Laurent Gourvès

Jérôme Monnot

Lydia Tlilane

A Matroid Approach to the Worst Case Allocation of Indivisible Goods *

. Interestingly, V n (α) is tight for some values of α, i.e. it is the best lower bound on the valuation of the least happy agent. However, it is not true for all values of α. We propose a family of functions W n such that W n (x) ≥ V n (x) for all x, and W n (x) > V n (x) for values of x where V n (x) is not tight. The new functions W n apply on a problem which generalizes the allocation of indivisible goods. It is to find a solution (base) in a matroid which is common to n agents. Our results are constructive, they are achieved by analyzing an extension of the algorithm of Markakis and Psomas.

1 Introduction [START_REF] Demko | [END_REF] addressed the problem of equitably allocating a set of indivisible goods to n agents (n ≥ 2). The agents have possibly different utilities for the individual goods, and an agent's utility for a bundle B is defined as the sum of individual utilities for the goods in B. After a normalization, it is assumed that everyone has utility 1 for the whole set of goods.

Demko and Hill's work focused on how good the least happy agent can value his share. It is to find a threshold t n ∈ [0, 1] such that, in any case, there exists an allocation where each of the n agents has utility at least t n for his share. To be complete, t n should come with a family of instances without any feasible allocation where everyone values his share t n + (or more) for some positive .

In the context of sharing divisible goods, it is long known that t n = 1/n [Steinhaus, 1948]. Dealing with indivisible goods leads to a trickier situation. As a devastating example, imagine n agents having utility 1 for the same item, say i 1 , and utility 0 for any other item. The agents who do not receive i 1 have a global utility of 0, meaning that t n equals to 0. Meanwhile, if the maximum utility for a good was upper bounded by a quantity tending to 0, the indivisible model would gradually tend to the divisible model, where t n = 1/n. Then, what is t n between these two extremal cases?

In fact, the maximum value for a single element appears to significantly influence t n , as in the pioneering work of [Hill, 1987] who defined a family of nonincreasing functions V n : [0, 1] → [0, n -1] for any integer n ≥ 2 (see Definition 1 and Figure 1). Following [Hill, 1987], [START_REF] Demko | [END_REF] considered the parameter α ∈ [0, 1], defined as the maximum value assigned by an agent to a single good, and showed that it is possible to allocate the indivisible goods to n agents such that every agent's valuation for his share is at least V n (α). In addition, they showed with some instances that V n is exactly the best utility of the least happy agent for some values of α, but the instances do not cover the entire interval [0, 1].

Defining α i as agent i's maximum valuation for a single item, [START_REF] Markakis | [END_REF] have recently strengthened the results of Demko and Hill. Indeed, they show the existence of an allocation guaranteeing V n (α i) for every agent i. Since V n is nonincreasing, V n (α i) ≥ V n (α) holds and the vector

(V n (α i)) i∈[n] weakly Pareto dominates (V n (α)) i∈[n]
. The other contribution of Markakis and Psomas relies on the fact that, unlike the results in [Hill, 1987;[START_REF] Demko | [END_REF], the allocations are obtained with a deterministic algorithm which runs in polynomial time.

Our work deals with a problem which encompasses the allocation of indivisible goods. It is a problem on a matroid (defined in Section 3) where one has to find a common solution (base) to n agents. The agents have possibly different utilities for the elements of the matroid, and an agent's utility for a solution B is defined as the sum of individual utilities for the elements in B. After a normalization ensuring that the maximum utility for a solution of the matroid is exactly 1 for everyone, we define α i as the maximum value that agent i assigns to a single element, and α = max i∈[n] α i .

Interestingly, we show that V n is still valid in this generalized context and we can even improve it. We propose a family of functions W n : [0, 1] → [0, n -1] defined for any positive integer n (see Definition 2). We have W n (x) ≥ V n (x) for all x ∈ [0, 1], and W n (x) > V n (x) for values of x where V n (x) is not tight (see Figure 1 for illustration). Like V n , W n is piecewise linear on [0, 1] but unlike V n , W n alternates decreasing and increasing phases. This gives a new insight in the particularity of handling indivisible objects.

We also propose a deterministic algorithm which is an extension of the one in [START_REF] Markakis | [END_REF] for the generalized problem on matroids. The algorithm returns a solution (base) where every agent i has utility at least W n (α i).

