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Introduction

Spread spectrum transmissions have been in practical use since the 1950s. They found many applications in military systems due to their suitability for covert message transmission and resistance to jamming [START_REF] Cook | An Introduction to Spread Spectrum[END_REF]. In the early 1980s, spread spectrum technology was proposed for private and commercial use, especially in Code Division Multiple Access ( CDMA ) transmissions. CDMA system has been adopted for use in commercially available wireless local area networks (WLANs) [START_REF] Flikkema | Spread-Spectrum Techniques for Wireless Communication[END_REF]. Another useful feature of CDMA for indoor systems is its low power spectral density. This allows a CDMA system to coexist with licensed communications systems in environments where low levels of electromagnetic interference are desirable, such as hospital. In such environments, CDMA is ideally suited to high data rates being transmitted over hostile fading channels with the minimum of interference to sensitive equipments [START_REF] Oppermann | Guest Editorial Spread Spectrum for Global Communications II[END_REF].

DS-SS is a transmission technique in which a pseudo-random sequence or pseudo-noise (PN) code [START_REF] Sarwate | Crosscorrelation properties of pseudorandom and related sequences[END_REF], independent of the information data, is employed as a modulation waveform to spread the signal energy over a bandwidth much greater than the information signal bandwidth [START_REF] Proakis | Digital Communications[END_REF]. In practical systems, the bandwidth expansion factor, which is the ratio between the chip rate F C and the data symbol rate F S , is usually an integer. The amplitude, and thus the power in the spread spectrum signal, is the same as in the information signal. Due to the increased bandwidth of the spread spectrum signal, the power spectral density must be lower and can then be below the noise level [START_REF] Pickholtz | Theory of Spread Spectrum Communications -A Tutorial[END_REF]. Furthermore, the autocorrelation of a PN code has properties similar to those of white noise, so the spread spectrum signal looks like a white noise, hence it is very difficult to intercept. At the receiver, the signal is despread using a synchronized replica of the pseudo-noise sequence used at the transmitter. The optimum multiple user CDMA receiver is based on a correlator, or a bank of sequence matched �lters, each followed by maximum likelihood sequence estimation detectors (MLSE). The objective of the MLSE is to �nd the input sequence that maximizes the conditional probability, or likelihood of the given output sequence [START_REF] Glisic | Spread Spectrum CDMA Systems for Wireless Communications[END_REF].

In the context of spectrum surveillance, the pseudo-random sequence used by the transmitter is unknown, as well as other transmitter parameters such as duration of the sequence, symbol frequency and carrier frequency. Moreover, the longer the period of the pseudo-noise code is, the closer the transmitted signal will be to a truly random binary wave, and the harder it is to detect [START_REF] Gold | Optimal Binary Sequences for Spread Spectrum multiplexing[END_REF]. In this context, only Tsatsanis et al. [START_REF] Tsatsanis | Blind Estimation of direct sequence spread spectrum signals in multipath[END_REF] have proposed a reliable method to recover the convolution of the spreading sequence and the channel response in multipath environment. Their approach uses a multichannel identi�cation technique due to Moulines et al. [START_REF] Moulines | Subspace Methods for the Blind Identi�cation of Multichannel FIR Filters[END_REF], where the orthogonality property between the signal and noise subspaces is exploited to yield the desired estimate.

In this paper, we propose a new method for estimating the pseudo-random sequence without prior knowledge about the transmitter. Our procedure does not rely on a multichannel framework and is computationally less expensive than that of Tsatsanis et al. The received signal is sampled and divided into temporal windows, the size of which is the pseudo-random sequence period, which is assumed to have been estimated. We prove that the spreading waveform can be recovered from the �rst and second eigenvectors of the sample covariance matrix. This property provides a simple way to estimate the pseudo-random sequence used at the transmitter. Furthermore, useful information about desynchronisation time can be extracted from the eigenvalues. In order to prove the reliability of the proposed technique, we analytically explore the statistics of the eigenparameters estimators, under a small perturbation assumption on the received signal covariance matrix. Numerical simulations are also proposed to complete this performance analysis and to show that the technique performs well in a multipath environment, even at low signal to noise ratio (SNR).

