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Approximate Tradeoffs on Matroids1

Laurent Gourv ès2,3, Jérôme Monnot 2,3 and Lydia Tlilane 3

Abstract. We consider problems where a solution is evaluated with
a couple. Each coordinate of this couple represents an agent’s utility.
Due to the possible conflicts, it is unlikely that one feasible solution
is optimal for both agents. Then, a natural aim is to find tradeoffs.
We investigate tradeoff solutions with guarantees for the agents.The
focus is on discrete problems having a matroid structure. We pro-
vide polynomial-time deterministic algorithms which achieve sev-
eral guarantees and we prove that some guarantees are not possible
to reach.

1 Introduction

This paper deals with the existence and computation of a solutions
which is common to two agents. The interest of agenti ∈ {1, 2} over
the set of possible solutions is captured by a utility functionui. When
these functions are conflicting, it is unlikely that a feasible solution
s, such thatu1(s) andu2(s) are both nearly optimal, exists. So one
has to make a tradeoff.

A natural way to cope with several functions is to aggregate them
in a weighted sum. For example, which solutions maximizes the util-
itarian functionfλ(s) := λu1(s)+(1−λ)u2(s) for someλ ∈ [0, 1]?
Unfortunately, this approach has two issues. The first issue is about
computation: finding a solution which optimizesfλ may be puzzling
whenu1 andu2, though separately solvable, require completely dif-
ferent algorithms. The second issue is that an optimum tofλ may
lead to unbalanced solutions. Ifs∗i denotes the solution that max-
imizesui(s

∗
i ) then it is possible that a solutions, though optimal

for fλ(s), satisfiesu1(s)/u1(s
∗
1) ≈ 1 andu2(s)/u2(s

∗
2) ≈ 0 (or

converselyu1(s)/u1(s
∗
1) ≈ 0 andu2(s)/u2(s

∗
2) ≈ 1). This patho-

logical case indicates thats can be unfair, i.e. close to optimality for
one agent, and very far from optimality for the other agent.

Then we address the following questions: For which lower bounds
on u1(s)/u1(s

∗
1) andu2(s)/u2(s

∗
2) a solutions is guaranteed to

exists? Which algorithm can cope with a possibly different nature of
the agent’s utility functions and such that non triviala priori lower
bounds onu1(s)/u1(s

∗
1) andu2(s)/u2(s

∗
2) can be derived?

In this article, we seek for(α, β)-approximate algorithms, i.e. al-
gorithms returning a solutions such thatu1(s)/u1(s

∗
1) ≥ α and

u2(s)/u2(s
∗
2) ≥ β for every instance. Of particular interest are the

vectors(α, β) which are optimal in the sense of Pareto. There are
several papers that deal with(α, β)-approximate algorithms, includ-
ing [11, 24, 19, 22, 10, 9].

The article is devoted to problems having amatroidstructure (de-
fined in Section 3). There is a rich literature on matroids [21, 18, 13].
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They model many practical situations (e.g. schedules, forests of a
graph), possess many remarkable structural properties and admit ele-
gant polynomial-time algorithms. These are motivations for studying
tradeoffs on matroids.

Throughout the paper we assume that the utility of the first agent
is additive while the utility of the second agent is more complex; it
is a particular submodular function which captures more elaborate
preferences.

A typical example of the instances covered in this article is the
following.

Example 1 A group of tourists is visiting Montpellier forn days and
they ask a local travel agency to arrange the stay with (at most) one
activity per day. There arem activities available:a1, · · · , am. Each
ai has

• a labelL(ai) which characterizes the activity (e.g. visiting a mon-
ument, attending a show, eating at a gastronomic restaurant, etc);
there are typically several activities with the same label. The la-
bels constitute a partition of the activity set.

• a list of daysT (ai) during whichai can be scheduled;
• a non negative weightw(ai) indicating what the travel agency

earns when the activity is scheduled.

Each labelℓ has a non negativegain, denoted byg(ℓ), which cap-
tures a tourist’s interest for any activityai such thatL(ai) = ℓ.

If A denotes the subset of activities actually scheduled then
the travel agency would like to maximize its profit

∑

a∈A
w(a).

On the other hand, the tourists’s viewpoint is different since they
want

∑

ℓ∈{L(a):a∈A} g(ℓ) to be maximized. Here we assume that a
tourist’s utility increases when he does an activity of a new kind (no
activity with the same label was done before).

The tourist/travel agency problem has a matroid structure usually
calledtranversaland explained below.

