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Schwarz method for dual contact problems

Lori Badea1 · Frédéric Lebon2

Abstract In this paper, we analyze the convergence of the Schwarz method for contact prob-
lems with Tresca friction formulated in stress variables. In this dual variable, the problem is
written as a variational inequality in the space Hdiv(�), � being the domain of the problem.
The method is introduced as a subspace correction algorithm. In this case, the global con-
vergence and the error estimation of the method are already proved in the literature under
some assumptions. However, the checking of these hypotheses in the space Hdiv(�) cannot
be proved easily, as for the space H1(�). The main result of this paper is to prove that these
hypotheses are verified for this particular variational inequality. As in the case of the clas-
sical problems formulated in primal variables, the error estimate we obtain depends on the
overlapping parameter of the domain decomposition.

Keywords Contact problems · Dual formulation · Domain decomposition methods ·
Schwarz method · Subspace correction methods · Variational inequalities

Mathematics Subject Classification 65N55 · 65K15 · 74M10 · 74M15

1 Introduction

Traditionally, frictional contact problems are formulated in terms of the displacements (primal
variables) (Cocu 1984; Raous et al. 1988; Cocou et al. 1996; Lebon 2003) or of forces-
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displacements (mixed variables) (Alart and Curnier 1991; Alart and Lebon 1995; Wriggers
2002). There also exists a third kind of formulation in terms of stresses (dual variables)
(Telega 1991). This formulation has given numerical developments in the last few years
(Bisegna et al. 2001). This approach is little used but it has a lot of advantages in point of
view of numerical computation. The first advantage is that the stress tensor is the variable of
interest in the mechanical design and is directly obtained by this formulation. Another one
is the capability of deriving an a posteriori error estimator (Kuss and Lebon 2011). Also, in
the dual case, the problem is formulated as a variational inequality (of the first kind) which
is more suitable for the numerical point of view than the variational inequality of the second
kind in the primal case which contains a non-differentiable term.In addition, the numerical
experiments have shown that the linear systems in dual variable are better conditioned than
those in primal variables (Bisegna et al. 2004). On the other hand, this approach is less used
than the primal or mixed ones because of numerical difficulties related to the finite elements
which have to be used (Kuss and Lebon 2009).

In the case of the Schwarz method, one of the difficulties is even the formulation of the
method. In the primal case, the displacements are thought in H1 and they have traces on
the boundary of the domain, and the Schwarz method transfers, during the iteration, the
solution values on a subdomain toward the solution on the neighboring subdomains. But,
the dual approach utilizes the space Hdiv where only the normal trace of the stresses exists.
This difficulty has been avoided by interpreting the Schwarz method as a subspace correction
method. In this case, we have to find corrections in appropriate subspaces which may not
have any connection with the notion of trace.

We prove in this paper that, for the weak formulation of the dual contact problem with
Tresca friction, the Schwarz method converges and also gives an error estimate depending
on the domain decomposition parameter. It is well known that the solution of the contact
problem with Coulomb friction can be obtained by a fixed point procedure in which we solve
a contact problem with Tresca friction at each iteration step (Licht et al. 1991). The study
of the method for the discretized problem by finite elements, the one-level or multi-level
methods, will be treated in a subsequent paper.

The paper is organized as follows. In Sect. 2, the mechanical and the weak formulations
of the problem in dual variables are introduced. Section 3 is dedicated to the study of the
Schwarz algorithm. As we said above, using the primal variables, the problem is formulated
as a variational inequality of the second kind which contains a non-differentiable term. One-
and two-level Schwarz methods for such formulations of the frictional contact problems have
been given in Badea and Krause (2012). When the problem is formulated in dual variables,
we get a simply variational inequality (of the first kind) and we shall use the results in Badea
(2003) to prove the convergence of themethod. For an abstract theory of Schwarzmethodswe
recommend (Toselli andWidlund 2005). The algorithm is introduced as a subspace correction
method and we rewrite a general convergence theorem from Badea (2003) in terms of the
considered framework. We prove that the assumption made in the convergence theorem is
verified and derive the constants in the error estimation. Finally, summing up the previous
results we show that the method is geometrically convergent with a convergence rate which
depends on the domain decomposition parameter.

