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We define an NP-hard clustered variant of the Set Covering Problem where subsets are partitioned into K clusters and a fixed cost is paid for selecting at least one subset in a given cluster. We show that the problem is approximable within ratio (1 + ǫ)(e/e -1)H(q), where q is the maximum number of elements covered by a cluster and H(q) = q i=1 1 i .

Problem statement

In the classical Set Covering Problem (SCP), we are given a set of elements C = {1, . . . , n}, a collection S = {S 1 , . . . , S m } ⊆ 2 C of subsets of C covering C and a non-negative weight c(S j ) ≥ 0 for each set S j ∈ S. The goal is to find a set cover S ′ = {S j 1 , . . . , S jt } ⊆ S, verifying ∪ t l=1 S j l = C, and minimizing c(S ′ ) = t l=1 c(S j l ). This problem has been widely studied by the computer science community and the main results given on it are the following: SCP is NP-hard, even in the unweighted case, i.e., c(S j ) = 1 ∀j = 1, . . . , m [START_REF] Garey | Computers and intractability. A guide to the theory of NP-completeness[END_REF]. SCP is H(∆)-approximable where H(∆) = ∆ i=1 1 i and ∆ is the maximum size of a set of S, i.e., ∆ = max j≤m |S j | [START_REF]A greedy-heuristic for the set covering problem[END_REF]; this gives a (1 + ln n)-approximation for SCP since ∆ ≤ n and H(n) ≤ 1 + ln n. On the other hand, SCP is not (1ε) ln n-approximable for every ε > 0 [START_REF] Feige | A threshold of ln n for approximating set cover[END_REF] closing the gap between positive and negative results on this problem. Finally, the restriction of SCP where ∆ and δ are upper bounded by some constants is APX-complete [START_REF] Papadimitriou | Optimization, approximation, and complexity classes[END_REF]; here δ is the maximum number of sets of S containing a given element of C, i.e., δ = max{p : ∃S j 1 , . . . , S jp such that ∩ p l=1 S j l = ∅}. We define the following variant of SCP, called Clustered Set Covering Problem (Clustered-SCP). Let C = {1, . . . , n} be a set of elements and S = {S 1 , . . . , S m } be a collection of subsets of C. A positive cost c j = c(S j ) is associated with every subset S j ∈ S. Moreover, we assume that the index set J = {1, . . . , m} is partitioned into K disjoint subsets

J = {J k : k = 1, . . . , K}, i.e., ∪ K k=1 J k = J and J k ∩ J k ′ = ∅ for k = k ′ . For k = 1, . . . , K, cluster F k ⊂ S is defined by F k = {S j ∈ S : j ∈ J k },
and a fixed-cost f k ≥ 0 is paid as soon as at least one subset is selected within cluster F k for k = 1, . . . , K. The Clustered Set Covering Problem is to cover all elements of C by a collection of subsets S ′ ⊂ S minimizing the sum of the costs of the selected subsets and the fixed costs. In other words, we want to find a set cover S ′ minimizing c(S ′ ) plus the cost of the clusters used in S ′ , i.e., c(S ′ ) = c(S ′ ) + k:S ′ ∩F k =∅ f k ; to simplify, such a value c(S ′ ) will be called the clustered set value of S ′ . The problem can be formulated as the following Integer Linear Program:

Minimize K k=1 f k y k + m j=1 c j x j (1) s.t. m j=1 a ij x j ≥ 1 for i = 1, . . . , n (2) 
y k ≥ x j for k = 1, . . . , K, j ∈ J k (3) x j , y k ∈ {0, 1} (4) 
where binary data a ij = 1 iff i ∈ S j . Various minimum-cost multi-commodity flow problems in transportation planning can be formulated as Clustered-SCP. This is the case for the Crew Pairing problem in air transportation when crews are partitioned into clusters k = 1, . . . , K according to their assigned airport basis for example ( [START_REF] Desaulniers | Crew Pairing at Air France[END_REF][START_REF] Barnhart | Applications of Operations Research in the Air Transport Industry[END_REF]), or for fleet scheduling problems when vehicles or planes are of different types k = 1, . . . , K ( [START_REF] Barnhart | Applications of Operations Research in the Air Transport Industry[END_REF]), and a fixed cost is paid for using a given resource type. Also consider the labeled weighted Vertex Cover problem defined as follows: given a simple graph G = (V, E) where each vertex v ∈ V has a weight w(v) ≥ 0 and a label L(v) ∈ {c 1 , . . . , c K } (ie., a color) and each label c i has a cost f i ≥ 0), we want to find a vertex cover V ′ minimizing its weight w(V ′ ) = v∈V ′ w(v) plus the cost of the labels used by

