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We consider problems where a solution is evaluated with a couple. Each coordinate of this couple represents an agent's utility. Due to the possible conflicts, it is unlikely that one feasible solution is optimal for both agents. Then, a natural aim is to find tradeoffs. We investigate tradeoff solutions with guarantees for the agents.The focus is on discrete problems having a matroid structure. We provide polynomial-time deterministic algorithms which achieve several guarantees and we prove that some guarantees are not possible to reach.

Introduction

This paper deals with the existence and computation of a solution s which is common to two agents. The interest of agent i ∈ {1, 2} over the set of possible solutions is captured by a utility function ui. When these functions are conflicting, it is unlikely that a feasible solution s, such that u1(s) and u2(s) are both nearly optimal, exists. So one has to make a tradeoff.

A natural way to cope with several functions is to aggregate them in a weighted sum. For example, which solution s maximizes the utilitarian function f λ (s) := λu1(s)+(1-λ)u2(s) for some λ ∈ [0, 1]? Unfortunately, this approach has two issues. The first issue is about computation: finding a solution which optimizes f λ may be puzzling when u1 and u2, though separately solvable, require completely different algorithms. The second issue is that an optimum to f λ may lead to unbalanced solutions. If s * i denotes the solution that maximizes ui(s * i ) then it is possible that a solution s, though optimal for f λ (s), satisfies u1(s)/u1(s * 1 ) ≈ 1 and u2(s)/u2(s * 2 ) ≈ 0 (or conversely u1(s)/u1(s * 1 ) ≈ 0 and u2(s)/u2(s * 2 ) ≈ 1). This pathological case indicates that s can be unfair, i.e. close to optimality for one agent, and very far from optimality for the other agent.

Then we address the following questions: For which lower bounds on u1(s)/u1(s * 1 ) and u2(s)/u2(s * 2 ) a solution s is guaranteed to exists? Which algorithm can cope with a possibly different nature of the agent's utility functions and such that non trivial a priori lower bounds on u1(s)/u1(s * 1 ) and u2(s)/u2(s * 2 ) can be derived? In this article, we seek for (α, β)-approximate algorithms, i.e. algorithms returning a solution s such that u1(s)/u1(s * 1 ) ≥ α and u2(s)/u2(s * 2 ) ≥ β for every instance. Of particular interest are the vectors (α, β) which are optimal in the sense of Pareto. There are several papers that deal with (α, β)-approximate algorithms, including [START_REF] Hansen | Bicriterion path problems[END_REF][START_REF] Warburton | Approximation of pareto optima in multiple-objective, shortest-path problems[END_REF][START_REF] Papadimitriou | On the approximability of trade-offs and optimal access of web sources[END_REF][START_REF] Stein | On the existence of schedules that are nearoptimal for both makespan and total weighted completion time[END_REF][START_REF] Goel | Simultaneous optimization via approximate majorization for concave profits or convex costs[END_REF][START_REF] Escoffier | Fair solutions for some multiagent optimization problems[END_REF].

The article is devoted to problems having a matroid structure (defined in Section 3). There is a rich literature on matroids [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF][START_REF] Oxley | Matroid Theory[END_REF][START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF]. 1 This research has been supported by the project ANR-09-BLAN-0361 "GUaranteed Efficiency for PAReto optimal solutions Determination (GUEPARD)" 2 CNRS, LAMSADE UMR 7243 3 PLS, Université Paris-Dauphine, email: firstname.lastname@dauphine.fr They model many practical situations (e.g. schedules, forests of a graph), possess many remarkable structural properties and admit elegant polynomial-time algorithms. These are motivations for studying tradeoffs on matroids.

Throughout the paper we assume that the utility of the first agent is additive while the utility of the second agent is more complex; it is a particular submodular function which captures more elaborate preferences.

A typical example of the instances covered in this article is the following. Each label ℓ has a non negative gain, denoted by g(ℓ), which captures a tourist's interest for any activity ai such that L(ai) = ℓ.

Example 1 A group of tourists is visiting

If A denotes the subset of activities actually scheduled then the travel agency would like to maximize its profit a∈A w(a). On the other hand, the tourists's viewpoint is different since they want ℓ∈{L(a):a∈A} g(ℓ) to be maximized. Here we assume that a tourist's utility increases when he does an activity of a new kind (no activity with the same label was done before).

The tourist/travel agency problem has a matroid structure usually called tranversal and explained below.