2 Statement of the problem

We consider an elastic body occupying the open bounded set� ⊂ R
d , (d = 2, 3) , with suffi-

ciently smoothboundary.Theboundary is divided in three openparts�D, �F and�C such that
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∂� = �̄D ∪ �̄F ∪ �̄C and we assume that the measure of �D is positive, meas (�D) > 0. We
denote u = (ui )1≤i≤d the displacement field, ε = (εi j (u))1≤i, j≤d , εi j (u) = 1

2 (ui, j + u j,i ),

the linearized strain tensor and σ = (σi j (u))1≤i, j≤d , σi j (u) = ∑d
k,l=1 Ai jklεkl(u) the

Cauchy stress tensor. Operator A is bounded and verifies usual symmetry and positivity
conditions. We denote S = A−1 the compliance tensor. This tensor has the following prop-
erties of symmetry, Si jkl = Skli j = S jilk , and of positivity, i.e. there exists α > 0 such that
∑d

i, j=1
∑d

k,l=1 Si jklτi jτkl ≥ α
∑d

i, j=1 τi jτi j .
The body is in receding contact with a rigid obstacle on the part of the boundary �C . The

contact is with friction and is represented by the unilateral contact law of Tresca.
On the contact boundary, displacement and stress vector are decomposed introducing the

external normal unit vector n to �:

uN = u · n, uT = u − uN · n
σN = (σn) · n, σT = σn − σNn

(2.1)

The body is submitted to a body force density f in � and surface force density g on

�F . We suppose f ∈ (L2(�))
d
and g ∈ (L2(�F ))

d
. On �D the displacement is given.

Classically, the mechanical problem of an elastic body in Coulomb frictional contact with a
rigid obstacle is given by:

Problem (P) Find the displacement field u and the stress field σ such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ = Aε(u) in �

div σ + f = 0 in �

u = u0 on �D

σ · n = g on �F

uN ≤ 0, σN ≤ 0, uNσN = 0 on �C

|σT | ≤ −μσ ∗
N on �C and

{ |σT | <−μσ ∗
N ⇒ uT =0

|σT |=−μσ ∗
N ⇒ ∃λ ≥ 0, uT = −λσT

(2.2)

where μ is the friction coefficient (bounded and positive) and ∗ is the normal smoothness

operator. This operator ∗ is linear and continuous from H− 1
2 (�C ) to L2(�C ). Usually, it is

taken as a convolution, τ ∗ = ω ∗ τ , τ ∈ H−1/2(�C ), where ω ∈ D(−δ, δ),
∫ δ

−δ
ω = 1, with

δ ∈ R, δ > 0, but other choices can be made (see Badea and Krause 2012, for instance). We
suppose that u0 ∈ (H

1
2 (�D))d , and define the sets of statically admissible fields:

H = Hdiv(�) = {τ = (τi j )1≤i, j≤d : τi j = τ j i , 1 ≤ i, j ≤ d, τ ∈ (L2(�))d×d , divτ ∈ (L2(�))d }
H f,g = {σ ∈ H ; div σ + f = 0 in � , σn = g on �F }
�τ = {σ ∈ H f,g; σN ≤ 0 , |σT | ≤ −μτN on �C }

(2.3)

where τ ∈ (L2(�C ))d .
The case of the Tresca friction is a particular case of the last equation in (2.2), where the

normal stress σ ∗
N is replaced by a given η ∈ (L2(�C ))d . Note that the solution of the contact

problem with Coulomb friction can be obtained by a fixed point procedure in which we solve
a contact problem with Tresca friction at each iteration Licht et al. (1991). The stress field
variational formulation of (P) with Tresca friction law is (see Telega 1991, for instance):

Problem (Ps). Find the stress field σ : � → H f,g such that
{

σ ∈ �η

s(σ, τ − σ) ≥ l(τ − σ) for any τ ∈ �η
(2.4)
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with s(σ, τ ) = ∫
�
Sσ : τdx and l(τ ) = ∫

�D
u0 ·τnds. From the properties of the operator S,

we can conclude that the bilinear form s is symmetric and there exist two constants α, β > 0
such that, for any σ, τ ∈ H f,g , we have

α ‖τ − σ‖2Hdiv(�) ≤ s(τ − σ, τ − σ) and
s(σ, τ ) ≤ β||σ ||Hdiv(�)||τ ||Hdiv(�)

(2.5)

where

‖τ‖2Hdiv(�) =
∫

�

(τ : τ + divτ · divτ).