V ′ ie c i ∈L(V ′ ) f i where L(V ′ ) = {L(v) : v ∈ V ′ }. Recall that a vertex cover of a graph G = (V, E) is a subset of vertices V ′ ⊆ V such that ∀e = (u, v) ∈ E, V ′ ∩{u, v} = ∅.
Labeled optimization has been investigated for many graph problems [START_REF] Brüggemann | Local Search for the Minimum Label Spanning Tree Problem with Bounded Color Classes[END_REF][START_REF] Monnot | The Labeled perfect matching in bipartite graphs[END_REF][START_REF] Hassin | Approximation Algorithms and Hardness Results for Labeled Connectivity Problems[END_REF]. Clearly, the labeled weighted Vertex Cover problem is a particular case of the Clustered Set Covering Problem. As SCP is a particular case of the Clustered SCP where f k = 0 for all k = 1, . . . , K (or Clustered SCP is equivalent to solve SCP when J are the trivial partitions, i.e., either K = m and J i = {i} or K = 1 and J 1 = {1, . . . , m}), then the Clustered SCP is also NP-hard. The approximation approach proposed in this paper extends in some way the master-slave approach of [START_REF] Alfandari | Master-slave strategy and polynomial approximation[END_REF] to more general fixed-charge covering problems.

Some complexity results

It is well known that SCP can be solved in polynomial time when ∆ = max i≤m |S i | ≤ 2 (see for instance comment of problem [SP5] page 222 in [START_REF] Garey | Computers and intractability. A guide to the theory of NP-completeness[END_REF]). For Clustered SCP, it is not the case. It also depends on the structure of the clusters. For instance, Clustered SCP is

NP-hard even if ∆ = 1. Lemma 1. Clustered SCP is NP-hard even if ∆ = 1.
Proof. The reduction is done from SCP. From an instance I = (C, S, c) of SCP where S = {S 1 , . . . , S m } and C = {1, . . . , n}, we build an instance

I 0 = (C 0 , S 0 , c 0 , K, J , f ) of Clustered-SCP by setting C 0 = C, K = m, and replacing S k = {i 1 , i 2 , . . . , i |S k | } ∈ S, for k = 1, . . . , m, by |S k | sets S (k,i j ) = {i j } for j = 1, . . . , |S k | in the Clustered-SCP instance. Moreover, we set J k = {(k, i j ) : i j ∈ S k }; Hence, the cluster set F k is defined by F k = {S (k,i j ) : i j ∈ S k }.
Finally, we set c 0 = 0 and f k = c(S k ). Thus, the clusters play the role of the sets of the SCP instance. In I 0 , each set contains only one element and any set cover S ′ 0 of I 0 with clustered set value c0 (S ′ 0 ) can be converted into a set cover S ′ of I with same value c0 (S ′ 0 ), which completes the proof.

When the size of each cluster is upper bounded by a constant, we first prove that Clustered-SCP is equivalent to SCP.

Theorem 2. Assume that the size of each cluster is upper bounded by a constant, i.e., ∀k ≤ K, |J k | ≤ a. Then, Clustered-SCP is equivalent to approximate SCP.