Related work and contribution

In this article, we study bicriteria approximation of labeled matroid where the utility of the two agents are in conflict. Hence, it is unlikely that the best strategy for the first agent is also the best one for the second agent, as illustrated by the tourist/travel-agency problem. One way of tackling this problem is to approximate the Pareto set ie., the set of non-dominated solutions (any improvement on one objective induces a deterioration on another objective). This point of view has been studied in the literature in several papers [START_REF] Stein | On the existence of schedules that are nearoptimal for both makespan and total weighted completion time[END_REF][START_REF] Ravi | The constrained minimum spanning tree problem (extended abstract)[END_REF][START_REF] Papadimitriou | On the approximability of trade-offs and optimal access of web sources[END_REF][START_REF] Berger | Budgeted matching and budgeted matroid intersection via the gasoline puzzle[END_REF]. When we produce a unique solution to approximate the problem, this approach is similar in the spirit to the notion of max-min fairness [START_REF] Asadpour | An approximation algorithm for max-min fair allocation of indivisible goods[END_REF][START_REF] Bertsimas | The price of fairness[END_REF][START_REF] Kalai | Other solutions to Nash's bargaining problem[END_REF][START_REF] Kumar | Fairness measures for resource allocation[END_REF][START_REF] Goel | Simultaneous optimization via approximate majorization for concave profits or convex costs[END_REF]. Fairness has been initially considered in economics and social choice theory where fairness notions based on some axiomatic characterizations such as proportional fairness, envy-freeness and max-min fairness [START_REF] Bouveret | Efficiency and envy-freeness in fair division of indivisible goods: Logical representation and complexity[END_REF][START_REF] Marsh | Equity measurement in facility location analysis: a review and framework[END_REF][START_REF] Lipton | On approximately fair allocations of indivisible goods[END_REF][START_REF] Kumar | Fairness measures for resource allocation[END_REF][START_REF] Kalai | Other solutions to Nash's bargaining problem[END_REF][START_REF] Nash | The bargaining problem[END_REF]. The goal of the max-min fairness criterion is to maximize the satisfaction of the least satisfied agent where the individual utilities of each agent is normalized in order to lie on the same scale [START_REF] Bertsimas | The price of fairness[END_REF][START_REF] Kalai | Other solutions to Nash's bargaining problem[END_REF]. An (α, β)approximation gives the satisfaction of the two agents so the satisfaction of the least satisfied agent is min{α, β}.

In this article we first recall definitions on matroids (Section 3). Section 4 presents the model studied in this paper and Section 5 gives the main definitions on multicriteria approximation.

Then we extend a result of [START_REF] Escoffier | Fair solutions for some multiagent optimization problems[END_REF] which deals with two agents having additive utility functions and willing to build a common spanning tree (a particular matroid problem). In Section 6, we propose a (1/2, 1/4)-approximation algorithm which simulates a natural process where two agents build a common solution. The general computational complexity is mentioned in Section 6 and followed by an algorithm finding a particular lexicographic optimum. In Section 8, we study a particular case, called uniform case, and show the following results: on the one hand, we produce within polynomial-time, a ( k-1 k , 1 k )-approximation in the uniform case, for any positive integer k given as the input, and on the other hand, we exhibit some instances without any (α, 1α)-approximation in the uniform case, for any α ∈ (0; 1) with α / ∈ { k-1 k : k is a positive integer }. Some open questions are indicated in Section 9.

Matroids

Matroids play an important role in combinatorial optimization and graph theory. We briefly mention some basic definitions, properties and algorithms on matroids and refer the reader to [START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF][START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF][START_REF] Oxley | Matroid Theory[END_REF] for deeper expositions.

A matroid M = (X, F ) consists of a finite set of n elements X and a collection F of subsets of X such that:

(i) ∅ ∈ F , (ii) if F2 ⊆ F1 and F1 ∈ F then F2 ∈ F , (iii) for every couple F1, F2 ∈ F such that |F1| < |F2|, ∃ x ∈ F2\F1 such that F1 ∪ {x} ∈ F .
By induction (iii) is equivalent to

(iii ′ ) for every couple F1, F2 ∈ F where |F1| < |F2|, ∃A ⊆ F2\F1 with |A| = |F2| -|F1| such that F1 ∪ A ∈ F .
The elements of F are called independent, the element of 2 X \ F dependent. Inclusionwise minimal dependent sets are called circuits and inclusionwise maximal independent sets are called bases. All bases of a matroid M have the same cardinality r(M ), defined as the rank of M . Given a matroid M = (X, F ) and a subset

X ′ ⊂ X, the restriction of M to X ′ , denoted by M|X ′ , is the structure (X ′ , F ′ ) where F ′ = {F ∈ F : F ⊆ X ′ }. If X ′ ∈ F , the contraction 2 of M by X ′ , denoted M/X ′ , is the structure (X \ X ′ , F ′ ) where F ′ = {F ⊆ X \ X ′ : F ∪ X ′ ∈ F :}. It is well known that M|X ′ and M/X ′ are matroids.
Typical examples of matroids are the following:

• The forests (set of edges which do not admit a cycle) of a multigraph G form a matroid usually called the graphic matroid of G.