2 Related work and contribution

In this article, we study bicriteria approximation of labeled matroid
where the utility of the two agents are in conflict. Hence, it is un-
likely that the best strategy for the first agent is also the best one for
the second agent, as illustrated by the tourist/travel-agency problem.
One way of tackling this problem is to approximate the Pareto set ie.,
the set of non-dominated solutions (any improvement on one objec-
tive induces a deterioration on another objective). This point of view
has been studied in the literature in several papers [22, 20, 19, 3].
When we produce a unique solution to approximate the problem,
this approach is similar in the spirit to the notion of max-min fair-
ness [2, 4, 12, 14, 10]. Fairness has been initially considered in
economics and social choice theory where fairness notions based



on some axiomatic characterizations such as proportional fairness,
envy-freeness and max-min fairness [5, 16, 15, 14, 12, 17]. Thegoal
of the max-min fairness criterion is to maximize the satisfaction of
the least satisfied agent where the individual utilities of each agent
is normalized in order to lie on the same scale [4, 12]. An(α, β)-
approximation gives the satisfaction of the two agents so the satis-
faction of the least satisfied agent ismin{α, β}.

In this article we first recall definitions on matroids (Section 3).
Section 4 presents the model studied in this paper and Section 5 gives
the main definitions on multicriteria approximation.

Then we extend a result of [9] which deals with two agents hav-
ing additive utility functions and willing to build a common span-
ning tree (a particular matroid problem). In Section 6, we propose a
(1/2, 1/4)-approximation algorithm which simulates a natural pro-
cess where two agents build a common solution. The general com-
putational complexity is mentioned in Section 6 and followed by an
algorithm finding a particular lexicographic optimum. In Section 8,
we study a particular case, called uniform case, and show the follow-
ing results: on the one hand, we produce within polynomial-time, a
( k−1

k
, 1
k
)-approximation in the uniform case, for any positive integer

k given as the input, and on the other hand, we exhibit some instances
without any(α, 1 − α)-approximation in the uniform case, for any
α ∈ (0; 1) with α /∈ { k−1

k
: k is a positive integer}. Some open

questions are indicated in Section 9.

3 Matroids

Matroids play an important role in combinatorial optimization and
graph theory. We briefly mention some basic definitions, properties
and algorithms on matroids and refer the reader to [21, 13, 18] for
deeper expositions.

A matroidM = (X, F) consists of a finite set ofn elementsX
and a collectionF of subsets ofX such that:

(i) ∅ ∈ F ,
(ii) if F2 ⊆ F1 andF1 ∈ F thenF2 ∈ F ,
(iii) for every coupleF1, F2 ∈ F such that|F1| < |F2|,∃ x ∈ F2\F1

such thatF1 ∪ {x} ∈ F .

By induction(iii) is equivalent to

(iii′) for every coupleF1, F2 ∈ F where|F1| < |F2|, ∃A ⊆ F2\F1

with |A| = |F2| − |F1| such thatF1 ∪A ∈ F .

The elements ofF are calledindependent, the element of2X \ F
dependent. Inclusionwise minimal dependent sets are calledcircuits
and inclusionwise maximal independent sets are calledbases. All
bases of a matroidM have the same cardinalityr(M), defined as the
rankofM . Given a matroidM = (X, F) and a subsetX ′ ⊂ X, the
restrictionofM toX ′, denoted byM|X ′, is the structure(X ′, F ′)
whereF ′ = {F ∈ F : F ⊆ X ′}. If X ′ ∈ F , the contraction2

ofM by X ′, denotedM/X ′, is the structure(X \X ′, F ′) where
F ′ = {F ⊆ X \X ′ : F ∪X ′ ∈ F :}. It is well known thatM|X ′

andM/X ′ are matroids.
Typical examples of matroids are the following:

• The forests (set of edges which do not admit a cycle) of a multi-
graphG form a matroid usually called thegraphic matroidof G.
A base in this matroid is a spanning tree.

2 Actually, the contraction is defined in the literature for any X
′ ⊂ X, and

whenX′ ∈ F the definition is similar to the one given in this paper.

• Givenk disjoint setsE1, . . . , Ek which forms a ground setE =
∪k

i=1Ei andk non negative integersbi (i = 1..k), the setsF ⊆
E satisfying |F ∩ Ei| ≤ bi form a matroid usually called the
partition matroid.

• Given k (not necessarily disjoint) setsE1, . . . , Ek, subsets of a
ground setE, a partial transversalis a setT ⊆ E such that an
injective mapΦ : T → [1..k] satisfyingt ∈ EΦ(t) exists. Then
(E, T ) whereT = {T ∈ 2E : T is a partial transversal ofE} is
a matroid usually called thetransversal matroid.

Returning to Example 1, letE = {a1, a2, ..., am} a set of activities
andEi ⊆ E the subset of activities available on dayi, i = 1..n. A
set of activitiesT ⊆ E is feasible if it exists an injective mapping
Φ : T → [1..n] combining at most one activity ofEi per dayi, i =
1..n.