In all, our contribution consists of dealing with matroids which capture more situations than the basic model of allocating indivisible goods, the new functions W n improve on V n , and the solution is built by a polynomial time algorithm.

The rest of the article is organized as follows. In section 2, we discuss some related work. In order to be self-contained, we give basic notions on matroids in Section 3. Section 4 introduces the model that we deal with. In section 5, we present a polynomial time algorithm which provides a solution in which every agent i receives at least W n (α i). Due to lack of space, some parts of proofs are omitted. Further results and future directions are given in Section 6.

Related work

Sharing scarce resources like food, energy or jobs is a very old, but never outdated, issue. From the various fields where this problem is addressed, the recurrent challenge is obviously to reach fairness and efficiency.

Fair division is to allocate a set of goods to a set of n agents, having heterogeneous valuations, in a way that leaves every agent satisfied. It is extensively studied in economics (especially social choice theory), mathematics and political science. However, computer science (CS) comes naturally into play when the computational aspects of allocation procedures are investigated [START_REF] Chevaleyre | [END_REF]. During the last few years, the CS community (especially in Artificial Intelligence) has shown a growing interest in the topic [Bouveret and Lang, 2008;Procaccia, 2013].

The literature on fair division usually distinguishes the case of divisible goods (e.g. cakes) and the case of indivisible goods (e.g. houses) [Young, 1994;Brams and Taylor, 1996;Moulin, 2003]. Typically desired properties are proportionality (each of the n agents gets at least a proportion of 1/n of the goods) and envy-freeness (every agent weakly prefers his share to the share of any other agent).

Proportionality for n agents (Banach-Knaster [Steinhaus, 1948]) and envy-freeness can be reached in the divisible case [Brams and Taylor, 1995] but it is not true for indivisible goods. Instead, one can seek for allocations that minimize envy [START_REF] Lipton | [END_REF] or maximize the utility of the least happy agent [Asadpour and Saberi, 2010]. These approaches lead to computationally hard optimization problems.

Another approach for indivisible goods is to determine a value, and guarantee the existence of an allocation such that the relative utility of the poorest agent is at least this value. This is the path followed by [START_REF] Demko | [END_REF] on the basis of [Hill, 1987]. Recently, [START_REF] Markakis | [END_REF] proposed a deterministic algorithm for computing such a solution in polynomial time. From a computational perspective, this task is less demanding than the maximization of the poorest agent's utility.

Matroids

Matroid theory is central in combinatorial optimization. In particular, it has permitted to unify apparently separated structures like trees and matchings in a graph. In order to be selfcontained, we give some basic notions on matroids. An interested reader may refer to [Schrijver, 2003;Korte and Vygen, 2007;Oxley, 1992] for more details.

A matroid M = (X, F) consists of a finite set of elements X and a collection F of subsets of X such that:

(i) ∅ ∈ F, (ii) if F 2 ⊆ F 1 and F 1 ∈ F then F 2 ∈ F, (iii) for every F 1 , F 2 ∈ F where |F 1 | < |F 2 |, ∃ e ∈ F 2 \F 1 such that F 1 ∪ {e} ∈ F.
The elements of F are called independent sets. Inclusionwise maximal independent sets are called bases. All bases of a matroid M have the same cardinality r(M), defined as the rank of M. Given a matroid M = (X, F) and a subset X ⊂ X, if X ∈ F, the contraction of M by X , denoted by M/X , is the structure (X \ X , F) where

F = {F ⊆ X \ X : F ∪ X ∈ F}. It is well known that M/X is a matroid.
A typical example of a matroid is the forests (acyclic set of edges) of a multigraph G, usually called the graphic matroid. The bases are the spanning trees if the graph G is connected.

Another example is the partition matroid: given k disjoint sets P 1 , . . . , P k which form a ground set P = ∪ k i=1 P i and k nonnegative integers b i (i = 1..k), the sets F ⊆ P satisfying |F ∩ P i | ≤ b i form a matroid. Notably (and it is crucial in the present work), allocating a set of m indivisible items to n agents can be seen as a partition matroid. Build m sets

P i = {i 1 , i 2 , . . . , i n } and let b i = 1 for i ∈ [m]. Taking i k means allocating item i to agent k.
Last example of a well known matroid is the "matching" matroid defined over a graph G = (V, E): take X = V and define F as the subsets of V which can be covered by a matching of G.