A base in this matroid is a spanning tree.

• Given k disjoint sets E1, . . . , E k which forms a ground set E = ∪ k i=1 Ei and k non negative integers bi (i = 1..k), the sets F ⊆ E satisfying |F ∩ Ei| ≤ bi form a matroid usually called the partition matroid.

• Given k (not necessarily disjoint) sets E1, . . . , E k , subsets of a ground set E, a partial transversal is a set T ⊆ E that an injective map Φ : T → [1..k] satisfying t ∈ E Φ(t) exists.
Then (E, T ) where T = {T ∈ 2 E : T is a partial transversal of E} is a matroid usually called the transversal matroid.

Returning to Example 1, let E = {a1, a2, ..., am} a set of activities and Ei ⊆ E the subset of activities available on day i, i = 1..n. A set of activities T ⊆ E is feasible if it exists an injective mapping Φ : T → [1.

.n] combining at most one activity of Ei per day i, i = 1..n.

A matroid is said simple if no single element, or pair of elements, is a circuit [START_REF] Oxley | Matroid Theory[END_REF]. For example, the forests of a simple graph define a simple matroid.

When every element e ∈ X has a weight w(e) ∈ R + , a typioptimization problem consists of computing a base B ∈ F that maximizes e∈B w(e). This problem is solved by the following algorithm:

Algorithm 1 GREEDY Require: M = (X, F ), w : X → R + 1: Sort X = {e1, • • • , en} such that w(ei) ≥ w(ei+1), i = 1..n -1 2: Set F = ∅ 3: for i = 1 to n do 4: if F ∪ {ei} ∈ F then 5: F ← F ∪ {ei} 6:
end if 7: end for 8: return F Note that the execution of GREEDY on a forest matroid coincides with Kruskal's algorithm for maximum weight spanning trees.

We always assume that an independence oracle can decide within polynomial time whether a set F is independent or dependent. Given two matroids (X, F1) and (X, F2) defined over the same set of elements X, there are algorithms (more elaborate than GREEDY) to solve the following problems in polynomial time [START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF][START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]:

• find an independent F ∈ F1 ∩ F2 of maximum cardinality.

• when every element e ∈ X has a weight w(e) ∈ R + , find an independent F ∈ F1 ∩ F2 that maximizes e∈F w(e).

The model: two agents on a matroid

Let M = (X, F ) be a matroid and consider the following functions:

• w : X → R + where w(x) is called the weight of x ∈ X;
• L : X → {ℓ1, . . . , ℓp} where {ℓ1, . . . , ℓp} is the set of labels and L(e) is called the label of e; • g : L → R + where g(ℓ) is the gain of label ℓ.

Note that w is additive while g has a more general form (it is a particular submodular function).

For the ease of presentation we often write g(x) instead of g(L(x)) for x ∈ X. The labels of a set X ′ ⊆ X is a set denoted by L(X ′ ) and defined as x∈X ′ {L(x)}. In the tourist/travel-agency problem, the labels {ℓ1, . . . , ℓp} are the activity types.

We study a model where F is the set of feasible solutions. The first and second agent's utilities are w and g, respectively. A set F ∈ F is then evaluated with two objective functions: w(F ) = x∈F w(x) and g(F ) = l∈L(F ) g(l) which should be maximized. An instance is then a tuple M, w, L, g .

As previously mentioned, GREEDY finds a base F1 that maximizes w(F1). Finding F2 that maximizes g(F2) can be done in polynomial time via the search for a maximum cost intersection of two matroids. The first matroid is M = (X, F ). The second matroid M ′ = (X, F ′ ) is a partition matroid defined by the labels of X: F ′ := {S ⊂ X : |L(S)| = |S|}. Every element x ∈ X has a cost c(x) defined as g(L(x)). Use any appropriate algorithm to compute a maximum cost independent in F ∩F ′ (see [START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF][START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]) and complete it into a base F2 if necessary. It is not difficult to show that the resulting base maximizes g.

Non trivial approximation

When focusing on a particular agent i, we say that an algorithm A is ρ-approximate if, for every instance, A returns a solution s satisfying ui(s)/ui(s * i ) ≥ ρ. Here s * i is a solution which maximizes ui(s * i ) and ρ ∈ [0, 1] is called the approximation ratio or performance guarantee [START_REF] Vazirani | Approximation algorithms[END_REF].

