ = 1.

Proof. The reduction is done from SCP. From an instance I = (C,S, c) of SCP where
S = {S1, . . . , Sm} and C = {1, . . . , n}, we build an instance I0 = (C0,S0, c0,K,J , f) of
Clustered-SCP by setting C0 = C, K = m, and replacing Sk = {i1, i2, . . . , i|Sk|} ∈ S,
for k = 1, . . . ,m, by |Sk| sets S(k,ij) = {ij} for j = 1, . . . , |Sk| in the Clustered-SCP
instance. Moreover, we set Jk = {(k, ij) : ij ∈ Sk}; Hence, the cluster set Fk is defined by
Fk = {S(k,ij) : ij ∈ Sk}. Finally, we set c0 = 0 and fk = c(Sk). Thus, the clusters play the
role of the sets of the SCP instance. In I0, each set contains only one element and any set
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cover S ′0 of I0 with clustered set value c̄0(S
′
0) can be converted into a set cover S ′ of I with

same value c̄0(S
′
0), which completes the proof.

When the size of each cluster is upper bounded by a constant, we first prove that
Clustered-SCP is equivalent to SCP.

Theorem 2. Assume that the size of each cluster is upper bounded by a constant, i.e.,
∀k ≤ K, |Jk| ≤ a. Then, Clustered-SCP is equivalent to approximate SCP.

Proof. Let I = (C,S, c) be an instance of SCP where S = {S1, . . . , Sm}. We build an
instance I0 = (C0,S0, c0,K,J , f) of Clustered-SCP by setting C0 = C, S0 = S, c0 = c,
K = m, J = {J1, . . . , Jm} where Jk = {k} (hence, the corresponding cluster set is given
by Fk = {Sk}) and fixed costs fk = 0 for k = 1, . . . ,K. Clearly, I0 is computed from I in
polynomial time and each cluster is upper bounded by a constant (a = 1). It is easy to see
that S ′ is a set cover of I with value c(S ′) iff S ′ is a set cover of I0 with clustered set value
c̄0(S

′) = c(S ′).

Now, let us prove that we can polynomially reduce Clustered-SCP when each cluster is
upper bounded by a constant to SCP. Let I = (C,S, c,K,J , f) be an instance of Clustered-
SCP where S = {S1, . . . , Sm}, J = {J1, . . . , JK} and ∀k ≤ K, |Jk| ≤ a for some constant a.
We build an instance I0 = (C0,S0, c0) of SCP as follows: C0 = C and for each Jk ∈ J , we
build 2|Jk|− 1 sets SA = ∪j∈ASj for A ⊆ Jk, A 6= ∅, with weight c0(SA) = fk +

∑

j∈A c(Sj).
In other words, we generate all non-emptyset subsets induced by a cluster, for every cluster.
Thus, S0 = {SA : ∃Jk ∈ J and A ⊆ Jk with A 6= ∅}. This instance I0 of SCP can be
constructed within 2am = O(m) time.

Note that Theorem 2 also holds when a = poly(log m) (i.e., ∀k ≤ K, |Jk| ≤ poly(log m)
where poly is any polynomial. We recall that δ = max{j : ∃Si1, . . . , Sij such that ∩j

p=1Sip 6=
∅} and ∆ = maxi≤m |Si|.

Corollary 3. Assume that each cluster is upper bounded by a constant. Then, Clustered-
SCP is APX-complete when ∆ and δ are upper bounded by constants.

Proof. The APX-completeness of SCP when ∆ and δ are upper bounded by constants
(for instance, when ∆ = 3 and δ = 2) is known from [12]. Hence, the result follows from
Theorem 2.

Before introducing in section 4 the main result of the paper, i.e. the log-approximability
of Clustered-SCP, we first need to approximate in section 3 another NP-hard problem, that
we call Minimum Cover-Ratio Problem (MCRP), which appears as a subproblem in the
general approximation algorithm for Clustered-SCP.

3 Approximation of the Minimum Cover-Ratio Problem

The Minimum Cover-Ratio Problem (MCRP) that appears as a subproblem in the Clustered-
SCP approximation algorithm is defined as follows.