The paper is organized as follows. In Section 2, we give the notations, the hypotheses and we describe our spreading sequence estimation technique. Then, numerical experiments are given in section 3 to illustrate the method in multipath environment. Section 4 is devoted to a performance analysis of our algorithm. Finally, conclusions are drawn in section 5.

Problem formulation

In a direct sequence spread spectrum transmission, a pseudo-noise code generated at the modulator is used in conjunction with an M-ary Phase Shift Keying (PSK) modulation to shift the phase of the PSK signal randomly at the chip rate F C , a rate that is an integer multiple of the symbol rate F S . The bandwidth of the transmitted signal is determined by the chip rate.

Notations and hypotheses

Let a k be a QPSK or BPSK symbol transmitted at time kT S , where T S is the symbol duration. This symbol is multiplied by a pseudo-random sequence of chip duration T C , which spreads the signal bandwidth. This discrete signal is then �ltered, sent through the communication channel and �ltered again at the receiver side. The resulting baseband signal is given by :

y(t) = +∞ X k=-∞ a k h(t -kT S ) + n(t) (2.1)
where n(t) is the noise at the output of the receiver �lter, and h(t) encompasses the effects of the transmission �lter, reception �lter, channel response and the pseudo-random sequence :

h(t) = P -1 X k=0 c k p(t -kT C ) (2.2)
where p(t) denotes the convolution of all the �lters of the transmission chain and {c k } k=0•••P -1 , is the pseudo-noise sequence of length P .

The chip duration T C can be chosen such as . Throughout the sequel, the hypotheses below will be assumed :

-The symbols are centered and uncorrelated; -The noise is AWG (Averaged White Gaussian) and uncorrelated with the signal; -The signal to noise ratio (SNR, in dB) at the output of the receiver �lter is negative, i.e. the signal is hidden in the noise; -The symbol period T S is equal to the spreading code period, that is T C = T S /P ; Its estimation is achieved in a pre-processing step, owing to the method proposed in [START_REF] Burel | Detection of Spread Spectrum Transmissions using �uctuations of correlation estimators[END_REF] for example.

All other parameters are unknown.

Overview of the presence detection of direct-sequence spread spectrum signals (pre-processing step)

The basic principle of any intercept receiver is to take pro�t of the fact that the transmitted signal statistical properties are not the same as the noise statistical properties. For instance, in some simple applications, the signal and noise frequencies are not the same, hence �lters are sufficient to detect the presence of a signal. Here, the application is much more complex, because a spread spectrum signal is specially built to be similar to a noise, in order to have a low probability of intercept (remind that spread spectrum was initially developed for military applications). For instance, the autocorrelation of a spread spectrum signal is close to a Dirac function, as well as the autocorrelation of a white noise (this is due to the pseudo-random sequence). Our intercept receiver acts in two major steps : �rst the presence of any DS-SS transmission is detected and then we proceed to blind spreading sequence estimation before demodulation. The present paper focus on performance analysis of the second step. The pre-processing step, which is detailed in a recent paper [START_REF] Burel | Detection of Spread Spectrum Transmissions using �uctuations of correlation estimators[END_REF] and brie�y overviewed in this paragraph, also leads to an accurate spreading code period estimate which is then used in the rest of the algorithm.

The pre-processing step relies on the �uctuations of autocorrelation estimators, instead of on the autocorrelation itself. Although the autocorrelation of a DS-SS signal is similar to the autocorrelation of a noise, it is proved in [START_REF] Burel | Detection of Spread Spectrum Transmissions using �uctuations of correlation estimators[END_REF] that the �uctuations of estimators are totally different.

In order to compute the �uctuations, the received signal y(t) is divided into M nonoverlapping temporal windows, each of duration T large enough to contain a few symbols. Then an autocorrelation estimator is applied to each window :

d R m yy (τ ) = 1 T Z tm+T t m y(t) y * (t -τ ) dt , m = 1, ..., M (2.3) 
Using the whole set of windows, we can then estimate the second order moment of this autocorrelation estimator :

ρ(τ ) = 1 M M X m=1 ¯d R m yy (τ ) ¯2 (2.4)
By comparing the theoretical �uctuations of ρ(τ ) in case of a noise-only hypothesis to that obtained by computation from the incoming signal, we can detect the presence of any DS-SS transmission. ρ and the crosses correspond to the theoretical average �uctuations plus 4 times the theoretical standard deviation σ (n) ρ on the �uctuations (noise-only hypothesis). Large peaks that are observed, far above m (n) ρ + 4σ (n) ρ , indicate the presence of a DS-SS signal. These peaks are obtained for values of τ which are multiples of the spreading code period (0.775 µs for this example).