When dealing with k ≥ 2 agents, we say that an algorithm A is (ρ1, . . . , ρ k )-approximate if, for every instance, A returns a solution s satisfying ui(s)/ui(s * i ) ≥ ρi for i = 1..k. Actually the vector (u1(s * 1 ), . . . , u k (s * k )) is often called the ideal point [START_REF] Ehrgott | Multicriteria Optimization[END_REF] since it is the of an unlikely feasible solution where optimality is reached for all agents. In this paper we propose algorithms which approximate this point.

Obviously, returning a solution that maximizes w (resp. g) gives a (1, 0)-approximation (resp. 1)-approximation) but we expect α and β to be positive so that the solution constitutes a non trivial tradeoff. Next examples show that, for the general model considered in this article (described in Section 4), there is no hope for a non trivial (α, β)-approximate tradeoff (such that α > 0 and β > 0) if we consider the whole class of matroids. In both examples, for every independent F , min{w(F ), g(F )} = 0 while maxF ∈F {w(F )} = maxF ∈F {g(F )} = 1. This means that either α = 0 or β = 0 for every feasible solution. However one can overcome this issue by considering a notion which generalizes the notion of simple matroid.

Definition 1 A matroid M = (X, F ) is said labeled-simple if, for every circuit C = {x1, x2} of size two, we have L(x1) = L(x2).
Note that the matroids of Examples 2 and 3 are not labeled-simple. More generally, a simple matroid is labeled-simple and when every label appears once, these two notions coincide.

As shown in the next section, excluding matroids which are not labeled-simple makes the existence of non trivial approximation possible.

A general greedy algorithm

We propose to analyze a simple extension of GREEDY which builds a tradeoff solution. This extension, called ALT-GREEDY, simulates a simple and natural process for the construction of a tradeoff.

At the beginning F = ∅ and the agents alternatively add an element e to F such that F + e ∈ F until F becomes a base. If it is the first agent's turn then we assume that he selects e that maximizes w(F + e). In a symmetric way, the second agent chooses e that maximizes g(F + e) during his turn.

We suppose that the first agent (the one who tries to maximize w(F )) plays first.

Theorem 1 ALT-GREEDY is (1/2, 1/4)-approximate for labeledsimple matroids.

Proof. Let B = {e1, . . . , er} be the base returned by ALT-GREEDY. Let us first focus on the ratio 1/2 for the first agent. Let B * = {e * 1 , . . . , e * r } be a base with maximum weight satisfying w(e * 1 ) ≥ . . . ≥ w(e * r ). Each element of B with odd index is inserted by the first agent who wants to maximize the total weight. Take i odd. ). Since the first agent selects the element ei that maximizes w(F + ei) because this agent is additive, we deduce that w(ei) ≥ w(ê) ≥ w(e * i ), for every odd i. We get that w(

When i = 1 the current solution F is ∅ (just before ei is inserted). Otherwise F = {e1, . . . , ei-1}. Set F ′ = {e * 1 } if i = 1, oth- erwise F ′ =
r i=1 ei) ≥ w( r i=1, odd ei) ≥ w( r i=1, odd e * i ) (1) 
where the non negativity of an element's weight is used. Now observe that w(e * i ) ≥ Thus, ALT-GREEDY is (1/2, •)-approximate. Now, consider the second agent. Let B g be a base with maximum gain. Let E be the elements of B g whose label does not appear in the solution returned by ALT-GREEDY: E := {e ∈ B g : L(e) / ∈ L(B)}. We suppose that the first ν = |L(E)| elements of E have distinct labels and they are sorted by non increasing gain: g(e g 1 ) ≥ g(e g 2 ) ≥ . . . ≥ g(e g ν ) where E = {e g 1 , . . . , e g ν , . . . , e g |E| }. E is in F because E ⊆ B g and B g ∈ F . Note that g(E) = g({e g 1 , . . . , e g ν }) = ν i=1 g(e g i ). Suppose that during an even step of ALT-GREEDY, the second agent could not add an element with a new label to the current solution F . We know that F ∈ F because F ⊆ B. If |F | < |E| then, by property (iii) of matroids, one could add an element with a new label to F , contradiction. We deduce that |F | ≥ |E|. Hence F has at least ν elements. Let F ′ = {e1, . . . , eν } be the first ν elements of F (following the order by which they are inserted during the algorithm). Every element with an even index, within F ′ , was inserted by the second agent. By property (iii) of a matroid, we know that g(ei) ≥ g(e g i ) holds for every even i between 2 and ν. It follows that ν i=2, even g(ei) ≥ ν i=2, even g(e g i ). The first ν elements of E being sorted by non increasing gain, we know that 2 ν i=2, even g(e g i ) ≥ ν i=1 g(e g i )g(e g 1 ) where ν i=1 g(e g i ) =

