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Abstract

Some fundamental properties of a new impulse response Gramian for linear time-
invariant asymptotically stable discrete SISO systems are derived in this note. This
Gramian is a system-invariant and can be found by solving a Lyapunov equation. The
connection with standard controllability, observability and cross Gramians is proved.
The significance of these results in model-order reduction is highlighted with an effi-

cient procedure.

1. Introduction

Impulse Response Gramians (IRG) have been introduced by Sreeram and Agathoklis to derive Re-
duced Order Models (ROM) for linear time-invariant asymptotically stable continuous [1] or discrete
[2] SISO systems. Usefulness of these Gramians has also been shown in system identification appli-
cation.

An IRG contains elements which are inner products of functions given as successive derivatives or
delays of the impulse response in continuous case and discrete case respectively. It can be obtained
by solving the Lyapunov equation for the controllability canonical realization of the system.

In [1] the approach is based on matching the first ¢ Markov parameters and ¢ x ¢ entries of the IRG.
The procedure has been extended to discrete case in [3] where the relation to the g-Markov Cover
method is discussed [4] [5] [6] . This usually yields good approximations at high frequencies, but a
large error on the steady state behaviour is noticed. An improved low-frequency approximation is

achieved for discrete systems in [10] by matching some initial time-moments and low-frequency power
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moments. For continuous systems, this drawback has been overcome with a reciprocal transformation
[7] [8] to preserve the first ¢ time-moments and ¢ x g entries of the Gram matrix [9] . Another ROM
building procedure, both valid in the continuous case [11] and in the discrete case [2] , is based
on the approximation of a energy criteria by a diagonalization and a direct truncation of the IRG.
Use of the singular perturbation technique is suggested if a good approximation at low frequency is
required. Note that the methods in [1] [2] [11] still apply if the IRG is weighted (WIRG).

The approach in [2] has been recently extended to MIMO systems with the definition of an
Extended Impulse Response Gramians (EIRG) and a convergence property to balanced realization
[13] [14] has been established.

Krajewski et al. have proposed a mixed use of the results in [1] and [8] to derive a ROM matching
Markov parameters, time-moments and impulse response energies [15] . It is based on a generalized
definition of the IRG of Sreeram and Agathoklis using successive derivatives and/or integrals of the
impulse response. This method is efficient but applies only to continuous time systems.

The initial motivation for the present paper is the extension of this approach to discrete case. A Gen-
eralized Impulse Response Gramian (GIRG) composed with scalar products of successive differences
and/or sums of the impulse response is introduced for linear time-invariant asymptotically stable
discrete SISO systems. It is related to standard controllability, observability and cross Gramians,
and is found to be the solution to the Lyapunov equation for a particular state space representation.
It is also shown that the characteristic polynomial can be obtained using some impulse energies con-
tained in the GIRG. Application of these properties to model reduction is then investigated and an
efficient procedure is proposed. The ROM is elaborated in two major steps : a reduced characteristic
polynomial is first computed and then some Markov parameters and /or time-moments are retained.
The stability and minimality properties of this ROM are studied. A numerical example is proposed

and a comparison with well known discrete model reduction techniques is carried out.

2. The discrete Generalized Impulse Response Gramian

In this section we first define the GIRG, and then describe properties of this Gramian.



Let (A, b, c) be an nth order minimal state space realization of a stable, linear, discrete SISO system

with impulse response h[k] = cA*1b.

Definition 2.1 The (n + 1)th order Generalized Impulse Response Gramian is defined as follows :
W= [ (Wgti1, Weij-1) ]z’,j:l ,,,, ni1 o 4=-n+1...0 (1)
with wo[k]|=h[k] and

wl+1[k]£wl[k + 1] - wl[k] y le N+ ;s wl_l[k]é — i wl[l'] y le N~ (2)
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and where (f,g) = > f[k|g[k] denotes the inner product of two causal real functions f[k], glk].

k=1

Successive differences and sums of the impulse response defined in (2) have been previously used
as candidates for constructing a set of approximating functions in [16] . An interesting property of
such operators is that they preserve the original poles in the z-domain.

Some key properties of the GIRG are now considered in the following Theorem.