Proof. Let I = (C, S, c) be an instance of SCP where S = {S 1 , . . . , S m }. We build an instance I 0 = (C 0 , S 0 , c 0 , K, J , f ) of Clustered-SCP by setting C 0 = C, S 0 = S, c 0 = c, K = m, J = {J 1 , . . . , J m } where J k = {k} (hence, the corresponding cluster set is given by F k = {S k }) and fixed costs f k = 0 for k = 1, . . . , K. Clearly, I 0 is computed from I in polynomial time and each cluster is upper bounded by a constant (a = 1). It is easy to see that S ′ is a set cover of I with value c(S ′ ) iff S ′ is a set cover of I 0 with clustered set value c0 (S ′ ) = c(S ′ ). Now, let us prove that we can polynomially reduce Clustered-SCP when each cluster is upper bounded by a constant to SCP. Let I = (C, S, c, K, J , f ) be an instance of Clustered-SCP where S = {S 1 , . . . , S m }, J = {J 1 , . . . , J K } and ∀k ≤ K, |J k | ≤ a for some constant a. We build an instance I 0 = (C 0 , S 0 , c 0 ) of SCP as follows: C 0 = C and for each J k ∈ J , we build 2

|J k | -1 sets S A = ∪ j∈A S j for A ⊆ J k , A = ∅, with weight c 0 (S A ) = f k + j∈A c(S j ).
In other words, we generate all non-emptyset subsets induced by a cluster, for every cluster. Thus, S 0 = {S A : ∃J k ∈ J and A ⊆ J k with A = ∅}. This instance I 0 of SCP can be constructed within 2 a m = O(m) time.

Note that Theorem 2 also holds when a = poly(log m) (i.e., ∀k ≤ K, |J k | ≤ poly(log m) where poly is any polynomial. We recall that δ = max{j : ∃S i 1 , . . . , S i j such that ∩ j p=1 S ip = ∅} and ∆ = max i≤m |S i |.

Corollary 3. Assume that each cluster is upper bounded by a constant. Then, Clustered-SCP is APX-complete when ∆ and δ are upper bounded by constants.

Proof. The APX-completeness of SCP when ∆ and δ are upper bounded by constants (for instance, when ∆ = 3 and δ = 2) is known from [START_REF] Papadimitriou | Optimization, approximation, and complexity classes[END_REF]. Hence, the result follows from Theorem 2.

Before introducing in section 4 the main result of the paper, i.e. the log-approximability of Clustered-SCP, we first need to approximate in section 3 another NP-hard problem, that we call Minimum Cover-Ratio Problem (MCRP), which appears as a subproblem in the general approximation algorithm for Clustered-SCP.

Approximation of the Minimum Cover-Ratio Problem

The Minimum Cover-Ratio Problem (MCRP) that appears as a subproblem in the Clustered-SCP approximation algorithm is defined as follows.

Definition 1. Given two subsets I and J of elements, a cost function c : J → N, a positive number f and binary data a ij ∈ {0, 1} for (i, j) ∈ I × J, the Minimum Cover-Ratio Problem (MCRP) formulates as follows:

Minimize r(x) = f + j∈J c j x j i∈I cov i (x) x j ∈ {0, 1}
where cov i (x) = min(1; j∈J a ij x j ) is equal to 1 if x covers element i, 0 otherwise.

To our knowledge, the MCRP has never been studied before. If the fixed cost f is equal to zero, then the problem is trivial since it suffices to select index j with minimum ratio c j / i∈I a ij , set x j = 1 and all other variables to zero for obtaining the optimal solution. The general problem is NP-hard as shown in the following proposition 4.

Proposition 4. MCRP is NP-hard.

Proof. The reduction is from the Set Covering Problem (SCP). Consider an instance of SCP such that the element set C = {1, . . . , n} is to be covered by S = {S 1 , . . . , S m }. Construct the MCRP instance by setting I = C, J = {1, . . . , m}, a ij = 1 if and only if i ∈ S j , and f = n m j=1 c j . Let x (resp. x) denote an arbitrary MCRP solution covering exactly all n (resp. at most n -1) elements of I = C. We have

r(x) ≥ n m j=1 c j + c.x n -1 = m j=1 c j + m j=1 c j n -1 + c.x n -1 ≥ m j=1 c j + m j=1 c j n = f + m j=1 c j n ≥ r(x)
Thus, an MCRP optimal solution necessarily satisfies that i∈I cov i (x) = n, i.e. all elements of I = C are covered, which means that an optimal SCP solution is found.