Also, there exists M > 0 such that

l(τ ) ≤ M ‖τ‖Hdiv(�) (2.6)

for any τ ∈ H . In view of the above properties (2.5) and (2.6) of the bilinear form s and
of the functional l, we notice that problem (2.4) has a unique solution σ ∈ �η which also
minimizes the functional I (τ ) = 1

2 s(τ, τ ) − l(τ ) over all τ ∈ �η. These properties of s and
l are also needed in the convergence proof of the Schwarz method.

3 Schwarz algorithm

Let us consider a domain decomposition of �,

� = ∪m
i=1�i (3.7)

with an overlapping parameter δ, and we assume that it has the property

meas(∂(�i ∩ (∪m
j=i+1� j )) ∩ �D) > 0 for any i = 1, . . . ,m − 1 (3.8)

This is an existence condition for the solutions of some auxiliary problems used in the
proof of Lemma 3.1 to prove that Assumption 3.1 below is satisfied. We associate to this
decomposition the spaces

Hi
0,0 = {σ ∈ Hdiv(�) : div σ = 0 in �i , σ = 0 on �\�i

σ|�i n = 0 on (� ∩ ∂�i ) ∪ (�F ∩ ∂�i )}, i = 1, . . . ,m

We point out that the elements of Hi
0,0 are elements of H0,0(�)which vanish on�\�i .We

introduce the Schwarz algorithm, written as subspace correction method, for the solution of
problem (2.4) as

Algorithm 3.1 We start the algorithm with an arbitrary σ 0 ∈ �η. At iteration n+1, having
σ n ∈ �η, n ≥ 0, we compute sequentially for i = 1, . . . ,m, the local corrections σ n+1

i as
the solution of the variational inequalities

σ n+1
i ∈ Hi

0,0, σ n+ i−1
m + σ n+1

i ∈ �η : s(σ n+ i−1
m + σ n+1

i , σi − σ n+1
i ) ≥ l(σi − σ n+1

i )

for any σi ∈ Hi
0,0, σ n+ i−1

m + σi ∈ �η (3.9)

and then we update σ n+ i
m = σ n+ i−1

m + σ n+1
i .

4



In this algorithm, we can take l(σi − σ n+1
i ) = ∫

�D
u0 · (σi − σ n+1

i )nds in the place of
∫
�D∩∂�i

u0 · (σi −σ n+1
i )nds because σi −σ n+1

i vanishes outside�i . The convergence of the
above algorithm is obtained from a more general convergence result in Badea (2003) given
for algorithms in a reflexive Banach space. In this general framework, the convergence is
proved by making an assumption and we have to show that it holds true in order to prove the
convergence of a certain particular algorithm. In the case of our algorithm, this assumption
is written below and the main result of the paper is to show that it is satisfied for the spaces
introduced above. We point out that this assumption has only a theoretical value, the fact that
it is satisfied is a sufficient condition for the convergence of the algorithm, but it is not used
in the practical application of the algorithm.

Assumption 3.1 There exists a constant C0 such that for any σ, τ ∈ �η and σi ∈ Hi
0,0,

σ + ∑i
j=1 σ j ∈ �η, i = 1, . . . ,m, there exist τi ∈ Hi

0,0, i = 1, . . . ,m, satisfying

σ +
i−1∑

j=1

σ j + τi ∈ �η for i = 1, . . . ,m, (3.10)

τ − σ =
m∑

i=1

τi , (3.11)
m∑

i=1

‖τi‖2Hdiv(�) ≤ C0

(

‖τ − σ‖2Hdiv(�) +
m∑

i=1

‖σi‖2Hdiv(�)

)

. (3.12)

We have the following result concerning the convergence of the algorithm.

Theorem 3.1 We suppose that Assumption 3.1 holds. Then, if σ is the solution of problem
(2.4) and σ n, n ≥ 0, are its approximations obtained from Algorithm 3.1, we have the
following error estimation

||σ n − σ ||2Hdiv(�) ≤ C

(
C̃

C̃ + 1

)n

where C and C̃ are two positive constants, C depends on σ , σ 0 and α, and C̃ depends on the
constants α, β, the number m of subdomains, and is an increasing function of the constant
C0 introduced in Assumption 3.1.