When every element e ∈ X has a weight w(e) ∈ IR + , a classical optimization problem consists in computing a base B ∈ F that maximizes e∈B w(e). This problem is solved in polynomial time by the famous GREEDY algorithm (also known as Kruskal's algorithm for the maximum weight spanning tree problem) described in Algorithm 1.

Let us give here a general lemma that we will find useful in Section 5.

Lemma 1 Let M = (X, F) be a matroid and a function w :

X → IR + such that w(X) = e∈X w(e), ∀X ⊆ X. Given F 1 , F 2 ∈ F where |F 1 | < |F 2 |, suppose that F 2 = {e 1 , . . . , e |F2| } with w(e 1) ≥ • • • ≥ w(e |F2|). In the con- tracted matroid M/F 1 , ∃E ⊆ F 2 \F 1 such that E is inde- pendent in M/F 1 (i.e. F 1 ∪ E ∈ F) where |E| = |F 2 | -|F 1 | and w(E) ≥ w {e |F1|+1 , . . . , e |F2| } .
Proof. By induction on k = |F 2 | -|F 1 |, we prove that there is an independent set E k satisfying the lemma.

For k = 1, from property (iii) of matroids, ∃e ∈ F 2 \F 1 such that F 1 ∪ {e} ∈ F. Since w(e1) ≥ • • • ≥ w(e |F2|), then w(e) ≥ w(e |F2|). Hence, E 1 = {e}.

We assume that Lemma 1 is true for k ≥ 1 and we show it for k

+ 1. Let F 1 , F 2 ∈ F such that |F 2 | -|F 1 | = k + 1, F 2 = {e 1 , . . . , e |F1|+k+1 } and w(e 1) ≥ ... ≥ w(e |F1|+k+1). Let F 2 = F 2 \{e |F1|+k+1 }. Using the inductive hypothesis, ∃E k ⊆ F 2 \F 1 in the contracted matroid M/F 1 such that F 1 ∪ E k ∈ F, |E k | = |F 2 | -|F 1 | = k and w(E k) ≥ w {e |F1|+1 , . . . , e |F1|+k } . Consider the sets F 1 ∪ E k and F 2 where |F 1 ∪ E k | = |F 1 | + k and |F 2 | = |F 1 | + k + 1. From property (iii) of ma- troids, ∃e ∈ F 2 \(F 1 ∪ E k) such that F 1 ∪ E k ∪ {e} ∈ F. In other words, E k ∪ {e} is an independent set of M/F 1 . Since w(e 1) ≥ • • • ≥ w(e |F1|+k+1) then, w(e) ≥ w(e |F1|+k+1). Let E k+1 = E k ∪ {e}. Hence, w(E k+1) ≥ w e |F1|+1 , . . . , e |F2| as claimed. 2 Algorithm 1 GREEDY Require: M = (X, F), w : X → IR + 1: Sort X = {e 1 , • • • , e |X| } such that w(e i) ≥ w(e i+1), i = 1..|X| -1 2: F ← ∅ 3: for i = 1 to |X| do 4: if F ∪ {e i } ∈ F then 5: F ← F ∪ {e i } 6: end if 7: end for 8: return F
The time complexity of matroid algorithms depends of the difficulty of testing if a set F ∈ F. This is usually done by a dedicated subroutine called the independence oracle. We always assume that this subroutine runs in polynomial time.

The model

We are given a matroid M = F), a set of agents N = {1, ..., n} and u i (e) ∈ IR + for every pair (i, e) ∈ N × X. Actually, u i (e) is the utility of agent i for the element e. With a slight abuse of notation, the utility of an agent i ∈ N for a subset X of X is denoted by u i (X) and defined as x∈X u i (x). As a convention, u i (∅) is equal to 0. Agent i prefers the solutions (bases) that maximize u i . One of these solutions, denoted by B * i , can be built by the GREEDY algorithm. We can assume that B * i is a base of M because utilities are nonnegative. We suppose w.l.o.g. that every base B * i optimal for agent i satisfies u i (B * i) = 1. This normalization allows to capture the agents' relative utilities instead of their absolute utilities. If u i (B * i) = 1 for some agent i, it suffices to replace u i (e) by u i (e)/u i (B * i) for all e ∈ X. This is trivially done in polynomial time.

Throughout the article, we use α i = max {e}∈F u i (e), the maximal utility that agent i has for an element of the matroid and α = max i∈N α i , the maximal utility assigned to an element of the matroid, over all agents.