Theorem 2.1
i) The nth order GIRG W,,, can be written as
Wyn = Cg Wl , Wyn = OquC’)g , Wen = OWeC, (3)
where W., W,, W, denote respectively the standard controllability, observability and cross Gramian
for any minimal realization (A,b,c).
The matrices {Cy, O,} used in the above factorizations are given by
Co=[(A=1)b,... . (A= D)™ 18] andOF = [[c (A—DTT, . e(A— DT T ()
ii) Wy, is the solution to the Lyapunov equation
Wyn — AW, A = cl'e, (5)
where (A, by, ¢,) is derived from (A,b,c) by the coordinate transformation C,.

iii) The realization (A, by, ¢,) has the following structure (in accordance with the proposed values
3



for q, see eqn. (1)) :

10 0 —a,
11 —Qp—1
A=10 1 0 (6)
1 —ay
0O -0 1 —ap+1
b= 10,...,0,1,0,...,0| , ;= |...,—ts,—t;,m\,mb, ... 7
q . ARt q R ol my "22 P (7)
—q q+n—1 —q q+n
where {t;}._,, are the time-moments of the system and {m; —c(A-D)"" b} are given as
o i=1,2,..

geee

i—1 .
wmet-a0 mmea =Yyt ey ®)
=0

n denote the characteristic polynomial coefficients for (A —1I).

7777

Proof.

i) Starting with w[k] = h[k] , it is easily shown that for any | € N the function w;[k| derived using
one of the transformations in (2) can be expressed as w;[k] = ¢ (A — I)' AF1b = cAF1 (A —I)"b.

Writing each inner product (wg;—1,wg;—1) appearing in (1) in terms of the (A, b, ¢) matrices then
yields directly the relations in (3). As A is assumed to be asymptotically stable (||A]| < 1), the
matrix (A — I) is nonsingular [19] . Thus, the existence of {C,, O,} is ensured and because {4, b} is
controllable, C, is nonsingular.

ii) The observability Gramian for {A, éq} is given by C;FWOCq, which is seen to be the nth order
GIRG for h[k] in view of (3).

iii) Let ¢ = 0 and p(z) = Y, @;2""* be the characteristic polynomial for (A —I). It is well known
that a similarity transformation using the standard controllability matrix yields a state matrix under

companion form :

—a] CC=[b Ab ... A



T

where al’ = [a,, ...,a1] and p(z) = > a;z" " is the characteristic polynomial of A.

Then it follows that

CoUA—I)Co = (A—T) = { 2 a }
n—1
where Co=[b (A—1D)b ... (A—I)""'b | and &’ = [ay, ..., a1).

Then we get (6). As the differences and sums in (2) preserve the original poles, the state matrix is

the same for ¢ = —n +1,...,0. The proof of (7) is straightforward and is omitted. B

Remark 1 As {fl, éq} is observable, it follows from (5) that Wy, is positive definite and the lth

order GIRG Wy, 1is positive definite for any |l < n.

The following theorem shows that the characteristic polynomial can be extracted from the GIRG.

Theorem 2.2 Let p(z) = > 1 ja;z2" " (ag = 1) be the characteristic polynomial for any minimal

realization (A, b, c) of the system. Let the corresponding (n + 1)th order GIRG be partitionned as

Won Wan+1
Wq7n+]_ -
wl w
gn+1 g,n+1

with Wy ,, the nth order GIRG, Wg 41 € R™ and Wy nt1 € R. Then the following equation holds:
a=-— (Wq,n)_l Wg,n+1 (9)

where &' = [a,,...,a1] and > ja;2""" =p(z +1).

Proof. By definition w1 is given as
_ = T . _ k—1 g+n
Wontl = Z [wylK], .., Wasn—1[E]]" wein[k] with wgi,[k] =cA""(A=1)""b (10)
k=1

Let p(z) = > ,a;z" * be the characteristic polynomial for (A —I). Then from the Cayley-

Hamilton theorem we get

(A= 1" = =3 (A= D" and wypalk] = = Y @y (11)

i=1

Finally, substituting (11) into (10) yields the relation (9). W

Usefulness of these results in model order reduction is shown in the next section.
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3. Model Order Reduction

Let us consider an nth order original model described by the stable proper transfer function H(z) =

N(z)
D(z)

with a minimal realization {z[k + 1] = Az[k] + bulk] , y[k] = cz[k]}.

The objective of model reduction is to find a state space realization {Z[k + 1] = A,.z[k] + byulk] ,
glk] = c,z[k]} with Z[k] € R™! and r < n, such that § approximates y as close as possible for all
admissible inputs.

Let W, ,41 and Wq,r—i—l be the (r + 1)th order GIRG for the original and reduced-order model
respectively, with the ¢ parameter choosen in the set {—r +1,...,0}.

An efficient GIRG-based model reduction technique will be proposed in the following. This tech-
nique can be seen as an extension to discrete systems of the approach considered in [15] . It consists
in an approximation of some impulse response energies by first finding a reduced-order characteristic
polynomial p,(z) and then matching some Markov parameters and/or time-moments.