Proof Since the bilinear form s and the linear functional l satisfy (2.5) and (2.6), we can
apply Theorem 2 in Badea (2003) to get the convergence of Algorithm 3.1 and the error
estimation. Constant C̃ can be taken as

C̃ = 2βm

α(1 − κ)

[

1 + 2C0 + 2βm

ακ
C2
0

]

, (3.13)

where 0 < κ < 1 is chosen such that C̃ has a minimum value. Also, we can take

C = 2

α

[
1

2
s(σ 0, σ 0) + l(σ 0) − 1

2
s(σ, σ ) − l(σ )

]

. (3.14)

where σ 0 is the starting approximation in algorithms and σ is the solution of problem (2.4).
�

Constants α and β come from problem (2.4) and are given in (2.5). Also, the numberm of
the subspaces can be associated with the number of colors needed to mark the subdomains
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such that the subdomains with the same color do not intersect with each other. Since, in
general, this number of colors depends on the dimension of the Euclidean space where
the domain lies (see Toselli and Widlund 2005, for instance), we can conclude that the
convergence rate of the algorithms essentially depends on the constant C0. Moreover, C̃ and
the convergence rate, too, are increasing functions of C0. Indeed, by a simple calculus, we
get from (3.13) that

C̃ = 2βm

α

(√
2βm

α
C2
0 + 2C0 + 1 +

√
2βm

α
C2
0

)2

.

In the following, we prove that Assumption 3.1 holds and estimate this constant C0.
To prove that this assumption holds, we associate to the decomposition (3.7) of �, some

functions θi ∈ H1(�), i = 1, . . . ,m, such that

0 ≤ θi ≤ 1 on �, θi = 0 on ∪m
j=i+1 � j\�i , and θi = 1 on �i\ ∪m

j=i+1 � j . (3.15)

Since the overlapping size of the domain decomposition is δ, the above functions θi can
be chosen to satisfy

|∂xk θi | ≤ C/δ, a.e. in �, for any k = 1, . . . , d, (3.16)

where C is a constant independent of the domain decomposition.
Now, let us consider σ ∈ �η, σi ∈ Hi

0,0 such that σ + ∑i
j=1 σ j ∈ �η, i = 1, . . . ,m, and

let τ be another element in �η. Using the functions θi , i = 1, . . . ,m defined in (3.15) and
(3.16), we first define τi , i = 1, . . . ,m.

For i = 1, we consider u1 ∈ H1(�1 ∩ (∪m
j=2� j )), u1 = 0 on ∂(�1 ∩ (∪m

j=2� j )) ∩ �D ,
the solution of the problem

∫

�1∩(∪m
j=2� j )

Aε(u1) : ε(v1) +
∫

∂(�1∩(∪m
j=2� j ))∩�C

[θ1(τ − σ) + (1 − θ1)σ1]n · v1

+
∫

∂(∪m
j=2� j )∩�1

(τ − σ)n · v1 = 0 (3.17)

for any v1 ∈ H1(�1 ∩ (∪m
j=2� j )), v1 = 0 on ∂(�1 ∩ (∪m

j=2� j )) ∩ �D , and define

τ1 =
⎧
⎨

⎩

τ − σ on �1\(∪m
j=2� j )

Aε(u1) on �1 ∩ (∪m
j=2� j )

0 on (∪m
j=2� j )\�1

(3.18)

For i = 2, we make the same construction as above by taking τ − σ − τ1 in the place of
τ − σ , �2 in the place of �1 and ∪m

j=2� j in the place of � = ∪m
j=1� j . In this way, we look

for the solution u2 ∈ H1(�2 ∩ (∪m
j=3� j )), u2 = 0 on ∂(�2 ∩ (∪m

j=3� j ))∩�D , the solution
of the problem
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∫

�2∩(∪m
j=3� j )