g(E). We deduce that

2g(F ′ ) ≥ 2 ν i=2, even g(ei) ≥ ν i=1 g(e g i ) -g(e g 1 ) = g(E) -g(e g 1 ) (2) 
If L(e1) = L(e g 1 ) then g(B) ≥ g(e g 1 ), otherwise {e1, e g 1 } ∈ F because the matroid is labeled-simple (see Definition 1) and g(e2) ≥ g(e g 1 ) by property (iii) 3 In any case we get that

g(B) ≥ g(e g 1 ) (3) 
Use F ′ ⊆ B and Inequalities ( 2) and ( 3) to derive

3g(B) ≥ 2g(F ′ ) + g(B) ≥ g(E) (4) 
By definition, L(B g )\L(E) are the labels appearing in B. It follows that g(B) ≥ g(B g )g(E) that we add to Inequality (4) to get that 4g(B) ≥ g(B g ).

Thus, ALT-GREEDY is (•, 1/4)-approximate if, during an even step of ALT-GREEDY, the second agent could not add an element with a new label to the current solution F . Now suppose that for every turn of the second agent, it was possible to add an element with a new label. Rename the ξ = |L(B g )| first elements of B g such that L({e g 1 , . . . , e g ξ }) = L(B g ) and g(e 1 ) ≥ g(e g 2 ) ≥ . . . ≥ g(e g ξ ). Note that ξ i=1 g(e g i ) = g(B g ). property (iii) we have g(ei) ≥ g(e g i ) for i ≤ ξ and even. We deduce that g(B) ≥ ξ i=2, even g(ei) ≥ ξ i=2, even g(e g i ). Since the first ξ elements of B g are sorted by non increasing gain, we know that 2 ξ i=2, even g(e g i )

≥ ξ i=1 g(e g i ) -g(e 1 g ). Hence 2g(B) ≥ ξ i=1 g(e g i ) -g(e 1 g ) = g(B g ) -g(e 1
g ). Since Inequality (3) holds, we deduce that 3g(B) ≥ g(B g ) which is better than 4g(B) ≥ g(B g ). In conclusion, ALT-GREEDY is (1/2, 1/4)-approximate.

✷ Note that if we apply ALT-GREEDY by inverting the role of the agents (even steps are for the weight and odd steps are for the labels), then we can prove that ALT-GREEDY is (1/3, 1/3)-approximate for labeled-simple matroids.

Next example shows that the analysis of ALT-GREEDY is tight.

Example 4 Consider the graphic matroid of the following graph.

v1 v2 v3 v4 v5 (0 , ℓ 5 ) (0, ℓ1) (0, ℓ1) (1, ℓ1) ( 1 , ℓ2 ) ( 1 , ℓ 1 ) ( 0 , ℓ 4 ) (1, ℓ3)
Each edge e has a pair (w(e), L(e)). We suppose that g(ℓ2) = 0 and g(ℓi) = 1 for any i = 2. The tree {(v1, v5), (v2, v5), (v3, v4), (v4, v5)} has weight 4 while the tree {(v1, v4), (v2, v3), (v2, v4), (v2, v5)} uses the labels {ℓ1, ℓ3, ℓ4, ℓ5} so its gain is 4. ALT-GREEDY output a tree containing (v4, v5), (v1, v2), (v1, v5) and (v2, v3) (edges are listed by the order they enter the solution). This tree has weight 2 and its gain is 1.

General computational complexity and a particular solution

Theorem 1 is a constructive proof that every instance of the model admits a (1/2, 1/4)-approximate solution. More generally, given an instance (X, F ), w, L, g and two bounds kw and kg, what is the computational complexity of the following decision problem?

Π: Is there any F ∈ F such that w(F ) ≥ kw and g(F ) ≥ kg?

Π generalizes the minimal spanning tree problem with a side constraint which was shown NP-complete [START_REF] Aggarwal | Minimal spanning tree subject to a side constraint[END_REF], see also [START_REF] Ehrgott | On matroids with multiple objectives[END_REF] for matroids. Actually, by considering the graphic matroid where each edge e has a distinct label e, the problem dealt with in the paper is exactly the minimal spanning tree problem with a side constraint.