Let the Gramians W, ,,; and Wq,rﬂ be partitionned as

W w ~ W | w
q,r q,r+1 %7 T ,r+1
Wert1 = T ‘ ) gl = |—=7 . (12)

War+t1 ‘ Wy,r+1 q,r+1 | Wq,r+1

<

Suppose that Wq,r matches the original rth order GIRG: Wq,r = Wy,

We will now calculate a rth degree polynomial p,(z) such that ||[W,,+1 — W,”HH; is minimized :
From Theorem 2.2 W, = —W,,a,, where qu = [a,,...,a1] and Py(2) = X0 a2 = Pylz + 1).
Hence, W, ;1 matches w1 if

a,=- (Wq,r)il Wert1- (13)

As W, is positive definite, its nonsingularity is ensured (Remark 1). Once &, has been computed,

a reduced-order state matrix flq with a form like (6) is readily obtained; it remains to choose input

and output vectors (bq,/é\q) to get our ROM.

From Theorem 2.1 we know that the rth order GIRG for the ROM solves the Lyapunov equation

= AN~

~ ~T
Wor — A WyrAg=2¢, ¢ (14)
where { Z;q,gq} have a form like (7).

The matrices {flq, Bq} are known assuming that a characteristic polynomial for the ROM has been
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computed using (13). Then, (14) suggests that /E\q may be choosen so that some of the time-moments
and/or Markov-type parameters (8) of the original model are matched.

The main steps involved in our reduction procedure are then summarized as:

Step 1. Given an nth order original model (A, b, c), choose any ¢ € {—r + 1,...,0} with r < n and
then determine the particular realization (A, b,, &) using the similarity transformation C, in (4).

Step 2. Solve the Lyapunov equation (5) to determine the nth order GIRG W, ,,.

Step 3. Partition the (r + 1)th order original GIRG as (12) and solve (13) to obtain a rth degree

characteristic polynomial .

~ o~

Step 4. Form the reduced realization (flq, bq,gq): the state matrix flq follows from step 3 with a
structure as in eqn. (6) and {Z;q,/é\q} matches the first r entries of {Bq, éq}.

The condition to preserve the initial stability is given by the next theorem:

~
~ ~

Theorem 3.1 Let (A,,by,¢,) be the rth order ROM of any asymptotically stable initial system
(A,b,c) derived using our GIRG-based algorithm : p,(z) cannot have any zeros outside the unit

circle. Furthermore, provided { ~q,gq} is observable, the ROM 1is asymptotically stable.

Proof. From Theorem 2.1 it is known that the nth order original GIRG W, ,, is the solution to the
Lyapunov equation W, — ATW,,A = Q, with Q, = éréy, and where (A, b, ¢,) is obtained from
any realization (A, b, ¢) using the similarity transformation C, defined in (4). It is seen that the rth

order original GIRG solves the following equation :

=T = A ~+
Wor — AWy Ag = Q1 1:7) +Q, (15)
~+ =
with @, = { g g } , =Wy — Wyra(r+1:r+1,1:7)a, (16)

and where the subscripting notation M (z SR j’) stands for the submatrix with rows i..j and

columns 7.7 of matrix M.
Qq is a positive semidefinite matrix. Therefore, Qq( 1:7,1:7) is positive semidefinite.

~+
To get the required result we shall now show that @, is also a positive semidefinite matrix.
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It is seen from (13) that the following equation holds :

Wyrit(r+1:r+1,1:7)a, = (W r, Werr) (17)
where W, ,[k] is the l;-optimal approximation of the function wyy,[k] with the set {wqy;—1[k]} :

Bysrl) = = 3 il (18)

~+
Hence we have the following expression for the last diagonal entry of @, :

o = (Wysr, Wyir) = (Wgr, Wesr) (19)
From the orthogonality principle we know that the error e[k|=wqy,[k] — Wy, [k] is orthogonal to the
approximating functions: (e, wy4,—;) =0 , i =1,...,r. This implies that the second scalar product

in (19) is the energy of the approximate function:

(Watrs Watr) = (Watr, Warr) (20)
A known property derived from the orthogonality principle is that the following inequality holds :
(Wgtrs Dgr) < (Wotrs Watr) (21)
~+
Hence, it is seen from (16) that the only non-zero entry of (), is positive, which implies that the right-
hand side of the Lyapunov equation (15) is a positive semidefinite matrix. Then the characteristic

polynomial of flq cannot have any zeros outside the unit circle and moreover, if {flq,/é\q} is observable,

Aq is asymptotically stable. B

Remark 2 Proof of Theorem 3.1 reveals an important difference between the discrete case and the
continuous case considered in [15] , where Gramians are defined using operators foto and/or %. Here,
the right hand side of the Lyapunov equation (15) that solves the rth order principal submatrice of
the original GIRG is not only composed from the parameters t; and/or m, of the original realization

~+
in (7), due to the additional term @, .

The controllability of the obtained ROM is now established in the following theorem.

~

Theorem 3.2 Provided that p,(1) # 0, the rth order ROM (A,, Z;q,/é\q) is controllable.