A matroid is saidsimpleif no single element, or pair of elements,
is a circuit [18]. For example, the forests of a simple graph define a
simple matroid.

When every elemente ∈ X has a weightw(e) ∈ R
+, a typi-

cal optimization problem consists of computing a baseB ∈ F that
maximizes

∑

e∈B w(e). This problem is solved by the following al-
gorithm:

Algorithm 1 GREEDY

Require: M = (X, F), w : X → R
+

1: SortX = {e1, · · · , en} such thatw(ei) ≥ w(ei+1),
i = 1..n− 1

2: SetF = ∅
3: for i = 1 to n do
4: if F ∪ {ei} ∈ F then
5: F ← F ∪ {ei}
6: end if
7: end for
8: return F

Note that the execution ofGREEDY on a forest matroid coincides
with Kruskal’s algorithm for maximum weight spanning trees.

We always assume that anindependence oraclecan decide within
polynomial time whether a setF is independent or dependent. Given
two matroids(X, F1) and(X, F2) defined over the same set of
elementsX, there are algorithms (more elaborate thanGREEDY) to
solve the following problems in polynomial time [13, 21]:

• find an independentF ∈ F1 ∩ F2 of maximum cardinality.
• when every elemente ∈ X has a weightw(e) ∈ R

+, find an
independentF ∈ F1 ∩ F2 that maximizes

∑

e∈F
w(e).

4 The model: two agents on a matroid

LetM = (X,F) be a matroid and consider the following functions:

• w : X → R
+ wherew(x) is called theweightof x ∈ X;

• L : X → {ℓ1, . . . , ℓp} where{ℓ1, . . . , ℓp} is the set of labels and
L(e) is called the label ofe;

• g : L → R
+ whereg(ℓ) is thegainof labelℓ.

Note thatw is additive whileg has a more general form (it is a
particular submodular function).

For the ease of presentation we often writeg(x) instead of
g(L(x)) for x ∈ X. The labels of a setX ′ ⊆ X is a set denoted
byL(X ′) and defined as

⋃

x∈X′{L(x)}. In the tourist/travel-agency
problem, the labels{ℓ1, . . . , ℓp} are the activity types.



We study a model whereF is the set of feasible solutions. The first
and second agent’s utilities arew andg, respectively. A setF ∈ F is
then evaluated with two objective functions:w(F ) =

∑

x∈F
w(x)

andg(F ) =
∑

l∈L(F ) g(l) which should be maximized. An instance
is then a tuple〈M, w,L, g〉.

As previously mentioned,GREEDYfinds a baseF1 that maximizes
w(F1). FindingF2 that maximizesg(F2) can be done in polyno-
mial time via the search for a maximum cost intersection of two
matroids. The first matroid isM = (X,F). The second matroid
M′ = (X,F ′) is a partition matroid defined by the labels ofX:
F ′ := {S ⊂ X : |L(S)| = |S|}. Every elementx ∈ X has a cost
c(x) defined asg(L(x)). Use any appropriate algorithm to compute
a maximum cost independent inF∩F ′ (see [13, 21]) and complete it
into a baseF2 if necessary. It is not difficult to show that the resulting
base maximizesg.

5 Non trivial approximation

When focusing on a particular agenti, we say that an algorithmA
is ρ-approximate if, for every instance,A returns a solutions sat-
isfying ui(s)/ui(s

∗
i ) ≥ ρ. Heres∗i is a solution which maximizes

ui(s
∗
i ) andρ ∈ [0, 1] is called theapproximation ratioor perfor-

mance guarantee[23].
When dealing withk ≥ 2 agents, we say that an algorithmA is

(ρ1, . . . , ρk)-approximate if, for every instance,A returns a solution
s satisfyingui(s)/ui(s

∗
i ) ≥ ρi for i = 1..k. Actually the vector

(u1(s
∗
1), . . . , uk(s

∗
k)) is often called theideal point[8] since it is the

image of an unlikely feasible solution where optimality is reached for
all agents. In this paper we propose algorithms which approximate
this point.

Obviously, returning a solution that maximizesw (resp.g) gives
a (1, 0)−approximation (resp.(0, 1)−approximation) but we expect
α andβ to be positive so that the solution constitutes a non trivial
tradeoff. Next examples show that, for the general model considered
in this article (described in Section 4), there is no hope for a non
trivial (α, β)-approximate tradeoff (such thatα > 0 andβ > 0) if
we consider the whole class of matroids.

Example 2 Consider the matroid(X = {a, b},F = {∅, {a}, {b}}
wherew(a) = 1, w(b) = 0, ℓ(a) = l, ℓ(b) = l′, g(l) = 0 and
g(l′) = 1. The rank is1.