Though NP-complete in general, next results states that a particular Pareto optimal solution can be computed in polynomial time. Within the set of optimal solutions for the weight, let F * w,g be the one which maximizes g. F * w,g is a lexicographic Pareto optimal solution.

Theorem 2 F * w,g can be computed in polynomial time.

Before giving a proof of Theorem 2, let us give an intermediate result.

Lemma 1 Let M = (X, F ) be a matroid, B its set of bases and w : X → R + a weight function. Let Bw ⊆ B be the set of all bases which are optimal for w. Then Mw = (X, Fw) where Fw := {F ⊆ B : B ∈ Bw} is a matroid.

Due to space limitation, the proof of Lemma 1 is skipped. The proof relies on the next property which follows from results of [START_REF] Brualdi | Comments on bases in different structures[END_REF][START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]. Since Mw and M ′ are two matroids (cf Lemma 1), this can be done in polynomial time [START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF][START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]. Complete F into a base B in a manner with elements of X sorted by non increasing weight (like in GREEDY). We claim that B = F * w,g . F ∈ Fw its completion leads to a base of maximum weight: B ∈ Bw. Observe that g( F ) = g( B) since otherwise F does not maximize g( F ). Now suppose, by contradiction, that a base B ∈ Bw is such that g( B) > g( F ). Retain exactly one element per label of B to get an independent F . Since F ⊆ B we have F ∈ Fw. Moreover g( F ) = g( B) because every label of B appears in F . It follows that g( F ) > g( F ), contradicting the optimality of F . ✷ Note that the complexity of the algorithm that finds F * w,g depends on Edmonds' Matroid Intersection Algorithm which is O(|X| 4 +Y * |X| 3 ) where Y is the complexity of the independence oracle [START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF]. Y is not given explicitly, it depends on the matroid under consideration. In our study, we suppose that Y is a polynomial (see Section 3).

The uniform subcase

this section we consider a particular case, called uniform, where g(l) = 1 for all l ∈ L. In fact g(F ) = |L(F )| holds in this case so the second agent's goal is to maximize the number of distinct labels. As previously mentioned, finding a base B L that maximizes |L(B L | can be done in polynomial time [START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF][START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]. In the following L denotes |L(B L )|. In this section, we do not assume that the matroid is labeled-simple.

One can analyze ALT-GREEDY and show that it is (1/2, 1/3 + 1/r(X))-approximate for any matroid M = (X, M) in the uniform subcase. It is noteworthy that we do not need to restrict ourselves to labeled-simple matroids anymore. The proof is skipped because it follows the line of Theorem 1's proof and we are able to propose another algorithm, called 3-PHASES, with better guarantees.

Indeed, we will prove that 3-PHASES is ( k-1 k , 1 k )-approximate for every positive integer k taken as the input. So k = 2 gives a (1/2, 1/2)-approximation which improves the guarantees of ALT-GREEDY.

3-PHASES starts with an empty solution F and agent 1 adds ⌊ k-1 k L⌋ elements in a greedy manner (trying to maximize the weight). Afterwards agent 2 adds to F a set of at most ⌊ L k ⌋ new elements so that the number of new labels (ie. labels not present in the first phase) is maximized. During the last phase, agent 1 completes F in a greedy way by adding elements according to their weight. In the following, Bj denotes the elements inserted during phase j. Hence 3-PHASES returns the independent set B1 ∪ B2 ∪ B3.

The first and third phase of the algorithm are both greedy and clearly polynomial. Only the second phase the algorithm is not greedy. It consists of finding an independent of limited cardinality (at most ⌊L/k⌋ elements) in the intersection of two matroids.

first matroid is

M ′ = (X ′ , F ′ ) where X ′ := \ {x ∈ X : L(x) / ∈ L(B1)} and F ′ := {F X ′ : B1 ∪ F ∈ F }.
Actually, M ′ can be obtained by applying first the contraction of M by B1, M/B1 and then, the restriction of M/B1 to X ′ = X \ {x ∈ X : L(x) / ∈ L(B1)} (note that X ′ ⊆ X \ B1). the contraction and the restriction of matroids are matroids, M ′ is a matroid. The second matroid M2 = (X ′ , F2) is the partition matroid of X ′ induced by the labels, ie., assume that L(X) = {ℓ1, . . . , ℓp} and if Xi = {x ∈ X : L(x) = ℓi} for i = 1..p denotes the elements with label ℓi, then F2 = {F ⊆ X ′ : ∀i = 1..p, |Xi ∩ F | ≤ 1}.