Aε(u2) : ε(v2) +
∫

∂(�2∩(∪m
j=3� j ))∩�C

[θ2(τ − σ − τ1) + (1 − θ2)σ1]n · v2

+
∫

∂(∪m
j=3� j )∩�2

(τ − σ − τ1)n · v2 = 0 (3.19)

for any v2 ∈ H1(�2 ∩ (∪m
j=3� j )), v2 = 0 on ∂(�2 ∩ (∪m

j=3� j )) ∩ �D , and define

τ2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 on �1\(∪m
j=2� j )

τ − σ − τ1 on �2\(∪m
j=3� j )

Aε(u2) on �2 ∩ (∪m
j=3� j )

0 on (∪m
j=3� j )\�2

(3.20)

For a certain 3 ≤ i ≤ m − 1, we consider τ − σ − τ1 − · · · − τi−1, the domains �i

and ∪m
j=i+1� j and ui ∈ H1(�i ∩ (∪m

j=i+1� j )), ui = 0 on ∂(�i ∩ (∪m
j=i+1� j )) ∩ �D , the

solution of the problem
∫

�i∩(∪m
j=i+1� j )

Aε(ui ) : ε(vi ) +
∫

∂(�i∩(∪m
j=i+1� j ))∩�C

[θi (τ − σ − τ1 − · · · − τi−1)

+(1 − θi )σi ]n · vi +
∫

∂(∪m
j=i+1� j )∩�i

(τ − σ − τ1 − · · · − τi−1)n · vi = 0 (3.21)

for any vi ∈ H1(�i ∩ (∪m
j=i+1� j )), vi = 0 on ∂(�i ∩ (∪m

j=i+1� j )) ∩ �D , and define

τi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 on (∪i−1
j=1� j )\(∪m

j=i� j )

τ − σ − τ1 − · · · − τi−1 on �i\(∪m
j=i+1� j )

Aε(ui ) on �i ∩ (∪m
j=i+1� j )

0 on (∪m
j=i+1� j )\�i

(3.22)

Finally, we define

τm = τ − σ −
m−1∑

j=1

τ j (3.23)

The construction of these τi , i = 1, . . . ,m, concerns only the verification of the assump-
tions, but not the application of the algorithm. We have the following result concerning the
above defined τ1, . . . , τm .

Lemma 3.1 Let τ1, . . . , τm be defined in (3.17)–(3.23). Then,

τi∈Hi
0,0 for i = 1, . . . ,m (3.24)

τ − σ −
i∑

j=1

τ j = 0 on �\(∪m
j=i+1� j ) for i = 1, . . . ,m − 1 (3.25)

σ + τ1 ∈ �η and σ +
i−1∑

j=1

σ j + τi∈�η for i = 2, . . . ,m (3.26)

τ −
i∑

j=1

τ j +
i∑

j=1

σ j∈�η for i = 1, . . . ,m − 1 (3.27)
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Proof We notice that, in view of the condition (3.8) on the domain decomposition, Eqs.
(3.17), (3.19) and (3.21) have unique solutions. The proof of lemma is made by induction.

(a) For i = 1, from (3.17), we get divAε(u1) = 0 on �1 ∩ (∪m
j=2� j ) and Aε(u1)n =

(τ − σ)n on ∂(∪m
j=2� j ) ∩ �1. Since div(τ − σ) = 0 on �1\(∪m

j=2� j ), we get from
(3.18) that

τ1|�1 ∈ Hdiv(�1) and div(τ1|�1) = 0 on �1

Since (τ − σ)n = 0 on �F and, in view of (3.17), we have Aε(u1)n = 0 on ∂(�1 ∩
(∪m

j=2� j )) ∩ �F , we get

τ1|�1n = 0 on ∂�1 ∩ �F

Also, we get from (3.17) that Aε(u1)n = 0 on ∂�1 ∩ (∪m
j=2� j ), or

τ1|�1n = 0 on ∂�1 ∩ �

and therefore, the extension of τ1|�1 with zero in �\�1 is an element of H0,0(�).
Consequently, (3.24) holds for τ1 defined in (3.18).
From the definition of τ1 we get that τ −σ −τ1 = 0 on�1\(∪m

j=2� j ), and consequently,
(3.25) holds for i = 1.
Since τ1 ∈ H1

0,0 and τ, σ ∈ H f,g , we get

σ + τ1 ∈ H f,g.