Blind estimation of the spreading sequence

Eigenanalysis techniques are exploited to recover the spreading sequence used at the transmitter. A �rst version of this approach, based on principal components analysis, was described in [START_REF] Burel | Blind Estimation of the Pseudo-random Sequence of a Direct Sequence Spread Spectrum Signal[END_REF]. A second one, employing neural networks, was explained in [START_REF] Bouder | Spread Spectrum Codes Identi�cation by Neural Networks[END_REF]. In this paper we will focus on principal components analysis method.

The received signal is sampled and divided into non overlapping windows, the duration of which is T S . Let us note y the content of a window. We can de�ne the covariance matrix :

R = E n y.y H o (2.5)
where H denotes the Hermitian transpose. Since the window duration is equal to the symbol duration, a window always contains the end of a symbol for a duration T St 0 , followed by the beginning of the next symbol for a duration t 0 , where t 0 , the desynchronisation between a window and a symbol is unknown.

Hence we can write :

y = a m h 0 + a m+1 h -1 + n (2.6)
where n stands for the noise; h 0 is a vector containing the end of the spreading waveform for a duration T St 0 , followed by zeroes for a duration t 0 ; h -1 is a vector containing zeroes for a duration T St 0 , followed by the beginning of the spreading waveform.

The equation above then leads to the following expression for the covariance matrix (2.5) :

R = E n |a m | 2 o h 0 .h H 0 + E n |a m+1 | 2 o h -1. h H -1 + σ 2 n I (2.7)
From this equation it is clear that two eigenvalues will be larger than the others. The corresponding eigenvectors will be equal to h 0 and h -1 , up to multiplicative factors.

The eigenvalues can be expressed in decreasing order according to the period symbol T S , the SNR ρ, the sampling period T e and the noise variance σ 2 n [START_REF] Burel | Blind Estimation of the Pseudo-random Sequence of a Direct Sequence Spread Spectrum Signal[END_REF]:

                 λ 1 = ³ 1 + ρ T S -t 0 Te ´σ2 n λ 2 = ³ 1 + ρ t 0 T e ´σ2 n λ i = σ 2 n , ∀ i ≥ 3 (2.8)
The mathematical expressions of the two �rst eigenvalues must be exchanged if t 0 > T S 2 . The spreading sequence can then be recovered, once the corresponding normalized eigenvectors v 0 = h 0 kh 0 k 2 and v -1 = h -1 kh -1 k 2 are concatenated. Besides, it has been shown in [START_REF] Burel | Blind Estimation of the Pseudo-random Sequence of a Direct Sequence Spread Spectrum Signal[END_REF] that the desynchronisation time t 0 and the SNR ρ can be estimated from (2.8) :

       b ρ = ³ λ 1 +λ 2 σ 2 n -2 ´Te T S b t 0 = T e b ρ ³ λ 2 σ 2 n - 1 
´(2.9)

In fact, the covariance matrix cannot be exactly de�ned, but only estimated by the sample covariance matrix :

c R = 1 N N X m=1 y m .y H m (2.10)
where N is the number of temporal windows of duration T S . The performance of the estimation of the spreading sequence will therefore depend on the number N besides the SNR. In the sequel we will suppose the sampling period is set to T e = T C , to make the interpretation of the results easier, but this is not a requirement. In this case the covariance matrix is a P × P complex matrix, where P is the length of the spreading sequence.

To illustrate our algorithm, computer simulations will be given in the next section, to show the method can provide a good estimation of the spreading sequence, even when the received signal is far below the noise level.

Numerical examples -Comparison

In this section, we provide representative comparisons of our approach with the method described in [START_REF] Tsatsanis | Blind Estimation of direct sequence spread spectrum signals in multipath[END_REF]. An example also illustrates the feasibility of our solution in multipath environment.

Example 1. . The goal of this example is to show that our method is a good alternative to the algorithm proposed in [START_REF] Tsatsanis | Blind Estimation of direct sequence spread spectrum signals in multipath[END_REF], whose computational cost is higher due to its matrix dimensionality.