Example 3 Consider the matroid (X = {a, b, c},F =
{∅, {a}, {b}, {c}, {a, c}, {b, c}} wherew(a) = 1, w(b) = w(c) =
0, ℓ(a) = ℓ(c) = l, ℓ(b) = l′, g(l) = 0 andg(l′) = 1.

In both examples, for every independentF , min{w(F ), g(F )} =
0 whilemaxF∈F{w(F )} = maxF∈F{g(F )} = 1. This means that
eitherα = 0 or β = 0 for every feasible solution. However one can
overcome this issue by considering a notion which generalizes the
notion of simple matroid.

Definition 1 A matroidM = (X,F) is said labeled-simple if, for
every circuitC = {x1, x2} of size two, we haveL(x1) = L(x2).

Note that the matroids of Examples 2 and 3 are not labeled-simple.
More generally, a simple matroid is labeled-simple and when every
label appears once, these two notions coincide.

As shown in the next section, excluding matroids which are not
labeled-simple makes the existence of non trivial approximation pos-
sible.

6 A general greedy algorithm

We propose to analyze a simple extension ofGREEDY which builds
a tradeoff solution. This extension, calledALT-GREEDY, simulates a
simple and natural process for the construction of a tradeoff.

At the beginningF = ∅ and the agents alternatively add an el-
emente to F such thatF + e ∈ F until F becomes a base. If it
is the first agent’s turn then we assume that he selectse that maxi-
mizesw(F + e). In a symmetric way, the second agent choosese
that maximizesg(F + e) during his turn.

We suppose that the first agent (the one who tries to maximize
w(F )) plays first.

Theorem 1 ALT-GREEDY is (1/2, 1/4)-approximate for labeled-
simple matroids.

Proof. Let B = {e1, . . . , er} be the base returned byALT-GREEDY.
Let us first focus on the ratio1/2 for the first agent. LetB∗ =
{e∗1, . . . , e

∗
r} be a base with maximum weight satisfyingw(e∗1) ≥

. . . ≥ w(e∗r). Each element ofB with odd index is inserted by
the first agent who wants to maximize the total weight. Takei odd.
Wheni = 1 the current solutionF is ∅ (just beforeei is inserted).
OtherwiseF = {e1, . . . , ei−1}. SetF ′ = {e∗1} if i = 1, oth-
erwiseF ′ = {e∗1, . . . , e

∗
i }. By property (iii) of a matroid, and

because|F ′| > |F |, there exists an element̂e ∈ F ′ \ F such
that F + ê ∈ F . Using w(e∗1) ≥ . . . ≥ w(e∗r), we know that
w(ê) ≥ w(e∗i ). Since the first agent selects the elementei that max-
imizesw(F + ei) and because this agent is additive, we deduce that
w(ei) ≥ w(ê) ≥ w(e∗i ), for every oddi. We get that

w(
r
⋃

i=1

ei) ≥ w(
r
⋃

i=1, odd

ei) ≥ w(
r
⋃

i=1, odd

e∗i ) (1)

where the non negativity of an element’s weight is used. Now observe
thatw(e∗i ) ≥

1
2
(w(e∗i ) + w(e∗i+1)) becausew(e∗i ) ≥ w(e∗i+1). It

follows that

w(B) = w(
r
⋃

i=1

ei) ≥
1

2
w(

r
⋃

i=1

e∗i ) = w(B∗)/2

Thus,ALT-GREEDY is (1/2, ·)-approximate. Now, consider the sec-
ond agent. LetBg be a base with maximum gain. LetE be the el-
ements ofBg whose label does not appear in the solution returned
by ALT-GREEDY: E := {e ∈ Bg : L(e) /∈ L(B)}. We suppose
that the firstν = |L(E)| elements ofE have distinct labels and they
are sorted by non increasing gain:g(eg1) ≥ g(eg2) ≥ . . . ≥ g(egν)
whereE = {eg1, . . . , e

g
ν , . . . , e

g

|E|}. E is inF becauseE ⊆ Bg and
Bg ∈ F . Note thatg(E) = g({eg1, . . . , e

g
ν}) =

∑ν

i=1 g(e
g
i ).