For approximating MCRP, we use existing approximation results for the Budgeted Maximum Coverage Problem (BMCP) defined in [START_REF] Khuller | The budgeted maximum coverage problem[END_REF]. Definition 2. [START_REF] Khuller | The budgeted maximum coverage problem[END_REF] Given two subsets I and J of elements, a cost function c : J → N, a budget B > 0 and binary data a ij ∈ {0, 1} for (i, j) ∈ I × J, the Budgeted Maximum Coverage Problem (BMCP) is formulated as follows:

Maximize i∈I cov i (x) s.t. j∈J c j x j ≤ B x j ∈ {0, 1}
where, again, cov i (x) = min(1; j∈J a ij x j ).

In [START_REF] Khuller | The budgeted maximum coverage problem[END_REF], it is proved that there exists a polynomial-time algorithm APPROX-BMCP(B) approximating BMCP with input budget bound B within performance ratio 1 -1/e. We derive from this result the following approximation result for MCRP.

Theorem 5. MCRP is approximable within performance ratio (1 + ǫ)(e/e -1) in time polynomial in both n and 1/ǫ.

Proof. Let c min = min{c j : j ∈ J}, and

T = ln( j∈J c j /c min ) ln(1 + ǫ)
Set B t = (1 + ǫ) t c min for t = 0, 1, . . . , T , and remark that B 0 = c min , B t = (1 + ǫ)B t-1 , and

B T = c min exp ln( j∈J c j /c min ) ln(1 + ǫ) ln(1 + ǫ) ≥ c min exp ln( j∈J c j /c min ) ln(1 + ǫ) ln(1 + ǫ) = j∈J c j
As c min ≤ B t ≤ j∈J c j there exists at least one t ∈ {0, . . . , T } such that

B t ≥ j∈J c j x * j ,
where x * = (x * j ) is an optimal MCRP solution. Let t denote the smallest index t verifying the above condition, i.e.

t = arg min t∈{0,...,T } {t : (1 + ǫ) t c min ≥ j∈J c j x * j }
By definition of t, we have:

j∈J c j x * j ≤ (1 + ǫ) tc min ≤ (1 + ǫ) j∈J c j x * j (5) 
Now, consider the following algorithm.

Begin / Algorithm APPROX-MCRP / For t = 0, 1, . . . , T B t ← (1 + ǫ) t c min x t ← APPROX-BMCP(B t ) EndFor Return x ← min t=0,...,T f + j∈J c j x t j i∈I cov i (x t )

End

We obtain from the fact that APPROX-BMCP(B t ) is a (1-1 e )-approximation for BMCP ( [START_REF] Khuller | The budgeted maximum coverage problem[END_REF]):

i∈I cov i (x t) ≥ (1 - 1 e ) i∈I cov i (x * ) ⇒ f + c.x t i∈I cov i (x t) ≤ ( e e -1 ) f + (1 + ǫ) tc min i∈I cov i (x * ) ⇒ r(x) ≤ r(x t) ≤ (1 + ǫ) e e -1
r(x * ) using [START_REF] Cordeau | Benders decomposition for simultaneous aircraft routing and crew scheduling[END_REF] which concludes the proof of Theorem 5.

Based on the above approximation result for MCRP, we can now introduce the main result for Clustered-SCP in next section.

Approximation of Clustered-SCP

The approximation algorithm for Clustered-SCP is based on an iterative approximate solving of the Minimum Cover-Ratio Problem (MCRP) introduced in section 3. The main principle of the algorithm is to solve at each iteration K subproblems: for each cluster k, we find a collection of subsets within F k minimizing the ratio of the total cost of that collection (including fixed cost) by the number of new elements covered by that collection. Each subproblem is obviously a Minimum Cover-Ratio Problem and can be approximated as shown in section 2. Then the best collection with minimum ratio among all clusters k is added to the solution in a greedy way. The fixed cost of the chosen cluster is set to zero and the process is iterated until all elements of C are covered.