Following [START_REF] Demko | [END_REF], we are interested in determining a value t n such that, in any case, there exists a solution B ∈ F satisfying u i (B) ≥ t n , ∀i ∈ N . As done in [START_REF] Markakis | [END_REF], a strengthening of this result would be a vector (t i,n) i∈N such that, in any case, there exists a solution B of the matroid with u i (B) ≥ t i,n ≥ t n , ∀i ∈ N .

Since our model extends the one in [START_REF] Demko | [END_REF][START_REF] Markakis | [END_REF], parameters α and α i play an important role in the determination of t n and (t i,n) i∈N .

In Section 3, we see that the allocation of indivisible goods is a particular case of our model. A possible application of the matroid model, that allocation of indivisible goods cannot cover, is the following: consider a bipartite graph (A ∪ T, E) whose node sets A and T correspond to a set of activities and a set of time slots, respectively. At most one activity can be scheduled during a time slot and there is an edge (a, t) ∈ E iff activity a is available during time slot t. It is possible to schedule a subset of activities A if there exists a matching covering A . As mentioned in Section 3, the subsets of A for which a feasible schedule exists, form a matroid. In the presence of n agents having heterogeneous utilities for the activities, it is relevant to seek for a common set of activities that is feasible and fair.

Technical results

Let us begin by defining the function V n of Hill. Definition 1 [Hill, 1987;[START_REF] Markakis | [END_REF] Given any integer n ≥ 2, let V n : [0, 1] → [0, n -1] be the unique nonincreasing function satisfying V n (x) = 1/n for x = 0, whereas for x > 0: [[START_REF] Markakis | [END_REF] produce an allocation such that each agent i receives at least V n (α i) which is tight in I(n, p). We define a new function W n . Definition 2 Given any integer n ≥ 1, let W n : [0, 1] → [0, n -1] be the function satisfying W 1 (x) = 1, ∀x ∈ [0, 1], whereas for any integer n ≥ 2, W n (x) = 1/n for x = 0 and for x > 0,

V n (x) = 1 -p(n -1)x, x ∈ I(n, p) 1 -(p+1)(n-1) (p+1)n-1 , x ∈ N I(n,
W n (x) =            0, x ∈ I (n,0) 1 -p(n -1)x, x ∈ I 1 (n,p) p(1-px) (p+1)(n-1)-1 , x ∈ I 2 (n,p) p(x+p-1) np 2 -p-n+2 , x ∈ I 3 (n,p)
where I (n,0) = 1 n-1 , 1 and for any integer p ≥ 1,

• I 1 (n,p) = p+1 p((p+1)n-1) , 1 pn-1 • I 2 (n,p) = p 2 np 3 -p 2 +p+n-2 , p+1 p((p+1)n-1) • I 3 (n,p) = 1 (p+1)n-1 , p 2 np 3 -p 2 +p+n-2 • I (n,p) = I 1 (n,p) ∪ I 2 (n,p) ∪ I 3 (n,p) =
Note that I (n,p) = I(n, p). In the following, we use only the intervals defined in Definition 2. We see that W n (x) > V n (x) for intervals I 2 (n,p) and I 3 (n,p) , and V n (x) = W n (x) elsewhere.

x W n (x)

V n (x) 1 1 2 1 3 1 2 1 3 1 5 2 5 1 4 1 5 2 3 0 n = 2 n = 3 Figure 1: W n (•) and V n (•) for n = 2 and n = 3.
The following properties can easily be proved: Property 1 Given any integers n ≥ 2 and p ≥ 1,

1. V n (x) ≤ W n (x) ≤ 1 n , ∀x ∈ [0, 1]. 2. If x ≤ p+1 p((p+1)n-1) then W n (x) ≥ p (p+1)n-1 . 3. If x ∈ I (n,p) then (p -1)x < W n (x) ≤ px.
Now, we present Algorithm 2 which constructs a base (solution) by executing THRESHOLD(N , M, (u i) i∈N , ∅).