On ∂(�1 ∩ (∪m
j=2� j )) ∩ �C , using again (3.17), we have

(σ + τ1)n = (σ + Aε(u1))n = [θ1τ + (1 − θ1)(σ + σ1)]n
Since τ, σ, σ + σ1 ∈ �η, in view of the above equation, we have

(σ + τ1)N ≤ 0 and |(σ + τ1)T | ≤ −μηN on �C

In this way, we get that (3.26) holds for i = 1.
In a similar way, we prove that (3.27) holds for i = 1. First, we see that

τ − τ1 + σ1 ∈ H f,g

Also, on ∂(�1 ∩ (∪m
j=2� j )) ∩ �C , we have

(τ − τ1 + σ1)n = (τ − Aε(u1) + σ1)n = [θ1(σ + σ1) + (1 − θ1)τ ]n
and, from here and the fact that τ, σ, σ + σ1 ∈ �η, we get

(τ − τ1 + σ1)N ≤ 0 and |(τ − τ1 + σ1)T | ≤ −μηN on �C

Consequently, we get that (3.27) holds for i = 1.
(b) For i = 2, let us write

σ̃ = σ + σ1 and τ̃ = τ − τ1 + σ1 (3.28)

First, from (3.25) for i = 1, we get that

τ̃ − σ̃ = τ − σ − τ1 = 0 on �\(∪m
i=2�i ) (3.29)

Then, we reduce the case of i = 2 to that of i = 1 by considering the decomposition
�2, . . . , �m of ∪m

j=2� j instead of the decomposition �1, . . . , �m of ∪m
j=1� j , and σ̃

and τ̃ in the place of σ and τ , respectively.
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From (3.29) and the definition of τ2 in (3.20), we get that if we prove that τ2|∪m
j=2� j

belongs to H2
0,0 corresponding to�2 in the decomposition�2, . . . , �m of∪m

j=2� j , then

τ2 belongs to H2
0,0 corresponding to �2 in the decomposition �1, . . . , �m of ∪m

j=1� j ,
i.e. (3.24) is satisfied for i = 2.
We see that by replacing σ̃ and τ̃ in the definition of τ2 given in (3.19) and (3.20), we
get that τ2|∪m

j=2� j is identically defined as τ1 in (3.17) and (3.18) where σ and τ are

replaced by σ̃ and τ̃ , respectively. Besides this, in view of the conditions in Assumption
3.1, we have σ̃ , σ̃ + σ2 ∈ �η. Also, from (3.27) with i = 1, we have τ̃ ∈ �η.
Consequently, repeating the reasoning from i = 1 in the new context, we get that, for
the decomposition �2, . . . , �m of ∪m

j=2� j , τ2|∪m
j=2� j satisfies (3.24)–(3.27) from i = 1

with σ and τ replaced by σ̃ and τ̃ , respectively. Now, replacing σ̃ and τ̃ in these equations
with their values given in (3.28) and taking into account (3.29), we get that (3.24)–(3.27)
hold for i = 2.

(c) For a given 3 ≤ i ≤ m − 1 we define

σ̃ = σ +
i−1∑

j=1

σ j and τ̃ = τ −
i−1∑

j=1

τ j +
i−1∑

j=1

σ j

and, with the above reasoning, we get that (3.24)–(3.27) for that i .
(d) For i = m, we consider τm defined in (3.23). Since τ , σ , σ1, . . . , σm−1 ∈ Hdiv(�), it

follows that τm ∈ Hdiv(�). Moreover, from (3.25) for i = m − 1, we get that τm = 0 on
�\�m . Besides that, since τ − σ ∈ H0,0 and, for i = 1, . . . ,m − 1, τi ∈ Hi

0,0, we get

τm ∈ Hm
0,0,

i.e. (3.24) holds for i = m.
Finally, using (3.27) for i = m − 1, we get

σ +
m−1∑

j=1

σ j + τm = τ +
m−1∑

j=1

σ j −
m−1∑

j=1

τ j ∈ �η

i.e. (3.26) holds for i = m. �
Now, we can prove

Proposition 3.1 Assumption 3.1 holds true with

C0 = m
m−1∑

j=0

C j
mδ (3.30)

where

Cmδ = Cm

(

1 + d

δ2

)

(3.31)

constant C being independent of the domain decomposition.