For illustration purposes, we consider a spread spectrum signal generated by spreading a QPSK modulation with a Gold sequence of length 31 (Fig. 2). For comparison the method of [START_REF] Tsatsanis | Blind Estimation of direct sequence spread spectrum signals in multipath[END_REF] is computed when multipath is absent. In this particular case, only the blind estimation of the spreading code used by the transmitter is performed. AWG noise is added to the received signal with SN R = -5 dB. Both algorithms have been used with N = 200 analysis windows. We assume also, the length of the spreading code P and the chip period T C are known as needed by subspace method with multichannel framework, although these hypotheses are not required by our algorithm. The �gures below show the estimated sequence by subspace method with multichannel framework (Fig. 3) and by our eigenanalysis technique (Fig. 4), when a desynchronisation time t 0 = 8 chips is present. The eigenanalysis of c R shows there are two large eigenvalues as demonstrated in section 2. Once the desynchronisation time has been estimated according to the eigenvalues (2.9), it is possible to determine which eigenvector contains the beginning of the spreading sequence and which one the end. At the top of the Fig. 4, the �rst eigenvector is drawn, it contains the end of the spreading sequence during (T St 0 ) followed by zeroes during t 0 , where t 0 is equal to 8 chips, while the second eigenvector at the bottom of Fig. 4 contains zeroes during (T St 0 ) followed by the beginning of the spreading code during t 0 . The eigenvectors can then be concatenated to recover the spreading code used at the transmitter.

Example 2. Results in multipath environment

A Monte Carlo simulation is conducted to evaluate the performance of the proposed method in a multipath environment. A DS-SS signal is generated using a random sequence of length P = 31. The symbols belong to a BPSK constellation. The spreading sequence is shown in Fig. 5. The signal is then transmitted through a multipath channel, with the following impulse response :

h(t) = 1.2 -0.8 δ(t -T C ) + 0.6 δ(t -2T C )
The channel impulse response is depicted in Fig. 6, and the overall response, i.e. the convolution of the spreading code and the channel impulse response, can be seen in Fig. 7. AWG noise is added to the received signal with SN R = -10 dB, the top of Fig. 8 shows an example of the �rst transmitted BPSK chips and the bottom, the received chips corrupted by the noise. To verify the efficiency of our algorithm, the combined response of the spreading code with the channel impulse response has been estimated across a 100 runs Monte Carlo simulation, with N = 200 analysis windows. The estimated impulse response can then be used by a classical receiver in order to recover the transmitted information from the received data.

Nevertheless, when estimating the sample covariance matrix, an error ∆R is made [START_REF] Krim | Smoothed Eigenspace-Based Parameter Estimation[END_REF], which in turn induces an error in the estimated eigenvalues and eigenvectors. To complete our results, we have to pick out the effects of the perturbation on the eigenvalues and eigenvectors due to the estimation of the covariance matrix.

Performance evaluation

In order to demonstrate the performance of the proposed method, compact expressions for the variance and bias of the estimates of the eigenvalues and eigenvectors {λ k , u k } will be derived in the following. As a �rst step, each estimation error {∆λ k , ∆u k } will be written as a Taylor expansion of the elements of ∆R using well-known results from matrix perturbation theory. Then, as the sample covariance matrix follows a complex Wishart law, a statistical analysis of {∆λ k , ∆u k } will be achieved owing to Wishart matrix properties [START_REF]An Introduction to Multivariate Statistical Analysis[END_REF], [START_REF] Muirhead | Aspects of Multivariate statistical theory[END_REF]. Similar studies have been previously carried out in the domain of high-resolution Direction-Of-Arrival (DOA) techniques [START_REF] Krim | Smoothed Eigenspace-Based Parameter Estimation[END_REF], [START_REF] Krim | Operator Approach to Performance Analysis of Root-MUSIC and Root-Min-Norm[END_REF], [START_REF] Marcos | Les Méthodes à Haute Résolution -Traitement dantennes et analyse spectrale[END_REF].