Algorithm 2 THRESHOLD Require: N , M = (X, F), (u i) i∈N , B

1: for all i ∈ N do 2:

B * i ←GREEDY(M, u i) 3:
for all e ∈ X do 4:

ũi (e) ← u i (e)/u i (B * i)

5:

end for 6:

α i ← max {e}∈F ũi (e)
7:

S i ← ∅ 8:
add in a greedy manner elements of B * i to S i by nonincreasing order of ũi until ũi (

S i) ≥ W |N | (α i) 9: end for 10: pick i ∈ N such that |S i | ≤ |S k |, ∀k ∈ N 11: B i ← S i 12: B ← B ∪ B i 13: if |N | = 1 then 14: return B 15: else 16: let M/B i = (X\B i , F) be the contraction of M to B i where F ∈ F iff F ∪ B i ∈ F 17: THRESHOLD(N \{i}, M/B i , (ũ k) k∈N \{i} , B) 18: end if
THRESHOLD is an adaptation of the algorithm of [START_REF] Markakis | [END_REF] on matroids. Our algorithm sorts the set X, this is done in O(|X| ln |X|), then tests the independence of adding elements of X to the solution, done in O(θ|X|), where θ is the complexity of the independence oracle. Since we repeat these steps n times (induction), the complexity of THRESHOLD is O (n|X| max{ln |X|, θ}). θ is not given explicitly, it depends on the matroid under consideration. In our study, we suppose that θ is a polynomial.

In the rest of the paper, we always assume that agent i has been selected during the i-th call of THRESHOLD. So,

B = B 1 ∪• • •∪B i and the contracted matroid is M/(B 1 ∪• • •∪B i) at the end of the i-th call. At the end of the n-th call of THRESHOLD, B = B 1 ∪ • • • ∪ B n
and it is a base of M because during the n-th call, the algorithm adds by construction an independent set which is a base of

M/(B 1 ∪ • • • ∪ B n-1).
Example 1 Consider a set of agents N = {1, 2} and the graphic matroid defined over a connected graph G = (V, E), illustrated by Figure 2. The aim is to find a common base to 2 agents with a guarantee on the utility of each one. In the graphic matroid of G, a base corresponds to a spanning tree.

v 1 v 2 v 5 v 3 v 4 (u 1 (e), u 2 (e)), ∀e ∈ E (3, 1) (3, 3) (0, 2) (1, 0) (1, 2) (2, 3) Figure 2: The graph G.
During the first call of THRESHOLD, we have

B * 1 = {(v 1 , v 2), (v 2 , v 3), (v 4 , v 5), (v 5 , v 1)} and B * 2 = {(v 2 , v 3), (v 1 , v 3), (v 3 , v 4), (v 5 , v 1)} with u 1 (B * 1) = 8 and u 2 (B *
2) = 10 where B * i corresponds to a maximum spanning tree in (G, u i) (for instance, by applying GREEDY or Kruskal's algorithm). The algorithm normalizes utilities u i (e) to get ũi (e) = u i (e)/u i (B * i), ∀i ∈ {1, 2}, ∀e ∈ E. Then, α 1 = 3/8 ∈ I 3

(2,1) and α 2 = 3/10 ∈ I 1 (2,2) . So, W 2 (α 1) = α 1 = 3/8 and W 2 (α 2) = 1 -2α 2 = 4/10. Now, each agent i ∈ {1, 2} builds a forest S i by adding the heaviest edges of B * i until ũi (S i) ≥ W 2 (α i). We find The utilities of agent 1 are omitted because he has already chosen his edges. Recall that the second agent's utility has been normalized during the first call of THRESHOLD ũ2 (e) = u 2 (e)/u 2 (B * 2). Let B * 2 be an optimal base of the contracted matroid (G/B 1 , ũ2). During the second call of THRESHOLD, the algorithm finds

S 1 = {(v 1 , v 2)} and S 2 = {(v 2 , v 3), (v 1 , v 3)}. Since |S 1 | < |S 2 |, we have i = 1, B 1 = S 1 and B = B 1 . Now, let G/B 1 be the new graph obtained by contracting edge (v 1 , v 2) of B 1 into vertex v 1,2 as it is done in Figure 3.
B * 2 = {(v 1,2 , v 3), (v 3 , v 4), (v 5 , v 1,2)} with ũ2 (B *
2) = 7/10. Now, the utilities of agent 2 are normalized ũ2 (e)=ũ 2 (e)/ũ 2 (B *

2) and α2 =3/10 * 10/7=3/7. Then, agent 2 builds a forest S2 by adding the heaviest edges of B * 2 until the threshold ũ2