Proof Let us consider τ, σ ∈ �η, σi ∈ Hi
0,0 such that σ +∑i

j=1 σ j ∈ �η, and let τ1, . . . , τm
be defined in (3.17)–(3.23). We shall use Lemma 3.1 to prove that (3.10) and (3.11) hold.
First, (3.24) shows that τi∈Hi

0,0 for i = 1, . . . ,m. Then, (3.26) proves (3.10), and finally,
(3.23) is (3.11).

We now prove that (3.12) holds with C0 given in (3.30), and we first evaluate the norms
of τi , i = 1, . . . ,m.
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(a) For i = 1, by replacing v1 with u1 in (3.17), and using the trace theorems in H1 and
Hdiv (see Theorem 2.5, page 27, in Girault and Raviart 1986 for the vectorial case, for
instance), we get

∫

�1∩(∪m
j=2� j )

Aε(u1) : ε(u1) = −
∫

∂(�1∩(∪m
j=2� j ))∩�C

[θ1(τ − σ) + (1 − θ1)σ1]n · u1

−
∫

∂(∪m
j=2� j )∩�1

(τ − σ)n · u1

= −
∫

∂(�1∩(∪m
j=2� j ))∩(�C∪�1)

[θ1(τ −σ)+(1−θ1)σ1]n · u1
≤ ||θ1(τ − σ)n + (1 − θ1)σ1n||H−1/2(∂(�1∩(∪m

j=2� j )))

· ||u1||H1/2(∂(�1∩(∪m
j=2� j )))

≤ C ||θ1(τ − σ)

+ (1 − θ1)σ1||Hdiv(�1∩(∪m
j=2� j ))||u1||H1(�1∩(∪m

j=2� j ))

Above, we have used the fact that θ1 = 1 on ∂(∪m
j=2� j )∩�1 = ∂(�1∩(∪m

j=2� j ))∩�1.
Constant C can be taken depending only of �, independently of the domain decompo-
sition. From now on, we denote by C a generic constant with this property. Finally, we
have written, for instance, || · ||H1(�1∩(∪m

j=2� j ))
in the place of || · ||H1(�1∩(∪m

j=2� j ))
d . The

superscripts d or d ×d in the notation of the norms will also be omitted in the following.
In view of (3.8), we have (see Théorème 3.3, p. 115, in Duvaut and Lions 1972, for
instance)

||u1||2H1(�1∩(∪m
j=2� j ))

≤ C
∫

�1∩(∪m
j=2� j )

Aε(u1) : ε(u1)

Also, using the properties of S, we have

γ ||Aε(u1)||2L2(�1∩(∪m
j=2� j ))

≤ (S(Aε(u1)), Aε(u1))L2(�1∩(∪m
j=2� j ))

×
∫

�1∩(∪m
j=2� j )

Aε(u1) : ε(u1)

From the above three equations, we get

||Aε(u1)||L2(�1∩(∪m
j=2� j ))

≤ C ||θ1(τ − σ) + (1 − θ1)σ1||Hdiv(�1∩(∪m
j=2� j ))

and since div(Aε(u1)) = 0, we have

||Aε(u1)||Hdiv(�1∩(∪m
j=2� j )) ≤ C ||θ1(τ − σ) + (1 − θ1)σ1||Hdiv(�1∩(∪m

j=2� j ))

Moreover, in view of (3.18) and since θ1 = 1 on �1\(∪m
j=2� j )), we get

||τ1||Hdiv(�) ≤ C ||θ1(τ − σ) + (1 − θ1)σ1||Hdiv(�1)

or, in view of (3.16) and taking into account that div(τ − σ) = divσ1 = 0 on �, we get
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||τ1||Hdiv(�) ≤ C

(

1 + d

δ2

) 1
2 [||τ − σ ||L2(�1)

+ ||σ1||L2(�1)
]

= C

(

1 + d

δ2

) 1
2 [||τ − σ ||Hdiv(�1) + ||σ1||Hdiv(�1)]

≤ C

(

1 + d

δ2

) 1
2 [||τ − σ ||Hdiv(�) + ||σ1||Hdiv(�)]