Note that it is not the unique approach to solve our performance analysis problem. In the noise only case ( AWGN), the joint eigenvalue distribution of a complex Wishart matrix is known [START_REF] Edelman | Eigenvalues and Condition Numbers of Random Matrices[END_REF], and use of zonal polynomials [START_REF] Krishnaiah | On the Evaluation of some Distribution that arise in Simultaneous Tests of the Equality of the Latents Roots of the Covariance Matrix[END_REF] even yields the distribution of each eigenvalue in a closed form. However, as noted by [START_REF] Grouffaud | Some properties of ordered Eigenvalues of a Wishart Matrix : Application in detection test and model order selection[END_REF] in a different context, this gives intractable results for the moment. In the sequel the approach of [START_REF] Krim | Smoothed Eigenspace-Based Parameter Estimation[END_REF] has been preferred, due to its simplicity and the standard matrix formalism required.

Theoretical analysis

As exposed in the previous section, our algorithm yields the spreading sequence through an eigenvalue decomposition of the sample covariance matrix (2.10).

As the random data set {y m } m=1,...,N is composed from complex Gaussian, circular, independent vectors, c R is distributed according to a complex Wishart law [START_REF] Muirhead | Aspects of Multivariate statistical theory[END_REF]. Denote ∆R the small Hermitian perturbation on R due to �nite number of temporal windows N :

∆R = c R -R (4.1)
Then, the expected eigenparameters

{λ k , u k } of R are changed into λ k = λ k + ∆λ k (4.2) u k = u k + ∆u k (4.3)
with the following orthogonality constraint on eigenvectors :

u H k ∆u k = 0 (4.4)
Remark 1. The perturbation results derived throughout the sequel will be only valid for simple eigenvalue case of the covariance matrix R (and for associated eigenvectors). This is not a problem since the spreading sequence information is carried by the �rst two simple eigenvalues, in a decreasing order. Hence, the values for subscript k will be 1 or 2 if a desynchronisation between windows {y m } m=1,...,N and symbols exists and k = 1 in the synchronized case. For a detailed discussion about matrix perturbation theory see [START_REF] Golub | Matrix Computations[END_REF] for example.

A statistical analysis of perturbations {∆λ k , ∆u k } has now to be performed in order to check our algorithm efficiency. The following theorem, stated by Krim et al. [START_REF] Krim | Operator Approach to Performance Analysis of Root-MUSIC and Root-Min-Norm[END_REF], provides a relation between these perturbation terms and ∆R. Let {δ n λ k , δ n u k } be the n th order terms of the Taylor expansion of perturbations {∆λ k , ∆u k }, respectively :

∆λ k = δλ k + δ 2 λ k + ... + δ n λ k + ... (4.5 
)

∆u k = δu k + δ 2 u k + ... + δ n u k + ... (4.6) 
Theorem 4.1. Then, by recurrence we have : First order terms,

δλ k = u H k ∆Ru k (4.7) δu k = S k ∆Ru k
Higher order terms (n > 1),

δ n λ k = u H k ∆Rδ n-1 u k (4.8) δ n u k = S k ∆Rδ n-1 u k - n-1 X l=1 δ n-l λ k S k δ l u k where S k = λ k I -R (4.9) 
and S k is its pseudo-inverse :

S k = P X i=16 =k 1 (λ k -λ i ) u i u H i (4.10)
The next properties, due to Wishart distribution of c R, will be of central importance to derive the statistics (mean and variance) of the eigenparameters perturbations. Proofs of these properties can be found in multivariate statistics literature such as [START_REF]An Introduction to Multivariate Statistical Analysis[END_REF] or [START_REF] Muirhead | Aspects of Multivariate statistical theory[END_REF].

Proposition 1.

1. The estimation error (4.1) satis�es :

E{∆R} = 0 (4.11) E{∆R(i, j)∆R(i 0 , j 0 )} = 1 N R(i, j 0 )R(i 0 , j) (4.12) 
2. For any P × P complex matrix A :

E{∆R A ∆R} = 1 N tr(RA)R (4.13) 
Owing to these relations, approximate expressions for the moments of the estimators { λ k , u k } are easily derived, as stated in the next propositions. The mean is obtained by truncating the Taylor expansion (4.5) up to the second order. For the variance, a �rst order truncation is seen to be sufficiently accurate, as shown in the next subsection by Monte Carlo simulations.