Find a set S of maximum cardinality in F ∩ F ′ (this can be done in polynomial time [START_REF] Korte | Combinatorial Optimization: Theory and Algorithms[END_REF][START_REF] Schrijver | Combinatorial Optimization: Polyhedra and Efficiency[END_REF]) and if |S| > ⌊L/k⌋, retain a subset of only ⌊L/k⌋ elements. By property (ii) of a matroid, the resulting set is independent. Thus, the second phase of 3-PHASES runs in time.

Theorem 3 Let k a positive integer taken as the input, 3-PHASES is ( k-1 k , 1 k )-approximate in the uniform case.

Proof. The algorithm is clearly (0, 1)-approximate when k = 1 because no element is picked during the first phase and during the second phase one can insert ⌊L⌋ = L elements with distinct labels.

From now on, we suppose that k ≥ 2. Let B = {e1, . . . , er} be the base returned by 3-PHASES. The elements of B are numbered according to order by which they are inserted in the solution. Let us first focus on the ratio k- w(e * j ) for p = 1..k -1.

Summing up these inequalities gives

w(B1) = k-1 p=1
w(B p 1 ) ≥ (k -1)

|B 1 |+|B 2 | j=|B 1 |+1
w(e * j ).

Thus 1 k -1 w(B1) ≥ |B 1 |+|B 2 | j=|B 1 |+1
w(e * j )

Using again [START_REF] Bouveret | Efficiency and envy-freeness in fair division of indivisible goods: Logical representation and complexity[END_REF] gives

w(B1) ≥ |B 1 | j=1 w(e * j ) (7) 
Adding ( 6) and ( 7), we get that

k k -1 w(B1) ≥ |B 1 |+|B 2 | j=+1 w(e * j ) (8) 
Concerning the third phase, Property (iii) implies w(ei) ≥ w(e * i ) for r ≥ i ≥ |B1| + |B2| + 1. Summing up these inequalities gives w(B3) = 

  Montpellier for n days and they ask a local travel agency to arrange the stay with (at most) one activity per day. There are m activities available: a1, • • • , am. Each ai has • a label L(ai) which characterizes the activity (e.g. visiting a monument, attending a show, eating at a gastronomic restaurant, etc); there are typically several activities with the same label. The labels constitute a partition of the activity set. • a list of days T (ai) during which ai can be scheduled; • a non negative weight w(ai) indicating what the travel agency earns when the activity is scheduled.

Example 2 Example 3

 23 Consider the matroid (X = {a, b}, F = {∅, {a}, {b}} where w(a) = 1, w(b) = 0, ℓ(a) = l, ℓ(b) = l ′ , g(l) = 0 and g(l ′ ) = 1. The rank is 1. Consider the matroid (X = {a, b, c}, F = {∅, {a}, {b}, {c}, {a, c}, {b, c}} where w(a) = 1, w(b) = w(c) = 0, ℓ(a) = ℓ(c) = l, ℓ(b) = l ′ , g(l) = 0 and g(l ′ ) = 1.

1 2 (

 2 w(e * i ) + w(e * i+1 )) because w(e * i ) ≥ w(e * i+1 ). It follows that w(B) = w( w(B * )/2

Property 1

 1 Let B1, B2 ∈ Bw with B1 = B2. Then, ∀e1 ∈ B1 \ B2, ∃e2 ∈ B2 \ B1 such that (B1 \ {e1}) ∪ {e2} and (B2 \ {e2}) ∪ {e1} are in Bw. Now, we are ready to give a proof of Theorem 2. Proof. Start with M = (X, F ) and define Mw = (X, Fw) as in Lemma 1. Let M ′ = (X, F ′ ) be a partition matroid where F ∈ F ′ iff F ∈ Fw and |L(F )| = |F |. Find F ∈ Fw ∩ F ′ with maximizes g( F ).

1 k 1 1

 11 for the first agent. Let B * = {e * 1 , . . . , e * r } be a base with maximum weight satisfying w(e * 1 ) ≥ . . . ≥ w(e * r ). By the third property of a matroid, we know that w(ei) ≥ w(e * i ) for i = 1..|B1| and |B1| = ⌊ k-1 k L⌋. The elements of B * being sorted by non increasing weight, we also havew(ei) ≥ w(e * j )(5)for any pair (i, j) ∈ {1, . . . , |B1|} × {|B1| + 1, . . . , |B1| + |B2|}. Note that B2 is the set of elements added during the second phase by the second agent and |B2| ≤ ⌊L/k⌋.Since |B1| = ⌊ k-1 k L⌋ ≥ (k -1)⌊ L k ⌋ ≥ (k -1)|B2|, one can partition B1 in k -1 disjoints sets B 1 1 , . . . , B k-so that every one contains at least |B2| elements. Using Inequality (5) we get that w(B p 1 ) ≥ |B 1 |+|B 2 | j=|B 1 |+1

r i=|B 1 |B 1

 11 |+|B 2 |+1 w(ei) ≥ r i=|B 1 |+|B 2 |+1 w(e *i ) that we plug in the previous inequality to get thatk k -1 w(B1) + w(B3) ≥ ) ≥ w(B * )