(S2)≥W 1 (α 2)=1 is reached. So, B 2 = B * 2 and finally THRESHOLD returns B = B 1 ∪ B 2 = {(v 1 , v 2), (v 2 , v 3), (v 3 , v 4), (v 5 , v 1)} where u 1 (B) = 7 ≥ W 2 (α 1)u 1 (B * 1) and u 2 (B) = 8 ≥ W 2 (α 2)u 2 (B * 2). Theorem 1 THRESHOLD returns a base B which satisfies u i (B) ≥ W |N | (α i)u i (B * i) for all i ∈ N . Proof. Let n = |N | and recall that the base returned by THRESHOLD is B = B 1 ∪ • • • ∪ B n .
Actually, we will prove, by induction on n, a stronger result:

u i (B i) ≥ W n (α i)u i (B * i), ∀i ∈ N . Because the utili- ties are nonnegative, we conclude u i (B) ≥ u i (B i).
For n = 1, line 8 of THRESHOLD is equivalent to applying GREEDY(M, u 1) to get the base

B = B 1 = B * 1 which satis- fies: ũ1 (B 1)≥ W 1 (α 1) =1 because W 1 (x) = 1, ∀x ∈ [0, 1]. Thus, u 1 (B 1) = W 1 (α 1)u 1 (B * 1). Let n ≥ 2.
We assume that r(M) ≥ n because otherwise all bases have size at most n -1 and then, ∀i ∈ N , α i ≥ 1/(n -1). In this case, ∀i ∈ N , W n (α i) = 0 and the result is trivially satisfied. For similar reasons, we assume that α i < 1/(n -1), ∀i ∈ N because otherwise, for agents i with α i ≥ 1/(n -1), we get W n (α i) = 0 and the bounds of agents i are clearly satisfied. W.l.o.g., we assume that agent 1 has been selected first. So,

B 1 = S 1 and |B 1 | ≤ |S i |, ∀i ∈ N (1)
In order to avoid confusion between the notations during first and second calls of THRESHOLD, we add a tilde for the notations used during the second call of THRESH-OLD (like it is done in Example 1). Hence, Ñ = N \ {1}, ũi (e) = u i (e)/u i (B * i), M = M/B 1 = (X\B 1 , F) and B *

i is an optimal base of (M, ũi). Moreover for i ∈ Ñ , ũi (e) = ũi (e)/ũ i (B * i) for the elements e ∈ X\B 1 of M and αi = max {e}∈ F ũi (e).

The inductive hypothesis affirms that

ũi (B i) ≥ W n-1 (α i)ũ i (B * i), ∀i ∈ Ñ (2)
and we want to show that

u i (B i)≥W n (α i)u i (B * i), ∀i ∈ N or equivalently ũi (B i) ≥ W n (α i), ∀i ∈ N .
By construction of THRESHOLD, during the first call we have (lines 3-8):

ũi (S i) ≥ W n (α i), ∀i ∈ N (3)
Since B 1 = S 1 , then by (3), we get the expected result for agent 1. In addition, since the sets S i = e 1 i , . . . , e |Si| i are minimal for inclusion, we deduce:

ũi (S i \{e |Si| i }) < W n (α i), ∀i ∈ N (4) Let k ∈ Ñ . We decompose B * k = B * 1 k ∪B * 2 k such that B *
| = |B * 1 |. Since S 1 = B 1 and S 1 ⊆ B * 1 , we have S 1 = B 1 = B * 1 so, ũ1 (S 1) = ũ1 (B * 1) = 1. By (4), ũ1 (S 1 \{e |S1| 1 }) = ũ1 (S 1) -ũ1 (e |S1| 1) = 1 - ũ1 (e |S1| 1) < W n (α 1) ≤ 1/2 so, ũ1 (e |S1| 1) > 1/2. Since |S 1 | = r(M) ≥ 2
and S 1 is sorted by nonincreasing order of ũ1 , we get ũ1 (S 1) ≥ 2ũ 1 (e |S1| 1) > 1 which is a contradiction. Hence, we can apply Lemma 1 for M, w = ũk , F 1 = B 1 and F 2 = B * k . We deduce that there exists

E ⊆ B * k \B 1 such that B 1 ∪ E ∈ F where |E| = |B * k | -|B 1 | = |B * 2 k | and ũk (E) ≥ ũk (B * 2 k). E is an independent set of M = M/B 1 whereas B * k is a base of M maximum for ũk . So, ũk (B * k) ≥ ũk (E) ≥ ũk (B * 2 k).
Due to the normalization, we get ũk (B * k) ≥ 1 -ũk (B * 1 k). From (5) and the previous inequality, it holds that:

ũk (B * k) ≥ 1 -ũk (S k) (6)
and by (2) and (6),

ũk (B k) ≥ W n-1 (α k) (1 -ũk (S k)) (7)
Now, from line 6 of THRESHOLD, we know that:

αk = max
ũk (B k) ≥ W n-1 (α k) (1 -p k α k) (9)
and by (8),

αk ≤ α k 1 -p k α k (10) < 1 p k (n -1) -1 for α k ∈ I (n,p k) So, either αk ∈ I 1 (n-1,p k) or αk ≤ p k +1 p k ((p k +1)(n-1)-1) . (a) If αk ∈ I 1 (n-1,p k) then W n-1 (α k) = 1 -p k (n -2)α k . From (9), we deduce that ũk (B k) ≥ (1 -p k (n -2)α k) (1 - p k α k).
Finally, using (10), we get that ũk (

B k) ≥ 1 -p k (n-2)α k 1-p k α k (1-p k α k) = 1-p k (n-1)α k ≥ W n (α k), which can easily be checked because α k ∈ I (n,p k) . (b) Otherwise, αk ≤ p k +1 p k ((p k +1)(n-1)-1) . Using 2. of Prop- erty 1 if n ≥ 3 or W 1 (x) = 1 if n = 2, we obtain W n-1 (α k) ≥ p k (p k +1)(n-1)-1 . By (9), ũk (B k) ≥ p k (p k +1)(n-1)-1 (1 -p k α k) ≥ W n (α k), which can easily be checked because α k ∈ I (n,p k) . Case 2: |S k | ≥ p k + 1. Then, we prove that p k ≥ 2. By contradiction, assume p k = 1, then |S k | ≥ 2. Since, n ≥ 2, 3. of Property 1 with α k ∈ I (n,p k) gives W n (α k) ≤ p k α k = α k because p k = 1. Thus, agent k reaches the threshold ũk (S k) = α k ≥ W n (α k) just by selecting the heaviest ele- ment of B * k which is a contradiction with |S k | ≥ 2. Since |S k | ≥ p k + 1, (4) implies that W n (α k) > ũk (S k \{e |S k | k }) ≥ ũk (e 1 k) + (p k -1)ũ k (e p k k) = α k + (p k -1)ũ k (e p k k) because |S k | ≥ p k + 1
, the elements of S k are sorted by nonincreasing order of ũk and ũk (e 1 k) = α k . From this inequality, we deduce ũk (e

|S k | k) ≤ ũk (e p k k) < Wn(α k)-α k p k -1 because p k ≥ 2.
Finally, by adding the last inequality of ũk (e 4), we get:

|S k | k) to (
ũk (S k) < p k W n (α k) -α k p k -1 (11)
On the one hand, by (7) and (11) we have:

ũk (B k) ≥ W n-1 (α k) 1 - p k W n (α k) -α k p k -1 (12)
On the other hand, by (8) and (11) we get:

αk ≤ α k (p k -1) p k -1 + α k -p k W n (α k) (13)
Let us analyze the different cases according to the values of α k in I

(n,p k) = I 1 (n,p k) ∪ I 2 (n,p k) ∪ I 3 (n,p k) . (a): α k ∈ I 1 (n,p k) .
Then by construction, W n (α k) = 1p k (n -1)α k . Using (12), we obtain:

ũk (B k) ≥ W n-1 (α k) ((n -1)p 2 k + 1)α k -1 p k -1 (14)
On the other hand, by (13) we get: Using 2. of Property 1 if n ≥ 3 with this last inequality of αk or W 1 (x) = 1 if n = 2, we deduce that W n-1 (α k) ≥ p k (p k +1)(n-1)-1 . Inequality (15) implies ũk (B k) ≥ p k (1-p k α k) (p k +1)(n-1)-1 = W n (α k) which can easily be checked because α k ∈ I 2 (n,p k) . (c): α k ∈ I 3 (n,p k) . Then by construction, W n (α k) =

αk ≤ α k (p k -1) ((n -1)p 2 k + 1)α k -1 ≤ p k + 1 p k ((p k + 1)(n -1) -1) for α k ∈ I 1 (n,p k) Using 2. of Property 1 if n ≥ 3 with this last in- equality of αk or W 1 (x) = 1 if n = 2, we deduce: W n-1 (α k) ≥ p k (p k +1)(n-1)-1 . Inequality (14) becomes ũk (B k) ≥ p k (p k +1)(n-1)-1 ((n-1)p 2 k +1)α k -1 p k -1 ≥ 1 -p k (n - 1)α k = W n (α k) which can easily be checked because α k ∈ I 1 (n,
p k (α k +p k -1) np 2
k -p k -n+2 . On the one hand, by (12),

