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Abstract�In the context of spectrum surveillance (non cooper-
ative context), a robust synchronization procedure is presented, in
order to estimate the period symbol and timing offset of a direct
sequence spread spectrum signal. Experimental results are given
to illustrate the performances of the algorithm.

I. INTRODUCTION

Spread spectrum transmissions have been in practical
use since the 1950�s [1]. They found many applications
in military systems due to their low probability of inter-
ception. Nowadays, they are also widely used for com-
mercial applications, especially for code division multi-
ple access (CDMA) or global positioning system (GPS)
[2].
Direct-sequence spread spectrum (DS-SS) is a trans-

mission technique in which a pseudo-noise sequence
or pseudo-random code [3], independent of the infor-
mation data, is employed as a modulation waveform to
spread the signal energy over a bandwidth much larger
than the information signal bandwidth [4]. Indeed, the
DS-SS signal can be transmitted below the noise level.
In practical systems, the pseudo-random sequence, as
well as the carrier and symbol frequencies, are known
by the receiver. The signal is then correlated with a
synchronized replica of the pseudo-noise code at the re-
ceiver side, in order to retrieve the symbols. However,
in the context of spectrum surveillance, all these param-
eters are unknown. It becomes therefore very difcult
to detect and demodulate a DS-SS signal. In this con-
text, Tsatsanis et al. have proposed a reliable method
to recover the convolution of the PN sequence and the
channel response in multipath environment [5], assum-
ing that the chip period Tc is known with high precision,
as well as the number of symbols in the PN sequence.
In [6], we proposed a simple efcient algorithm to es-

timate the spreading sequence, assuming only a precise
estimation of the symbol period T . However, synchro-
nization is the weakest point of this algorithm. Indeed,
it is a difcult problem because synchronization must
be performed in a blind context, that is without know-
ing the spreading sequence, and even before estimating
it. This is the reason why, in this paper, we propose a
more robust blind synchronization algorithm. We only
assume the signal has been detected and the symbol pe-
riod has been estimated through the method proposed in

[7]. We remind that the procedure is based on two par-
allel computations : the �theoretical path�, in which we
compute the theoretical behavior of the uctuations of
the second order moments estimators in the case noise
alone is present, and the �experimental path�, in which
the actual uctuations are computed. When a DS-SS
signal is hidden in the noise, the actual uctuations go
outside the noise-only bounds provided by the theoreti-
cal path for every delay multiple of the symbol period.
We are going to show that the synchronization approach
enables us to adjust more precisely the symbol period
estimation.
The paper is organized as follows. In section 2, we

give the notations and hypotheses. Then the proposed
approach is described in section 3. Finally, numerical
results are provided to illustrate the method in section 4
and a conclusion is drawn in section 5.

II. PROBLEM FORMULATION

A. Notations and hypotheses

In a DS-SS transmission, the symbols ak� whose
constellation is usually a quaternary phase shift keying
(QPSK), are multiplied by a PN code �ck�k�0���P�1 of
chip duration Tc, which spreads the bandwidth. This
signal is then ltered, sent through the channel and l-
tered again at the receiver side; The convolution of all
the lters of the transmission chain will be denoted as
p�t�. The resulting baseband signal is given by

y�t� �
���

k���
akh�t � kT �� n�t� (1)

with

h�t� �
P�1�

k�0
ck p�t � kTc� (2)

where n�t� stands for the noise at the output of the re-
ceiver lter. The hypotheses below will be assumed :
1. The symbol period T has been estimated according
to [7]; All other parameters are unknown;
2. The noise is averaged white gaussian (AWG) and
uncorrelated with the symbols (centered and uncorre-
lated);
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3. The signal to noise ratio (SNR (dB)) at the output of
the receiver lter is negative: the signal is hidden in the
noise.

B. Problem analysis

The received signal is sampled and divided into non
overlapping windows, the duration of which is T . Let
us note x the content of a window, and dene the cor-
relation matrix R � E

�
x�xH

�
, where H denotes the

Hermitian transpose. In [6] it has been proved, that the
eigenanalysis of this matrix yields two large eigenval-
ues:

�1 �
�
1� � T � t0

Te

�
� 2n � �2 �

�
1� � t0

Te

�
� 2n

(3)
where � denotes the SNR, t0 is the unknown desyn-

chronization time between the symbols and the window,
Te is the sampling period and � 2n � �i � i > 3 is the
noise variance.
In [6], we have proved, that the spreading sequence

can be recovered from the rst and the second eigenvec-
tor corresponding to the two large eigenvalues. How-
ever, the desynchronization time must be estimated to
know which eigenvector describes the beginning of the
sequence and which one the end. The desynchroniza-
tion time t0� as well as the SNR �, can be estimated
from (3):

�
�
�
�� �

�
�1��2
� 2n

� 2
�
Te
T

�t0 � Te
��

�
�2
� 2n
� 1
� (4)

We have also noted that the less accurate the value of
�t0 will be, the higher the noise variance will be. There-
fore we perform the desynchronization time estimation
�t0 by using the more robust algorithm proposed below,
based on the relation between the correlation matrix and
its eigenvalues.