  {e * 1 , . . . , e * i }. By property (iii) of a matroid, and because |F ′ | > |F |, there exists an element ê ∈ F ′ \ F such that F + ê ∈ F . Using w(e

* 1 ) ≥ . . . ≥ w(e * r ), we know that w(ê) ≥ w(e * i

Actually, the contraction is defined in the literature for any X ′ ⊂ X, and when X ′ ∈ F the definition is similar to the one given in this paper.

Note that the rank is at least 2 by assumption.

Then 3-PHASES is ( k-1 k , •)-approximate. Now consider the second agent and let B L be a base of M with L labels (the maximum number). Let E L be a subset of B L containing one element per label in B L , ie. k L⌋ = ⌈L/k⌉-p elements with new labels are added during the second phase, since on the one hand, by Property (iii ′ ) ∃A ⊆ E \B1 with |A| = |E|-|B1| such that A∪B1 ∈ F (ie., A is an independent set of M ′ = (X ′ , F ′ ) where we recall that X ′ = X \ {x ∈ X : L(x) / ∈ L(B1)} and F ′ := {F ⊂ X ′ : B1 ∪ F ∈ F }) and on the other hand, A is an independent set of the partition matroid

Thus, A is a feasible solution of the intersection of matroids M ′ and M2. So,

⌈L/k⌉ ≥ L/k labels appears at the end of the second phase. The elements added during the last phase can only increase the number of labels so we know that in every case 3-PHASES is (•, 1/k)approximate.

In conclusion, 3-PHASES is ( k-1 k , 1 k )-approximate. ✷ Next example shows that the guarantees of 3-PHASES are essentially Pareto optimal.

Lemma 2 Let α ∈ (0; 1) and β ∈ (0; 1). There are instances without any (α, β)-approximation in the uniform case in the following cases:

Proof. We prove these results for a particular matroid, the graphic matroid. Let α > 0 and β > 0.

For (a). We prove that the result holds for α + β = 1, and then a fortiori for α+β ≥ 1. So, assume α+β = 1 and α = k-1 k for every positive integer k. Thus, there is a unique integer L ≥ 2 such

and (1α)L > 1. Consider the following multigraph GL, instance of the uniform case for the graphic matroid. 

The ideal point of GL is x = (L, L) by considering trees given by the bottom edges for the weight and the top edges for the labels.

By contradiction, assume that T is a spanning tree of GL with weight w(T ≥ αL and number of labels |L(T )| ≥ (1α)L. If T at least L -1 edges of weight L/(L -1), then T contains one label. Hence, 1 = |L(T )| ≥ (1 α)L > 1, contradiction. Thus, T contains at most L -2 edges of weight L/(L -1) and then L(L -2)/(L -1) ≥ w(T ) ≥ αL > L(L -2)/(L -1), contradiction.

For (b). Consider the multigraph G2, ie., L = 2 described previously. If β > 1/2, then |L(T )| ≥ 2β > 1. So, |L(T )| = 2 and T is given by the top edges of G2. In this case, w(T ) = 0. ✷ Item (b) of Lemma 2 shows that β = 1/2 is a tradeoff on the number of labels that we can reach if some positive guarantee on the weight is achieved. Hence, Theorem 3 gives the best results that we can hope.

Conclusion and future directions

For the general case, we have proposed a polynomial-time (1/2, 1/4)-approximation for labeled-simple matroids (a (1/3, 1/3)-approximation exists also by inverting the agents' role). An important question consists of improving these approximations. We believe that a (1/2, 1/3)-approximation exists and that it offers Pareto optimal guarantees, ie., there are small instances without any (α, β)-approximation with α ≥ 1/2 and β ≥ 1/3.

For the uniform subcase we proposed polynomial-time deterministic algorithms which achieve several tradeoffs and we prove that some tradeoffs are not possible. Note that the complexity result of Section 7 does not hold for the uniform case so the exact complexity of the uniform case is open. A first step in this direction would be to consider the open problem of computing F * g,w (a Pareto optimal solution with maximum weight among solutions of maximum gain). Another open question is the case where both agents' utility functions are of type "g" (not only the second agent's utility function).