Proposition 2. The expansions (4.5) and (4.6) used up to the second order yields the following approximate expressions for the �rst moment of the estimators (4.2) and (4.3) :

E{ λ k } = λ k   1 + 1 N P X i=16 =k λ i λ k -λ i   (4.14) E{ u k } = u k (4.15)
Proposition 3. The expansions (4.5) and (4.6) used up to the �rst order yields the following approximate expressions for the second moment of the estimators (4.2) and (4.3) :

var( λ k ) = λ 2 k N (4.16) cov( u k ) = λ k N P X i=16 =k λ i (λ k -λ i ) 2 u i u H i (4.17)
It should be mentioned now that the spreading waveform is estimated up to an unknown multiplicative factor. This is not a problem because in any transmission system, the channel is modeled by at least an unknown multiplicative factor. Hence, this uncertainty is also included in the channel model. This is why transmission systems use either differential coding, or periodically occurring known symbol sequences, in order to remove this uncertainty.

Hence we have :

b u 1 = z u 1 + ∆u 1 (4.18)
where z is the unknown multiplicative factor. Since this uncertainty is present in any transmission system, we can replace zu 1 by u 1, when our purpose is the evaluation of the performances of our method. Indeed, it is ∆u 1 , and not z, which represents the quality of the estimator.

Since the demodulator uses a correlator to recover the data symbols, a good criterion to evaluate the quality of the estimated sequence is its normalized scalar product with the sequence :

C( u 1 , u 1 ) = u H 1 u 1 k u 1 k ku 1 k (4.19)
where u 1 is the true sequence, u 1 is the eigenvector corresponding to the largest eigenvalue. Note that symbol synchronisation has been assumed above to simplify the presentation. Proposition 4. An approximate expression for the �rst moment of C( u 1 , u 1 ) is

E{C} = 1 - 1 2 λ 1 N P X i=2 λ i (λ 1 -λ i ) 2 (4.20)
Proof. Because u 1 is a normalized vector orthogonal to ∆u 1 , it is clear that

C( u 1 , u 1 ) = 1 k u 1 k = 1 [tr{ u 1 u H 1 }] 1/2
Then, it is straightforward to see that

tr{ u 1 u H 1 } = u H 1 u 1 = 1 + ∆u H 1 ∆u 1
Assuming that ∆u H 1 ∆u 1 ¿ 1, we obtain the following expression by truncating the series expansion up to the �rst order:

C( u 1 , u 1 ) = 1 - 1 2 ∆u H 1 ∆u 1
Finally, replacing ∆u 1 by its �rst order approximation (4.7) yields the desired relation (4.20).

Veri�cation by Monte Carlo simulations

Numerical simulations are now proposed in order to con�rm the effectiveness of our algorithm in practical situations.

It should be noted that all the previous analytical approach is based on various approximations : The signal covariance error ∆R has been assumed to be small in norm, which means that we have only considered the asymptotical case (N → ∞). Also, other errors are caused by various Taylor series truncations when evaluating means or covariances.

Moreover, it is interesting to study the performance degradation in estimating the spreading sequence when only a short data record, i.e. a small number of windows N, is available.

In the following example, we show a comparison between the approximate analytical eigenvalue distribution ( 4.14 and 4.16) and the same distribution derived by Monte Carlo simulations, for various sizes of samples set N and a �xed SNR.

Example 3. We compute a QPSK signal spread by a Gold sequence of length 31, corrupted by a AWG noise with SNR = -5 dB. The symbol synchronisation is assumed here for the purpose of illustration, but this is not a requirement for the above analytical results to be valid. In this case, the signal information is exclusively carried by the �rst eigenvalue . Fig. 10 depicts the true eigenvalue (o) and the average estimation (+) predicted by equation (4.14) ± the standard deviation predicted by equation (4.16). In Fig. 11, the average eigenvalue ( * ) ± the standard deviation is plotted across a Monte Carlo simulation consisting of 500 runs. It is clearly seen that our analytical results (Fig. 10) compare well with those obtained with Monte Carlo experiments (Fig. 11); we can note that the theoretical second order moment (4.16) tends to be overestimated but as will be seen on the next �gure this will not affect the prediction of the spreading code estimate accuracy. Another observation is that to get a correct estimation of the eigenvalues/eigenvectors and as a consequence a correct estimation of the spreading code, about 150 analysis windows are required (for a SNR of -5 dB). The next example is proposed to evaluate the average error in estimating the spreading sequence for different values of {N, SN R}.