III. ROBUST SYNCHRONIZATION OF DS-SS
SIGNALS

In a rst part, we give notations and present the out-
line of our synchronization procedure. Then we will
focus on implementation aspects.

A. Overview of the synchronization scheme

Let y, a column vector, be the discrete version of the
received baseband signal y�t� :

y � �y�k��k�1�2���� � �y��k � 1�Te��k�1�2���� (5)

where Te � 1�Fe denotes the sampling period.
Throughout the sequel, the knowledge of a rough es-
timation T �0� of the symbol period, according to [7], is
assumed before running our algorithm. Then, the prob-
lem under consideration is to �ne tune� the symbol pe-
riod estimation around its initial value T �0� and to de-
cide which sample in y corresponds to the beginning of
the rst symbol. We will proceed by iterations to ad-
dress these closely related problems. The best estimate

of the symbol period will be searched in the following
set:

T n�s �
�
Tn � R : Tn � T �0��1� n�s �� n � [�n� n]

�
(6)

Notice that T �n
�s
is of very limited dimension (less than

20, typically) if a good initial estimate T �0� is consid-
ered, which is true if the detector [7] has been used. The
beginning of the rst symbol will be searched in y for
all the elements of T �n

�s
, as explained in the sequel.

First, the signal is resampled according to a particular
value Tn of the symbol duration, in order to have an
integer number of samples per symbol. M will denote
the number of samples per symbol and �N � 1� will be
the total number of symbols in y.
Then, the beginning of the rst symbol y� �d � 1� is

searched in a set of M samples :

�d � [0�M � 1] (7)

The desired estimate �d will be derived from a
set of covariance matrices �Rd �Tn��d�[0�M�1] corre-
sponding to the set of time-domain analysis window
�yd�k ; k � 1� 2� ���� N�d�[0�M�1] :

yd�k � y�d � �k � 1� M � 1 : d � k M� (8)

Rd �
1

N

N�

k�1
yd�k �y

H
d�k � E

�
yd�k �y

H
d�k

�
(9)

where the subscripting notation v�i : j� stands for the
sub-vector with elements i � � � j of vector v.

Now, a signal matrix of augmented size (2M rows, N
columns) is constructed as:

Y �
�
y0�1 y0�2 ��� y0�N
y0�2 y0�3 ��� y0�N�1

�
(10)

Then, it is obvious that the associated covariance ma-
trix yields the whole set �Rd �Tn��d�[0�M�1]:

R �

�
�����������������
�����������������

E
�
Y�YH

�

d

2MMd
R

(11)

Now, it is shown in the following property that �Rd�
contains information about the desynchronization time,
where ��� denotes the Frobenius matrix norm :



Property 1: The beginning of the searched symbol
can be obtained as the following maximum :

�d � arg max
d�[0�M�1]

�
�Rd �Tn��2

�
(12)

Obviously, the estimated desynchronization time is
�t0 � �d�Te.

Proof: From equations (4), it appears that �1 is
maximum when the desynchronization is null. Hence,
a good approach to estimate d is to maximize the rst
eigenvalue.
However, this approach is computationally intensive

because synchronization has to be performed for each
element of T �n

�s
. Thus, this approach would require

many eigenvalue computations. This is the reason why
we propose an alternative approach, which provides the
same result, but without requiring explicit computation
of the eigenvalues.
From basic eigenanalysis theory [8], we know that:

�Rd�2 �
N�

i�1
��i �

2 (13)

Since ��i � i � 3� does not depend on the desynchro-
nization time (3), it is clear that �Rd�2 is maximum
when ��1�2 � ��2�2 is maximum. Using (3), we can
write:

�1 � �2 � c (14)

where c is a constant which does not depend on the
desynchronization time. Hence:

��1�
2 � ��2�2 � 2 ��1�2 � 2c�1 � c2 (15)

The derivative of this expression with respect to �1 is
4�1 � 2c. Let us assume that the eigenvalues are sorted
in decreasing order. The derivative above is always pos-
itive, because �1 � c�2 (otherwise, (14) would lead to
�2 � �1). The result is that �Rd�2 is an increasing
function of �1, hence maximizing �1 is equivalent to
maximizing �Rd�2.
The interest of this approach is that computation of

�Rd�2 is considerably faster than computation of the
eigenvalues (furthermore, we can take advantage of re-
dundancies between matrices Rd for successive values
of d).
This iterative process will be repeated for each value

of the symbol duration around its rst estimate T �0�, and
the nal synchronization will be achieved as

� �T � �d� � arg max
d�[0�M�1]
T�T �n

�s

�
�Rd�T ��2

�
(16)

Then, the signal is delayed according to this last esti-
mate :

�y �
�
yH�d�1� y

H
�d�2� ���� y

H
�d�N

�H
(17)

This synchronized version of the received signal is
then used to estimate the spreading sequence, using the
method described in [6].