Suppose that during an even step ofALT-GREEDY, the second
agent could not add an element with a new label to the current so-
lution F . We know thatF ∈ F becauseF ⊆ B. If |F | < |E|
then, by property(iii) of matroids, one could add an element with
a new label toF , contradiction. We deduce that|F | ≥ |E|. Hence
F has at leastν elements. LetF ′ = {e1, . . . , eν} be the firstν
elements ofF (following the order by which they are inserted dur-
ing the algorithm). Every element with an even index, withinF ′,
was inserted by the second agent. By property(iii) of a matroid,
we know thatg(ei) ≥ g(egi ) holds for every eveni between2 and
ν. It follows that

∑ν

i=2, even g(ei) ≥
∑ν

i=2, even g(egi ). The firstν
elements ofE being sorted by non increasing gain, we know that
2
∑ν

i=2, even g(egi ) ≥
(
∑ν

i=1 g(e
g
i )
)

− g(eg1) where
∑ν

i=1 g(e
g
i ) =



g(E). We deduce that

2g(F ′) ≥ 2
ν

∑

i=2, even

g(ei) ≥
ν

∑

i=1

g(egi )− g(eg1) = g(E)− g(eg1) (2)

If L(e1) = L(eg1) theng(B) ≥ g(eg1), otherwise{e1, e
g
1} ∈ F

because the matroid is labeled-simple (see Definition 1) andg(e2) ≥
g(eg1) by property(iii)3 In any case we get that

g(B) ≥ g(eg1) (3)

UseF ′ ⊆ B and Inequalities (2) and (3) to derive

3g(B) ≥ 2g(F ′) + g(B) ≥ g(E) (4)

By definition,L(Bg)\L(E) are the labels appearing inB. It follows
thatg(B) ≥ g(Bg)− g(E) that we add to Inequality (4) to get that

4g(B) ≥ g(Bg).

Thus,ALT-GREEDY is (·, 1/4)-approximate if, during an even step
of ALT-GREEDY, the second agent could not add an element with
a new label to the current solutionF . Now suppose that for every
turn of the second agent, it was possible to add an element with
a new label. Rename theξ = |L(Bg)| first elements ofBg such
that L({eg1, . . . , e

g
ξ}) = L(Bg) and g(eg1) ≥ g(eg2) ≥ . . . ≥

g(egξ). Note that
∑ξ

i=1 g(e
g
i ) = g(Bg). property (iii) we have

g(ei) ≥ g(egi ) for i ≤ ξ and even. We deduce thatg(B) ≥
∑ξ

i=2, eveng(ei) ≥
∑ξ

i=2, eveng(e
g
i ). Since the firstξ elements ofBg

are sorted by non increasing gain, we know that2
∑ξ

i=2, eveng(e
g
i ) ≥

(

∑ξ

i=1 g(e
g
i )
)

−g(e1g). Hence2g(B) ≥
(

∑ξ

i=1 g(e
g
i )
)

−g(e1g) =

g(Bg)−g(e1g). Since Inequality(3) holds, we deduce that3g(B) ≥
g(Bg) which is better than4g(B) ≥ g(Bg).
In conclusion,ALT-GREEDY is (1/2, 1/4)-approximate. ✷

Note that if we applyALT-GREEDY by inverting the role of the
agents (even steps are for the weight and odd steps are for the labels),
then we can prove thatALT-GREEDY is (1/3, 1/3)-approximate for
labeled-simple matroids.

Next example shows that the analysis ofALT-GREEDY is tight.

Example 4 Consider the graphic matroid of the following graph.
v1

v2

v3v4

v5

(0
, ℓ

5
)

(0, ℓ1)

(0, ℓ1)

(1, ℓ1)

(1, ℓ
2 )

(1
, ℓ1

)

(0,
ℓ4)

(1, ℓ3)

Each edge e has a pair (w(e),L(e)). We suppose that
g(ℓ2) = 0 and g(ℓi) = 1 for any i 6= 2. The tree
{(v1, v5), (v2, v5), (v3, v4), (v4, v5)} has weight4 while the tree
{(v1, v4), (v2, v3), (v2, v4), (v2, v5)} uses the labels{ℓ1, ℓ3, ℓ4, ℓ5}
so its gain is4. ALT-GREEDY may output a tree containing(v4, v5),
(v1, v2), (v1, v5) and(v2, v3) (edges are listed by the order they en-
ter the solution). This tree has weight2 and its gain is1.

3 Note that the rank is at least 2 by assumption.

7 General computational complexity and a
particular solution

Theorem 1 is a constructive proof that every instance of the model
admits a(1/2, 1/4)-approximate solution. More generally, given an
instance〈(X,F), w,L, g〉 and two boundskw andkg, what is the
computational complexity of the following decision problem?

Π: Is there anyF ∈ F such thatw(F ) ≥ kw andg(F ) ≥ kg?

Π generalizes the minimal spanning tree problem with a side con-
straint which was shownNP-complete [1], see also [7] for matroids.
Actually, by considering the graphic matroid where each edgee has
a distinct labele, the problem dealt with in the paper is exactly the
minimal spanning tree problem with a side constraint.