Definition 1. Given two subsets I and J of elements, a cost function c : J → N, a positive
number f and binary data aij ∈ {0, 1} for (i, j) ∈ I×J , the Minimum Cover-Ratio Problem
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(MCRP) formulates as follows:

Minimize r(x) =
f+

∑

j∈J

cjxj

∑

i∈I

covi(x)

xj ∈ {0, 1}

where covi(x) = min(1;
∑

j∈J aijxj) is equal to 1 if x covers element i, 0 otherwise.

To our knowledge, the MCRP has never been studied before. If the fixed cost f is equal
to zero, then the problem is trivial since it suffices to select index j with minimum ratio
cj/

∑

i∈I aij , set xj = 1 and all other variables to zero for obtaining the optimal solution.
The general problem is NP-hard as shown in the following proposition 4.

Proposition 4. MCRP is NP-hard.

Proof. The reduction is from the Set Covering Problem (SCP). Consider an instance of SCP
such that the element set C = {1, . . . , n} is to be covered by S = {S1, . . . , Sm}. Construct
the MCRP instance by setting I = C, J = {1, . . . ,m}, aij = 1 if and only if i ∈ Sj, and
f = n

∑m
j=1 cj . Let x̄ (resp. x) denote an arbitrary MCRP solution covering exactly all n

(resp. at most n− 1) elements of I = C. We have

r(x) ≥
n

∑m
j=1 cj + c.x

n− 1

=

m
∑

j=1

cj +

∑m
j=1 cj

n− 1
+

c.x

n− 1

≥
m

∑

j=1

cj +

∑m
j=1 cj

n

=
f +

∑m
j=1 cj

n
≥ r(x̄)

Thus, an MCRP optimal solution necessarily satisfies that
∑

i∈I covi(x) = n, i.e. all
elements of I = C are covered, which means that an optimal SCP solution is found.

For approximating MCRP, we use existing approximation results for the Budgeted Max-
imum Coverage Problem (BMCP) defined in [10].

Definition 2. [10] Given two subsets I and J of elements, a cost function c : J → N,
a budget B > 0 and binary data aij ∈ {0, 1} for (i, j) ∈ I × J , the Budgeted Maximum
Coverage Problem (BMCP) is formulated as follows:

Maximize
∑

i∈I

covi(x)

s.t.
∑

j∈J

cjxj ≤ B

xj ∈ {0, 1}

where, again, covi(x) = min(1;
∑

j∈J aijxj).
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In [10], it is proved that there exists a polynomial-time algorithm APPROX-BMCP(B)
approximating BMCP with input budget bound B within performance ratio 1 − 1/e. We
derive from this result the following approximation result for MCRP.

Theorem 5. MCRP is approximable within performance ratio (1 + ǫ)(e/e − 1) in time
polynomial in both n and 1/ǫ.

Proof. Let cmin = min{cj : j ∈ J}, and

T =

⌈

ln(
∑

j∈J cj/cmin)

ln(1 + ǫ)

⌉

Set Bt = (1+ ǫ)tcmin for t = 0, 1, . . . , T , and remark that B0 = cmin, Bt = (1+ ǫ)Bt−1, and

BT = cmin exp
(

⌈

ln(
∑

j∈J cj/cmin)

ln(1 + ǫ)

⌉

ln(1 + ǫ)
)

≥ cmin exp
( ln(

∑

j∈J cj/cmin)

ln(1 + ǫ)
ln(1 + ǫ)

)

=
∑

j∈J

cj

As cmin ≤ Bt ≤
∑

j∈J cj there exists at least one t ∈ {0, . . . , T} such that Bt ≥
∑

j∈J

cjx
∗
j ,

where x∗ = (x∗
j ) is an optimal MCRP solution. Let t̂ denote the smallest index t verifying

the above condition, i.e.

t̂ = arg min
t∈{0,...,T}

{t : (1 + ǫ)tcmin ≥
∑

j∈J

cjx
∗
j}

By definition of t̂, we have:
∑

j∈J

cjx
∗
j ≤ (1 + ǫ)t̂cmin ≤ (1 + ǫ)

∑

j∈J

cjx
∗
j (5)

Now, consider the following algorithm.