Example 4. We consider a QPSK modulation again, spread by a Gold sequence of length 31. Criterion (4.19) is chosen as the mean to re�ect the efficiency of the spreading sequence estimation. Fig. 12 shows the mean of the normalized scalar product of the estimated sequence with the true one ( * ) predicted by equation (4.20), as well as the average value (o) obtained via 100 runs of a Monte Carlo simulation. From this �gure, we can have an idea of the number of windows N and the SNR from which a good accordance between the estimated sequence and the true one can be reached.

Another way to bring out our results is to check the average number of sign errors between the true sequence and the estimated one. A 100 runs experiment has been done with a �xed number of temporal windows N = 200. The tables below show the percentage of sign errors versus the SNR in dB, when the signal is well synchronized (Table 1), as well as those obtained if a desynchronisation time t 0 = 8 chips is present (Table 2).

SNR (dB)

-16 -15 -14 -13 -12 -11 -10 -9 -8 Sign errors (%) 1.33 0.4 0.15 0.05 0.01 0 0 0 0 Table 1 : Percentage of sign errors in the spreading sequence versus SNR (synchronized case)

SNR (dB)

-16 -15 -14 -13 -12 -11 -10 -9 -8 Sign errors (%) 4.1 2.7 1.37 0.9 0.45 0.13 0.01 0 0 Table 2 : Percentage of sign errors in the spreading sequence versus SNR (desynchronized case)

We can draw a parallel between Fig. 12 and Table 1 when the number of windows is �xed to N = 200, to con�rm the conclusions.

For comparison, the tables below present the performances of the subspace method with multichannel framework [START_REF] Tsatsanis | Blind Estimation of direct sequence spread spectrum signals in multipath[END_REF], in the same conditions as above. It is clearly seen that our algorithm is a good alternative, with a lower computational cost.

SNR (dB)

-16 -15 -14 -13 -12 -11 -10 -9 -8 Sign errors (%) 1.2 0.33 0.15 0 0 0 0 0 0 Table 3 : Percentage of sign errors in the spreading sequence versus SNR (synchronized case)

SNR (dB)

-16 -15 -14 -13 -12 -11 -10 -9 -8 Sign errors (%) 2.32 0.73 0.34 0.17 0.02 0 0 0 0 Table 4 : Percentage of sign errors in the spreading sequence versus SNR (desynchronized case)

Conclusion

The blind spreading sequence estimation problem in a DS-SS transmission system has been considered in this paper. The proposed algorithm is very easy to implement and requires a limited computational cost since it is based on a single eigenvalue decomposition of the received signal sample covariance matrix. This process also enables the estimation of parameters such as SNR or desynchronisation time. A performance analysis has been investigated. An analytical approach shows the efficiency of the proposed estimators asymptotically. By complementary Monte Carlo simulations it is seen that a good performance can even be achieved for a moderate length of the data record and a low SNR. No hypothesis was assumed on the nature of the spreading sequence : it can be a sequence generated by pseudo-random shift registers, such as Gold sequences, but this is not a requirement. Once estimated, the sequence can be used by a traditional spread spectrum receiver in order to retrieve the information symbols.

Fig. 1 -

 1 Fig. 1 -Example of DS-SS signals detector output (Gold code of length 31 at a chip rate F c of 40 MHz in a Gaussian channel with SNR of -5 dB) This result is illustrated by �gure 1 where the �uctuations of ρ(τ ) are plotted. The horizontal line show the theoretical average �uctuations m (n)ρ and the crosses correspond to the theoretical average �uctuations plus 4 times the theoretical standard deviation σ(n) 
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 2 Fig. 2 : Gold sequence
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 34 Fig. 3 : Subspace method Fig. 4 : The proposed approach with multichannel framework
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 78 Fig. 5 : Spreading code Fig. 6 : Channel impulse response
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 9 Fig. 9 : Monte Carlo results on estimated impulse response
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 10 Fig. 10 : Analytical distribution Fig. 11 : Monte Carlo simulations
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 12 Fig. 12 : Quality of the estimated sequence evaluation owing to the criterion C
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