ThoughNP-complete in general, next results states that a partic-
ular Pareto optimal solution can be computed in polynomial time.
Within the set of optimal solutions for the weight, letF ∗

w,g be the
one which maximizesg. F ∗

w,g is a lexicographic Pareto optimal so-
lution.

Theorem 2 F ∗
w,g can be computed in polynomial time.

Before giving a proof of Theorem 2, let us give an intermediate result.

Lemma 1 LetM = (X,F) be a matroid,B its set of bases and
w : X → R

+ a weight function. LetBw ⊆ B be the set of all bases
which are optimal forw. ThenMw = (X,Fw) whereFw := {F ⊆
B : B ∈ Bw} is a matroid.

Due to space limitation, the proof of Lemma 1 is skipped. The proof
relies on the next property which follows from results of [6, 21].

Property 1 LetB1, B2 ∈ Bw withB1 6= B2. Then,∀e1 ∈ B1 \B2,
∃e2 ∈ B2 \B1 such that(B1 \{e1})∪{e2} and(B2 \{e2})∪{e1}
are inBw.

Now, we are ready to give a proof of Theorem 2.

Proof. Start withM = (X,F) and defineMw = (X,Fw) as in
Lemma 1. LetM′ = (X,F ′) be a partition matroid whereF ∈ F ′

iff F ∈ Fw and|L(F )| = |F |. Find F̂ ∈ Fw ∩ F
′ with maximizes

g(F̂ ). SinceMw andM′ are two matroids (cf Lemma 1), this can
be done in polynomial time [13, 21]. CompletêF into a baseB̂ in a
greedy manner with elements ofX sorted by non increasing weight
(like in GREEDY). We claim thatB̂ = F ∗

w,g.
F̂ ∈ Fw so its completion leads to a base of maximum weight:

B̂ ∈ Bw. Observe thatg(F̂ ) = g(B̂) since otherwisêF does not
maximizeg(F̂ ). Now suppose, by contradiction, that a baseB̃ ∈ Bw

is such thatg(B̃) > g(F̂ ). Retain exactly one element per label ofB̃
to get an independent̃F . SinceF̃ ⊆ B̃ we haveF̃ ∈ Fw. Moreover
g(F̃ ) = g(B̃) because every label of̃B appears inF̃ . It follows that
g(F̃ ) > g(F̂ ), contradicting the optimality of̂F . ✷

Note that the complexity of the algorithm that findsF ∗
w,g depends

on Edmonds’ Matroid Intersection Algorithm which isO(|X|4+Y ∗
|X|3) whereY is the complexity of the independence oracle [13].Y
is not given explicitly, it depends on the matroid under consideration.
In our study, we suppose thatY is a polynomial (see Section 3).

8 The uniform subcase

In this section we consider a particular case, calleduniform, where
g(l) = 1 for all l ∈ L. In fact g(F ) = |L(F )| holds in this case



so the second agent’s goal is to maximize the number of distinct la-
bels. As previously mentioned, finding a baseBL that maximizes
|L(BL| can be done in polynomial time [13, 21]. In the followingL
denotes|L(BL)|. In this section, we do not assume that the matroid
is labeled-simple.

One can analyzeALT-GREEDY and show that it is(1/2, 1/3 +
1/r(X))-approximate for any matroidM = (X,M) in the uniform
subcase. It is noteworthy that we do not need to restrict ourselves to
labeled-simple matroids anymore. The proof is skipped because it
follows the line of Theorem 1’s proof and we are able to propose
another algorithm, called 3-PHASES, with better guarantees.

Indeed, we will prove that 3-PHASES is ( k−1
k

, 1
k
)-approximate

for every positive integerk taken as the input. Sok = 2 gives a
(1/2, 1/2)-approximation which improves the guarantees ofALT-
GREEDY.

3-PHASES starts with an empty solutionF and agent1 adds
⌊ k−1

k
L⌋ elements in a greedy manner (trying to maximize the

weight). Afterwards agent2 adds toF a set of at most⌊L
k
⌋ new ele-

ments so that the number of new labels (ie. labels not present in the
first phase) is maximized. During the last phase, agent1 completesF
in a greedy way by adding elements according to their weight. In the
following, Bj denotes the elements inserted during phasej. Hence
3-PHASESreturns the independent setB1 ∪B2 ∪B3.

The first and third phase of the algorithm are both greedy and
clearly polynomial. Only the second phase of the algorithm is not
greedy. It consists of finding an independent of limited cardinality
(at most⌊L/k⌋ elements) in the intersection of two matroids.