Begin / Algorithm APPROX-MCRP /

For t = 0, 1, . . . , T
Bt ← (1 + ǫ)t cmin

xt ← APPROX-BMCP(Bt)
EndFor

Return x̄← mint=0,...,T
f+

∑

j∈J cjxt
j

∑

i∈I covi(xt)

End

We obtain from the fact that APPROX-BMCP(Bt) is a (1− 1
e
)-approximation for BMCP ([10]):

∑

i∈I

covi(x
t̂) ≥ (1−

1

e
)
∑

i∈I

covi(x
∗)

⇒
f + c.xt̂

∑

i∈I covi(xt̂)
≤ (

e

e− 1
)
f + (1 + ǫ)t̂cmin
∑

i∈I covi(x∗)

⇒ r(x̄) ≤ r(xt̂) ≤ (1 + ǫ)
e

e− 1
r(x∗) using (5)
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which concludes the proof of Theorem 5.

Based on the above approximation result for MCRP, we can now introduce the main
result for Clustered-SCP in next section.

4 Approximation of Clustered-SCP

The approximation algorithm for Clustered-SCP is based on an iterative approximate solv-
ing of the Minimum Cover-Ratio Problem (MCRP) introduced in section 3. The main
principle of the algorithm is to solve at each iteration K subproblems: for each cluster
k, we find a collection of subsets within Fk minimizing the ratio of the total cost of that
collection (including fixed cost) by the number of new elements covered by that collection.
Each subproblem is obviously a Minimum Cover-Ratio Problem and can be approximated
as shown in section 2. Then the best collection with minimum ratio among all clusters k
is added to the solution in a greedy way. The fixed cost of the chosen cluster is set to zero
and the process is iterated until all elements of C are covered.

Begin / Algorithm APPROX-CLUSTERED-SCP /

U ← C (subset of elements that remain to cover)
Sh ← ∅ (current solution)
Repeat

For k = 1, . . . ,K do

Sk ← collection of subsets returned by APPROX-MCRP for the MCRP subproblem:

min{rk(S
′) = fk+c(S′)

|(∪Sj∈S′Sj)∩U | : S ′ ⊆ Fk}

Endfor

l← arg min1≤k≤K rk(Sk)
Sh ← Sh ∪ {Sl}
fl ← 0
U ← U \ (∪Sj∈Sl

Sj)
Until U = ∅
Output Sh

End

An example of application of the above algorithm when the minimum-ratio subproblem is
solved to optimality, is given in figure 1.

Before analyzing the approximation ratio of the above algorithm, we introduce the
following lemma. For every element i ∈ C, let ρi = rl(Sl) where Sl is the collection of
subsets selected by the Clustered-SCP algorithm that covers element i for the first time
at some iteration l (in other words, element i has not been covered during the l − 1 first
iterations).

Lemma 6. Let ρi = rl(Sl) where Sl is the first collection of subsets selected by the Clustered-
SCP algorithm that covers element i, over all iterations. Then c̄(Sh) =

∑n
i=1 ρi.

Proof. Let lt (resp. Ut) denote selected index l (resp. set U) at iteration t of the algorithm,
t = 1, . . . , T , and flt the value of the fixed cost of cluster l at iteration t (ie., fl or 0). We
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3 4         2 3 4 6 Cluster 2, 

f2 = 12

Cluster 1,

f1 = 10

3 4         2 3 4 6 Cluster 2, 

f2 = 12

Cluster 1,

f1 = 10

3 4         2 3 4 6 Cluster 2, 

f2 = 12

Cluster 1,

f1 = 10

Iteration 1:

Min ratio =

(10+3+2)/8 = 1.87

(f1 is then set to 0)

figures above subsets

= subset costs

Iteration 2:

Min ratio =

(12+3+4)/5 = 3.80

(f2 is then set to 0)