B. The synchronization algorithm

Numerous simulations have revealed that our spread-
ing sequence estimation procedure performs well for
short data records (duration of y�t�), even at low signal
to noise ratio (SN R � �10 dB). Hence, the received
discrete-time signal y is rst truncated to keep �N�1� �
200 symbols (signal time duration D � �N � 1��T �0�)
in accordance with the initial sampling frequency and
the initial symbol duration T �0�. A resampling by linear
interpolation of y�t� is then done (frequency Fe� sam-
pling period Te) to have an integer number of samples
per symbol. In order to guarantee the robustness of the
synchronization, the set T �n

�s
in (6) is constructed with a

proper value of �s :

�s �
Te
2D

(18)

Hence, the synchronization process will lead to an
error of 1/4 chip in the worst case.

In order to limit the running time of the algorithm,
we have found that it is judicious to apply the estima-
tion procedure in two steps: we begin with a medium
accuracy ��s , and then the nal high accuracy �s is con-
sidered (18). The main steps involved in our synchro-
nization procedure are then summarized as follows.

Step 0) We make the assumption that a �rough esti-
mation� of the symbol duration is available : T �0�
Step 1)The following discrete set is then constructed:

T �n�
��s

�
�
Tn � R : Tn � T �0��1� n��s � � n �

�
��n����n�

��

where the time sampling parameter is given as (for ex-
ample)

��s � 4�s
Usually, �n� � 5 is seen to be a sufcient value. Pro-

ceeding by iterations, all the values of symbol duration
Tn � T �n�

��s
will be considered to process as follows:

� A resampling step is performed in order to have an
integer number of samples per symbol. M will denote
the number of samples per symbol, and N � 1 will be
the total number of symbols.
� The partitioned signal matrix Y is constructed as in
(10).
� The covariance R associated to Y is computed.
As shown in (11), a set of covariance matrices
�Rd �Tn��d�[0�M�1] corresponding to various delays d
of analysis windows is readily obtained as diagonal
blocks.
� The best estimate of the beginning of the rst symbol
is derived as (12).
The best synchronization with accuracy ��s will be

achieved in �2 �n� � 1� iterations as :

�T �1�� d�1�� � arg max
d�[0�M�1]
T�T �n�

��s

�
�Rd�T ��2

�
(19)



Step 2) A second discrete set is constructed for the
symbol duration:

T �n
�s �

�
Tn � R : Tn � T �1��1� n�s� � n � [��n���n]

�

where �n � 3, typically. Then, the iterative process
described before (from 1. to 4.) is repeated and the nal
synchronization will be obtained as:

� �T � �d� � arg max
d�[0�M�1]
T�T �n

�s

�
�Rd�T ��2

�
(20)

IV. SIMULATIONS

To describe the approach, a DS-SS signal is generated
using a complex random sequence of length 31 with a
chip period Tc � 0�02 �s. The symbols belong to a
QPSK constellation, which period is T � 0�62 �s. We
assume the rst step in our blind spreading sequence es-
timation procedure has still to be done using the detector
[7]. We have then an estimation T �0� of the symbol pe-
riod, (T �0� � 0�6196�s�, which we have now to adjust
to be well synchronized. The SNR at the output of the
receiver lter is equal to -10 dB.
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Fig. 1. Symbol period estimation

In Fig. 1 the values of the criterion for all the esti-
mated symbol durations Tn are shown. The central part
of the gure represents step 2 of the algorithm with the
proper value of �s , while step 1 is illustrated on each
side with ��s � 4�s . It is clearly seen on this gure, that
the best symbol period estimation is �T � 0�62 �s�
Point 4 of the algorithm is represented on Fig. 2,

where the squared Frobenius matrix norm is drawn ver-
sus the delay d. The best estimate of the beginning of
the rst symbol is equal in this example to�t0 � 0�10�s.
Once we have answered the two questions above,

the signal is delayed according to (17). As described
in section II. B, we can dene the correlation matrix
R � R�d��T ��
Since the signal is well synchronized, the eigenanal-

ysis of R shows that there is only one large eigenvalue,

whose corresponding eigenvector provides the spread-
ing sequence [6].
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V. CONCLUSIONS
In this paper, the problem of DS-SS signals synchro-

nization has been considered in a context of blind esti-
mation. Indeed, in spectrum surveillance applications,
we do not know the spreading sequence. Our procedure
is based on an iterative search of the beginning of the
rst symbol for various symbol durations in the neigh-
borhood of an initial estimate. The property that an ef-
cient synchronization can be achieved by maximizing
the squared Frobenius norm of a covariance matrix is of
central importance in our approach. We emphasize the
limited computational cost of the algorithm by a proper
choice of the initial symbol duration, using results from
[7]. A numerical simulation illustrates the robustness
of the method in a very noisy environment (SNR of -10
dB).
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