The first matroid isM′ = (X ′,F ′) whereX ′ := X \ {x ∈ X :
L(x) /∈ L(B1)} andF ′ := {F ⊂ X ′ : B1 ∪ F ∈ F}. Actually,
M′ can be obtained by applying first the contraction ofM by B1,
M/B1 and then, the restriction ofM/B1 to X ′ = X \ {x ∈ X :
L(x) /∈ L(B1)} (note thatX ′ ⊆ X \ B1). Because, the contrac-
tion and the restriction of matroids are matroids,M′ is a matroid.
The second matroidM2 = (X ′,F2) is the partition matroid ofX ′

induced by the labels, ie., assume thatL(X) = {ℓ1, . . . , ℓp} and if
Xi = {x ∈ X : L(x) = ℓi} for i = 1..p denotes the elements with
labelℓi, thenF2 = {F ⊆ X ′ : ∀i = 1..p, |Xi ∩ F | ≤ 1}.

Find a setS of maximum cardinality inF ∩ F ′ (this can be done
in polynomial time [13, 21]) and if|S| > ⌊L/k⌋, retain a subset
of only ⌊L/k⌋ elements. By property(ii) of a matroid, the result-
ing set is independent. Thus, the second phase of 3-PHASESruns in
polynomial time.

Theorem 3 Letk a positive integer taken as the input,3-PHASESis
( k−1

k
, 1
k
)-approximate in the uniform case.

Proof. The algorithm is clearly(0, 1)-approximate whenk = 1 be-
cause no element is picked during the first phase and during the sec-
ond phase one can insert⌊L⌋ = L elements with distinct labels.

From now on, we suppose thatk ≥ 2. Let B = {e1, . . . , er} be
the base returned by 3-PHASES. The elements ofB are numbered
according to order by which they are inserted in the solution. Let us
first focus on the ratiok−1

k
for the first agent. LetB∗ = {e∗1, . . . , e

∗
r}

be a base with maximum weight satisfyingw(e∗1) ≥ . . . ≥ w(e∗r).
By the third property of a matroid, we know thatw(ei) ≥ w(e∗i ) for
i = 1..|B1| and|B1| = ⌊

k−1
k

L⌋. The elements ofB∗ being sorted
by non increasing weight, we also have

w(ei) ≥ w(e∗j ) (5)

for any pair(i, j) ∈ {1, . . . , |B1|} × {|B1| + 1, . . . , |B1| + |B2|}.
Note thatB2 is the set of elements added during the second phase

by the second agent and|B2| ≤ ⌊L/k⌋. Since|B1| = ⌊
k−1
k

L⌋ ≥
(k − 1)⌊L

k
⌋ ≥ (k − 1)|B2|, one can partitionB1 in k − 1 disjoints

setsB1
1 , . . . , B

k−1
1 so that every one contains at least|B2| elements.

Using Inequality (5) we get that

w(Bp
1 ) ≥

|B1|+|B2|
∑

j=|B1|+1

w(e∗j ) for p = 1..k − 1.

Summing up these inequalities gives

w(B1) =

k−1
∑

p=1

w(Bp
1 ) ≥ (k − 1)

|B1|+|B2|
∑

j=|B1|+1

w(e∗j ).

Thus

1

k − 1
w(B1) ≥

|B1|+|B2|
∑

j=|B1|+1

w(e∗j ) (6)

Using again (5) gives

w(B1) ≥

|B1|
∑

j=1

w(e∗j ) (7)

Adding (6) and (7), we get that

k

k − 1
w(B1) ≥

|B1|+|B2|
∑

j=+1

w(e∗j ) (8)

Concerning the third phase, Property(iii) impliesw(ei) ≥ w(e∗i )
for r ≥ i ≥ |B1| + |B2| + 1. Summing up these inequalities gives
w(B3) =

∑r

i=|B1|+|B2|+1 w(ei) ≥
∑r

i=|B1|+|B2|+1 w(e∗i ) that
we plug in the previous inequality to get that

k

k − 1
w(B1) + w(B3) ≥

|B1|+|B2|
∑

i=1

w(e∗i ) +
r

∑

i=|B1|+|B2|+1

w(e∗i )

k

k − 1
w(B) ≥ w(B∗)

Then 3-PHASES is ( k−1
k

, ·)-approximate. Now consider the second
agent and letBL be a base ofM with L labels (the maximum num-
ber). LetEL be a subset ofBL containing one element per label in
BL, ie. |EL| = |L(EL)| = |L(BL)| = L. The second phase of
the algorithm consists of adding toB1, at most⌊L/k⌋ elements with
labels which do not appear inL(B1). Let E = {e ∈ EL : L(e) /∈
L(B1)}. Denote byp the number of labels thatB1 andEL share.
We have|L(B1)| ≥ p and|E| = L− p.