Consequently, we can write

||τ1||2Hdiv(�) ≤ Cmδ[||τ − σ ||2Hdiv(�) + ||σ1||2Hdiv(�)] (3.32)

where Cmδ is given in (3.31).
(b) For 2 ≤ i ≤ m − 1, using the same arguments as above, we get

||τi ||Hdiv(�) ≤ C ||θi
(

τ − σ −
i−1∑

j=1
τ j

)

+ (1 − θi )σi ||Hdiv(�i )

and

||τi ||Hdiv(�) ≤ C

(

1 + d

δ2

) 1
2

⎡

⎣||τ − σ ||Hdiv(�i ) +
i−1∑

j=1

||τ j ||Hdiv(�i ) + ||σi ||Hdiv(�i )

⎤

⎦

≤ C

(

1 + d

δ2

) 1
2 [||τ − σ ||Hdiv(�) +

i−1∑

j=1

||τ j ||Hdiv(�) + ||σi ||Hdiv(�)]

Also, we can write

||τi ||2Hdiv(�) ≤ Cmδ

⎡

⎣||τ − σ ||2Hdiv(�) +
i−1∑

j=1

||τ j ||2Hdiv(�) + ||σi ||2Hdiv(�)

⎤

⎦ (3.33)

(c) In view of (3.32) and (3.33), we can prove by induction that

i∑

j=1

||τ j ||2Hdiv(�) ≤
i∑

j=1

C j
mδ[||τ − σ ||2Hdiv(�) + ||σi+1− j ||2Hdiv(�)]

for i = 1, . . . ,m − 1. Now, from (3.23), we have

||τm ||2Hdiv(�) ≤ m

⎡

⎣||τ − σ ||2Hdiv(�) +
m−1∑

j=1

||τ j ||2Hdiv(�)

⎤

⎦

From these two last equations we get

m∑

i=1

||τi ||2Hdiv(�) ≤ m
m−1∑

j=0

C j
mδ||τ − σ ||2Hdiv(�) + m

m−1∑

j=1

C j
mδ||σm− j ||2Hdiv(�)

and therefore, we can take constant C0 as in (3.30). �
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Summing up the results in Theorem 3.1 and Proposition 3.1, we get

Corollary 3.1 We assume that the domain decomposition (3.7) satisfies (3.8). Then, if σ is
the solution of problem (2.4) and σ n, n ≥ 0, are its approximations obtained from Algorithm
3.1, we have the following error estimation

||σ n − σ ||2Hdiv(�) ≤ C

(
C̃

C̃ + 1

)n

where C̃ and C are given in (3.13) and (3.14), respectively, and constant C0 in C̃ is given in
(3.30).

Remark 3.1 For problems in primal variables (seeBadea 2006, for instance), the construction
of the functions similar to τi in (3.17)–(3.23) is directly done by writing τi = θi (τ − σ −∑i−1

j=1 τ j ) + (1 − θi )σ . In this case, using property (3.16), we obtain, without using the
recursivity in the proof of Proposition 3.1, that

||τi ||2Hdiv(�) ≤ Cmδ

⎡

⎣||τ − σ ||2Hdiv(�) +
i∑

j=1

||σ j ||2Hdiv(�)

⎤

⎦

in the place of (3.33). The introduction of Aε(ui ) in the definition of τi imposes the use of
the recursivity, and consequently, C0 in (3.30) depends on the powers of Cmδ . However, as
we already said, the number m of the subdomains can be considered as being the minimal
number of colors needed to mark the subdomains, and therefore, C0 does not depend on the
actual number of subdomains in the domain decomposition.

4 Conclusions

We have studied the convergence of the Schwarz method for contact problems with Tresca
friction formulated in stress variables. In this dual variable, the problem is written as a
variational inequality in the space Hdiv(�), � being the domain of the problem. The method
is introduced as a subspace correction algorithm and we have used a general result in Badea
(2003)which proves the convergence provided that an assumption is satisfied. Themain result
of this paper was to prove that the assumption made in the general convergence theorem is
verified for our particular variational inequality. As in the case of the classical problems
formulated in primal variables, we show that the method is geometrically convergent with a
convergence rate which depends on the overlapping parameter of the domain decomposition.
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