Proof. Let ,(z) be the characteristic polynomial for the state matrix A, and Py(2) =20 a2 =
8



~

Pe(z + 1). Since flq has the same structure as in eqn. (6), it is clear that (Aq -1 ) is a companion
matrix. Now it is seen that

det [C { <;~1q — I) ,qu = { (Eiql)qwﬂgrq iiff:;)je(i

~

where C{.} denotes the standard controllability matrix. Since C { (z?lq -1 ) : bq} and C {Zlq,gq} have
the same rank, the controllability matrix for our ROM realization is of full rank provided that a, # 0.
Noting that @, = p,(1) achieves the proof.

Finally, assuming { :flq,gq} is observable yields the asymptotic stability (see Theorem 3.1), which
implies p,(1) # 0 and therefore controllability; in this case the ROM is minimal.

Remarks:

1) As the ROM matches the ith Markov-type parameters m/ in (8), it also matches the ith Markov
parameters.

2) It is well known that the high frequency behaviour is related to Markov parameters while the
low frequency one is related to time-moments. Therefore, a GIRG with ¢ ~ 0 is expected to give
a better approximation at high frequencies than a GIRG with ¢ ~ —r + 1. Note that the original
DC-gain is preserved for g # 0.

3) The present algorithm is very easy to implement using a standard numerical software (e.g. the

Matlab script is ten lines long and is available upon request to the authors).

4. Example

Numerous examples have been studied in [17] to verify the validity of previous results.
Consider now the 7th order transfer function of a supersonic jet engine inlet proposed by Lalonde
in [18] :

2.043425 — 4.98252° + 6.572* — 5.81892% + 3.6362* — 1.41052 + 0.2997
27 —2.4626 4 3.43325 — 3.3332% + 2.546023 — 1.58422 + 0.7478z — 0.2520

h(z) =

With this model, the characteristics of any order reduction technique is clearly highlighted by

comparing the ROM frequency response with the original response which is characterized by peaks
at distinct frequencies.

Using our GIRG-based technique of the previous section with ¢ = —1 we get the following five-order
9



model (GIRGH)

fz( )= 2.04342% — 3.084223 + 2.16962% — 1.4130z + 0.7100
# T 5 153102 +1.259423 — 0.97702% 4 0.6962z — 0.3241

To measure the approximations, consider the error criteria {Q = |le||5 , e[k] = y[k] — §[k]} where
y[k] and g[k| are the responses of the original and reduced-order model, respectively. For impulse
responses, the criteria is usually normalized: Q' = Q/ ||h|/3.

Table 1 compares GIRG5H with models derived through balanced realization (BR5, see [13] ),

Weighted Impulse Response Gramian (WIRGS, see [2] ) and least-squares with scaling (LS5S5,

see [18] ):
Models  Impulse Error (%) Step Error DC-Gain Error (%)
GIRGS 1.27 0.1139 0
BR5 1.19 00 6.25
WIRGS5 1.13 00 12.69
L5555 2.36 0.0691 0

Table 1. Errors for the reduced order models

Models BR5 and WIRG5S give the best approximations from the point of view of the impulse
response, but their step responses are not acceptable. Model LS5S5 provides a reasonable impulse
response and a close approximation of the original step response. Model derived by GIRG exhibits a
very good behaviour on both impulse and step responses (the DC-gain is retained). The Bode plots
of the original and reduced-order models (WIRG5, LS5S5, GIRG5H) are shown in Figs 1 and 2. Very
small reduction errors are obtained with model GIRG5 at high frequencies and low frequencies, as

well as middle frequencies.

12 T T T 50

10+

!
o
=}

Original

Original
—-——- GIRG5

Magnitude (dB)
Phase (deg)

---- GIRG5

iy

15

=}
T

-150

2 I . . ~200 I . .

-3 -2 -1 0 1 -3 -2 -1 0 1
10 10 10 10 10 10 10 10 10 10
Frequency (rad/sec) Frequency (rad/sec)

Fig. 1 - Bode plots (magnitude) Fig. 2 - Bode plots (phase)
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3]

[4]

[5]

[6]

[7]

8]

[9]

5. Conclusion

A new impulse response Gramian has been introduced for linear time-invariant asymptotically stable
discrete SISO systems. It is easily obtained by solving a Lyapunov equation for a particular realization
and is connected to standard Gramians. It has been further shown that it contains information
about the characteristic polynomial. A model reduction method based on these properties has been
proposed. The rth order ROM is choosen in a set of r solutions: the poles are first computed
through a minimization of a [y error criteria and then we match some Markov parameters and/or
time-moments. This ROM cannot have any poles outside the unit circle and is asymptotically stable
and minimal provided it is observable. This method can ensure a close approximation for a given
frequency range. As shown by the numerical example, the proposed solution compares well with

those obtained with other techniques.
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