ũk (B k) ≥W n-1 (α k) ((n -1)p k + n -2) np 2 k -p k -n + 2 × (α k + p k -1) (16)
On the other hand, by (13),

αk ≤ (np 2 k -p k -n + 2)α k ((n -1)p k + n -2)(α k + p k -1) ≤ p k + 1 p k ((p k + 1)(n -1) -1) for α k ∈ I 3 (n,p k)
Using 2. of Property 1 if n ≥ 3 with this last inequality of αk or W 1 (x) = 1 if n = 2, we deduce that W n-1 (α k) ≥ p k (p k +1)(n-1)-1 . Inequality (16) implies ũk (B k) ≥ p k (α k +p k -1) np 2 k -p k -n+2 = W n (α k) which can easily be checked because α k ∈ I 3 (n,p k) . The induction is proved and the result follows. 2

Discussion

Recall that THRESHOLD provides a solution which is a base B of a matroid with a relative utility ũi (B) ≥ W n (α i) for each agent i which is tight in I (n,1) ∪ I 1 (n,p) for any integers n ≥ 1 and p ≥ 2.

Unlike V n , W n is not monotonic, so it is not obvious that we may guarantee a relative utility of W n (α) for each agent. However, for n = 2 agents, a slight modification of the selected agent in each call of THRESHOLD, allows us to provide a guarantee of at least max{W 2 (α i); W 2 (α)} for each agent i ∈ N = {1, 2}. Moreover, this latter bound can be shown tight when α ∈ I (2,1) ∪ ∪ p≥2 I 1 (2,p) ∪ I 2 (2,p) . An interesting challenge is to know if a bound of max{W n (α i); W n (α)} for each agent i ∈ N can be reached when n ≥ 3.

Another perspective is to study the same approach for a more general structure like matroid intersection.

Figure 3 :

 3 Figure 3: The contracted graph G/B 1 .

 p k ∈ IN * such that α k ∈ I (n,p k) (see Definition 2). We first show that |S k | ≥ p k . By contradiction, suppose that |S k | ≤ p k -1. Then, by the definition of α k , ũk (S k) ≤ (p k -1)α k . Using 3. of Property 1, we get (p k -1)α k < W n (α k) which leads to a contradiction with (3). Now, we distinguish two cases: |S k | = p k and |S k | ≥ p k + 1. Case 1: |S k | = p k . Line 6 of THRESHOLD implies that ũk (S k) ≤ p k α k . Inequality (7) becomes

 p k) . (b): α k ∈ I 2 (n,p k) . Then by construction, W n (α k) = p k (1-p k α)(p k +1)(n-1)-1 . On the one hand, by (12),ũk (B k) ≥ (p 3 k + (n -1)p k + n -2)α k (p k -1)((p k + 1)(n -1) -1) + (n -2)p 2 k -p k -n + 2 (p k -1)((p k + 1)(n -1) -1) × W n-1 (α k)(15)On the other hand, by (13),αk ≤ (p 3 k + (n -1)p k + n -2)α k (p k -1)((p k + 1)(n -1) -1) + (n -2)p 2 k -p k -n + 2 (p k -1)((p k + 1)(n -1) -1) -1 ≤ p k + 1 p k ((p k + 1)(n -1) -1)for α k ∈ I 2 (n,p k)

 Since for n ≥ 2, W n (x) ≤ 1/n ≤ 1/2 (see 1. of Property 1) and r(M) ≥ n ≥ 2, we must have |B 1 | < |B * 1 | = |B * k | (allthe bases have the same size r(M)). We can prove it by contradiction: assume |B 1

			1
	k k . It is possible contains the |B 1 | first largest elements of B * because of (1) and recalling that S k ⊆ B * k . Hence, B * 1 k ⊆ S k
	and	ũk (B * 1 k) ≤ ũk (S k)	(5)

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

(p+1)n-1 , 1 pn-1

This research has been supported by the project ANR-09-BLAN-0361 GUaranteed Efficiency for PAReto optimal solutions Determination (GUEPARD).