STOP: all elements

are covered

Figure 1: Example of application of APPROX-CLUSTERED-SCP algorithm with minimum-ratio
MCRP subproblem solved to optimality.

have:

c̄(Sh) =
T

∑

t=1

c(Slt) + flt

=

T
∑

t=1

rlt(Slt)× | ∪Sj∈Slt
Sj ∩ Ut|

=
n

∑

i=1

{rlt(Slt) : t is the first iteration where i is covered}

=

n
∑

i=1

ρi

Theorem 7. Algorithm APPROX-CLUSTERED-SCP approximates the Clustered SCP within
ratio (1 + ǫ) e

e−1H(q), where q = max1≤k≤K | ∪Sj∈Fk
Sj| and H(q) =

∑q
i=1

1
i

is the q-th
harmonic number (note that q ≤ n).

Proof. Let I = (C,S, c,K,J , f) be an instance of Clustered-SCP where S = {S1, . . . , Sm},
J = {J1, . . . , JK}. Let S∗ denote an optimal solution for the Clustered SCP, K∗ = {k :
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S∗ ∩ Fk 6= ∅}, S
∗
k = S∗ ∩ Fk, and J∗

k = {j : Sj ∈ S
∗
k}. Hence, S∗ = {Sj : j ∈ ∪k∈K∗J∗

k}.
Transform every subset Sj ∈ S

∗ into S′
j ⊂ Sj such that no element i belongs to two different

subsets S′
j and S′

j′ (if so, remove the element from other subsets until it appears only once
in a subset). In other words, {S′

j : j ∈ ∪k∈K∗J∗
k} is a partition of C. Let nk = |{∪j∈J∗

k
S′

j}|
and re-order these nk elements as ik,1, ik,2, . . . , ik,nk

so that there are picked in that order
by algorithm APPROX-CLUSTERED-SCP. Recall that ρik,s

is the value of rk(Sk) when element
ik,s has been covered for the first time by algorithm APPROX-CLUSTERED-SCP. Since in the
worst case, elements ik,1, . . . , ik,s−1 have been covered during some previous iterations, we
have by Theorem 5,

ρik,s
≤ (1 + ǫ)

e

e− 1

fk +
∑

j∈J∗
k
cj

nk − s + 1
for k ∈ K∗, s = 1, . . . , nk (6)

We deduce from lemma 6 that

c̄(Sh) =

n
∑

i=1

ρi

=
∑

k∈K∗

∑

j∈J∗
k

∑

i∈S′
j

ρi

=
∑

k∈K∗

nk
∑

s=1

ρik,s

≤ (1 + ǫ)
e

e− 1

∑

k∈K∗

nk
∑

s=1

fk +
∑

j∈J∗
k
cj

nk − s + 1
by (6)

= (1 + ǫ)
e

e− 1

∑

k∈K∗

H(nk)× (fk +
∑

j∈J∗
k

cj)

≤ (1 + ǫ)
e

e− 1
H(q)

∑

k∈K∗



fk +
∑

Sj∈J∗
k

cj





= (1 + ǫ)
e

e− 1
H(q)c̄(S∗)

which ends the proof.

5 Conclusion

We have designed a polynomial-time algorithm achieving a logarithmic approximation ratio
of (1+ǫ)(e/e−1)H(q) ≤ (1+ǫ)(e/e−1)(1+ln q), with q ≤ n, for the Clustered Set Covering
Problem. As the Set Covering Problem is a particular case of Clustered Set Covering and
SCP cannot be approximated within a better ratio than (1− ǫ) ln n [7], the achieved ratio
is asymptotically tight. We believe this approach could be extended to various fixed-cost
optimization problems, not only for covering problems. Finally, an open problem is to
design classes of NP-hard optimization problems for which the fixed-cost variant conserves
in some way the approximability properties of the original problem.
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[3] T. Brüggemann, J. Monnot and G. J. Woeginger. Local Search for the Minimum Label
Spanning Tree Problem with Bounded Color Classes. Operations Research Letters 31:3
(2003) 195-201.
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