Begin / Algorithm APPROX-CLUSTERED-SCP / U ← C (subset of elements that remain to cover) S h ← ∅ (current solution) Repeat For k = 1, . . . , K do S k ← collection of subsets returned by APPROX-MCRP for the MCRP subproblem:

min{r k (S ′ ) = f k +c(S ′ ) |(∪ S j ∈S ′ S j )∩U | : S ′ ⊆ F k } Endfor l ← arg min 1≤k≤K r k (S k ) S h ← S h ∪ {S l } f l ← 0 U ← U \ (∪ S j ∈S l S j ) Until U = ∅ Output S h End
An example of application of the above algorithm when the minimum-ratio subproblem is solved to optimality, is given in figure 1.

Before analyzing the approximation ratio of the above algorithm, we introduce the following lemma. For every element i ∈ C, let ρ i = r l (S l ) where S l is the collection of subsets selected by the Clustered-SCP algorithm that covers element i for the first time at some iteration l (in other words, element i has not been covered during the l -1 first iterations). Lemma 6. Let ρ i = r l (S l ) where S l is the first collection of subsets selected by the Clustered-SCP algorithm that covers element i, over all iterations. Then c(S h ) = n i=1 ρ i .

Proof. Let l t (resp. U t ) denote selected index l (resp. set U ) at iteration t of the algorithm, t = 1, . . . , T , and f lt the value of the fixed cost of cluster l at iteration t (ie., f l or 0). We

S * ∩ F k = ∅}, S * k = S * ∩ F k , and J * k = {j : S j ∈ S * k }. Hence, S * = {S j : j ∈ ∪ k∈K * J * k }.
Transform every subset S j ∈ S * into S ′ j ⊂ S j such that no element i belongs to two different subsets S ′ j and S ′ j ′ (if so, remove the element from other subsets until it appears only once in a subset). In other words, {S ′ j : j ∈ ∪ k∈K * J * k } is a partition of C. Let n k = |{∪ j∈J * k S ′ j }| and re-order these n k elements as i k,1 , i k,2 , . . . , i k,n k so that there are picked in that order by algorithm APPROX-CLUSTERED-SCP. Recall that ρ i k,s is the value of r k (S k ) when element i k,s has been covered for the first time by algorithm APPROX-CLUSTERED-SCP. Since in the worst case, elements i k,1 , . . . , i k,s-1 have been covered during some previous iterations, we have by Theorem 5, which ends the proof.

Conclusion

We have designed a polynomial-time algorithm achieving a logarithmic approximation ratio of (1+ǫ)(e/e-1)H(q) ≤ (1+ǫ)(e/e-1)(1+ln q), with q ≤ n, for the Clustered Set Covering Problem. As the Set Covering Problem is a particular case of Clustered Set Covering and SCP cannot be approximated within a better ratio than (1ǫ) ln n [START_REF] Feige | A threshold of ln n for approximating set cover[END_REF], the achieved ratio is asymptotically tight. We believe this approach could be extended to various fixed-cost optimization problems, not only for covering problems. Finally, an open problem is to design classes of NP-hard optimization problems for which the fixed-cost variant conserves in some way the approximability properties of the original problem.

ρ

  i k,s ≤ (1 + ǫ) e e -1 f k + j∈J * k c j n ks + 1 for k ∈ K * , s = 1, . . . , n k
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, where q = max 1≤k≤K | ∪ S j ∈F k S j | and H(q) = q i=1 1 i is the q-th harmonic number (note that q ≤ n).

Proof. Let I = (C, S, c, K, J , f ) be an instance of Clustered-SCP where S = {S 1 , . . . , S m }, J = {J 1 , . . . , J K }. Let S * denote an optimal solution for the Clustered SCP, K * = {k :