Suppose|E| ≤ |B1|. We get thatL− p = |E| ≤ |B1| = ⌊L/k⌋.
Thenp ≥ L−⌊L/k⌋ = ⌈L/k⌉ ≥ L/k. Use|L(B1)| ≥ p to observe
thatB1, and a fortioriB, contains at leastL/k labels.

Now suppose that|E| > |B1|. At least|E| − |B1| = L − p −
⌊ k−1

k
L⌋ = ⌈L/k⌉−p elements with new labels are added during the

second phase, since on the one hand, by Property(iii′) ∃A ⊆ E\B1

with |A| = |E|−|B1| such thatA∪B1 ∈ F (ie.,A is an independent
set ofM′ = (X ′,F ′) where we recall thatX ′ = X \ {x ∈ X :
L(x) /∈ L(B1)} andF ′ := {F ⊂ X ′ : B1 ∪ F ∈ F}) and
on the other hand,A is an independent set of the partition matroid
M2 = (X ′,F2) because|L(A)| = |A|.

Thus,A is a feasible solution of the intersection of matroidsM′

andM2. So, |L(B2)| ≥ |L(A)|. Now, because|L(B1)| ≥ p, at
least|L(B1 ∪ B2)| = |L(B1)| + |L(B2)| ≥ |L(B1)| + |L(A)| =



⌈L/k⌉ ≥ L/k labels appears at the end of the second phase. The
elements added during the last phase can only increase the num-
ber of labels so we know that in every case 3-PHASES is (·, 1/k)-
approximate.

In conclusion, 3-PHASESis ( k−1
k

, 1
k
)-approximate. ✷

Next example shows that the guarantees of 3-PHASESare essen-
tially Pareto optimal.

Lemma 2 Letα ∈ (0; 1) andβ ∈ (0; 1). There are instances with-
out any(α, β)-approximation in the uniform case in the following
cases:

(a) α+ β ≥ 1 andα 6= k−1
k

for every positive integerk.
(b) α > 0 andβ > 1/2.

Proof. We prove these results for a particular matroid, the graphic
matroid. Letα > 0 andβ > 0.

For (a). We prove that the result holds forα+ β = 1, and then a
fortiori for α+β ≥ 1. So, assumeα+β = 1 andα 6= k−1

k
for every

positive integerk. Thus, there is a unique integerL ≥ 2 such that
L−2
L−1

< α < L−1
L

. So, we haveαL > L(L−2)
L−1

and(1 − α)L > 1.
Consider the following multigraphGL, instance of the uniform case
for the graphic matroid.
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(0, ℓ2) (0, ℓL)

The ideal point ofGL is xL = (L, L) by considering the trees
given by the bottom edges for the weight and the top edges for the
labels.

By contradiction, assume thatT is a spanning tree ofGL with
weightw(T ) ≥ αL and number of labels|L(T )| ≥ (1− α)L. If T
contains at leastL− 1 edges of weightL/(L− 1), thenT contains
one label. Hence,1 = |L(T )| ≥ (1 − α)L > 1, contradiction.
Thus,T contains at mostL − 2 edges of weightL/(L − 1) and
thenL(L − 2)/(L − 1) ≥ w(T ) ≥ αL > L(L − 2)/(L − 1),
contradiction.

For (b). Consider the multigraphG2, ie.,L = 2 described previ-
ously. If β > 1/2, then|L(T )| ≥ 2β > 1. So,|L(T )| = 2 andT is
given by the top edges ofG2. In this case,w(T ) = 0. ✷

Item (b) of Lemma 2 shows thatβ = 1/2 is a tradeoff on the
number of labels that we can reach if some positive guarantee on the
weight is achieved. Hence, Theorem 3 gives the best results that we
can hope.

9 Conclusion and future directions

For the general case, we have proposed a polynomial-time
(1/2, 1/4)-approximation for labeled-simple matroids (a
(1/3, 1/3)-approximation exists also by inverting the agents’
role). An important question consists of improving these approx-
imations. We believe that a(1/2, 1/3)-approximation exists and
that it offers Pareto optimal guarantees, ie., there are small instances
without any(α, β)-approximation withα ≥ 1/2 andβ ≥ 1/3.

For the uniform subcase we proposed polynomial-time determin-
istic algorithms which achieve several tradeoffs and we prove that
some tradeoffs are not possible. Note that the complexity result of
Section 7 does not hold for the uniform case so the exact complexity
of the uniform case is open. A first step in this direction would be
to consider the open problem of computingF ∗

g,w (a Pareto optimal

solution with maximum weight among solutions of maximum gain).
Another open question is the case where both agents’ utility func-
tions are of type ”g” (not only the second agent’s utility function).
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