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Gevrey estimates of the resolvent and sub-exponential time-decay of solutions

Xue Ping

This work is concerned with sub-exponential time-decay of local energies for semigroups e -tH and e -itH as t → +∞ where H = -∆ + V (x) is a non-selfadjoint Schrödinger operator regarded as perturbation of some model operator H 0 = -∆ + V 0 (x) satisfying a weighted coercive condition (see (2.3)). There is a large literature on large-time asymptotics of solutions.

For selfadjoint Schrödinger operators -∆ + V (x) with a real-valued potential V (x) verifying the decay estimate

|V (x)| ≤ C x -ρ , x ∈ R n , (1.1) 
for some ρ > 0, where x = (1 + |x| 2 ) 1 2 . We only mention [START_REF] Bollé | Ideas and Methods in Quantum and Statistical Physics[END_REF][START_REF] Jensen | Spectral properties of Schrödinger operators and time decay of wave functions[END_REF] for quickly decaying potentials (ρ > 2), [START_REF] Wang | Asymptotic expansion in time of the Schrödinger group on conical manifolds[END_REF] for critically decaying potentials (ρ = 2) under an assumption of Hardy inequality for the model operator and [START_REF] Skibsted | Two-body threshold spectral analysis, the critical case[END_REF] in one-dimensional case when this Hardy condition is not satisfied. For slowly decreasing potentials (0 < ρ < 2), there are works of [START_REF] Fournais | Zero energy asymptotics of the resolvent for a class of slowly decaying potentials[END_REF] when the potential is negative and [START_REF] Nakamura | Low energy asymptotics for Schrödinger operators with slowly decreasing potentials[END_REF][START_REF] Yafaev | The low-energy scattering for slowly decreasing potentials[END_REF][START_REF] Yafaev | Spectral properties of the Schrödinger operator with a potential having a slow falloff[END_REF] when it is globally positive and slowly decreasing. Non-selfadjoint Schrödinger operators appear naturally in many physical problems. See for example [START_REF] Dolph | Recent developments in some non-self-adjoint problems of mathematical physics[END_REF][START_REF] Ph | Scattering theory with dissipative intercations and time delay[END_REF][START_REF] Kako | Spectral and scattering theory for a class of non-selfadjoint operators[END_REF][START_REF] Saito | The principle of limiting absorption for the nonselfadjoint Schrödinger operator in R N (N = 2)[END_REF][START_REF] Schwartz | Some non-selfadjoint operators[END_REF]. In this case, we only quote the works of [START_REF] Goldberg | A Dispersive Bound for Three-Dimensional Schrödinger Operators with Zero Energy Eigenvalues[END_REF][START_REF] Wang | Time-decay of semigroups generated by dissipative Schrödinger operators[END_REF] on dispersive estimates. In [START_REF] Goldberg | A Dispersive Bound for Three-Dimensional Schrödinger Operators with Zero Energy Eigenvalues[END_REF], the absence of real resonances is assumed and in [START_REF] Wang | Time-decay of semigroups generated by dissipative Schrödinger operators[END_REF], only dissipative Schrödinger operators are considered. In the later case, positive resonances may exist but outgoing positive resonances (see Definition 2.5) are absent due to the dissipativity of the operator. Another related topic which partly motivated this work is return to equilibrium of Fokker-Planck operator with a sublinearly increasing potential such that its gradient decays slowly. This operator is non-selfadjoint and sub-elliptic. When the potential increases sublinearly, zero is an eigenvalue embedded in the essential spectrum of the Fokker-Planck operator. In [START_REF] Wang | Large-time asymptotics of solutions to the Kramers-Fokker-Planck equation with a short-range potential[END_REF], it is conjectured that the rate of return to equilibrium in this problem should be sub-exponential in time with a precise power in time explicitly determined by the rate of the potential. While polynomially decaying remainder estimate is established in [START_REF] Cattiaux | Long time behavior of Markov processes[END_REF][START_REF] Douc | Subgeometric rates of convergence of f -ergodic strong Markov processes[END_REF] by method of Markov processes, the sub-exponential remainder estimate is proved in a recent work of T. Li and Z. Zhang ( [START_REF] Li | Large time behaviour for the Fokker-Planck equation with general potential[END_REF]). Note that M. Klein and J. Rama ( [START_REF] Klein | Almost exponential decay of quantum resonance states and Paley-Wiener type estimates in Gevrey spaces[END_REF]) study Gevrey estimates in a different context to analyze large time evolution of quantum resonant states.

Most relevant to this work is selfadjoint Schrödinger operator with positive and slowly decreasing potential of the form H 0 = -∆ + V 0 (x) where V 0 (x) satisfies the estimates

0 < c 1 x -2µ ≤ V 0 (x) ≤ c 2 x -2µ , x ∈ R n , (1.2) 
for some constants µ ∈]0, 1[ and c 1 , c 2 > 0. In [START_REF] Yafaev | The low-energy scattering for slowly decreasing potentials[END_REF][START_REF] Yafaev | Spectral properties of the Schrödinger operator with a potential having a slow falloff[END_REF], D. Yafaev studies the low-energy spectral properties and proves that in one dimensional case, if V 0 (x) is in addition analytic, then local energies of solutions decay sub-exponentially

e -itH 0 L 2 comp →L 2 loc = O(e -c|t| β ), |t| → +∞, (1.3) 
where β = 1-µ 1+µ and c is some positive constant. Making use of semiclassical method, S. Nakamura [START_REF] Nakamura | Low energy asymptotics for Schrödinger operators with slowly decreasing potentials[END_REF] proves, under a virial condition on the potential, the existence and the smoothness of boundary values of the resolvent

R 0 (λ ± i0) = lim →0 + (H 0 -(λ ± i )) -1
in neighborhood of zero and the heat semigroup verifies for any dimension n ≥ 1

e -tH 0 L 2 comp →L 2 loc = O(e -c|t| β ), |t| → +∞. (1.4)
Higher dimensional analog of (1.3) remains unknown until now even for analytical potentials verifying (1.2).

In this paper, we consider non-selfadjoint Schrödinger operators H which are perturbation of some model operator of the form

H 0 = -∆ + V 0 (x), V 0 (x) = V 1 (x) -iV 2 (x),
V 1 and V 2 being real-valued, where H 0 satisfies a weighted coercive condition (2.3) with some index µ ∈]0, 1[. This condition can be compared with (1.2) if V 0 is real. Note that if H is a perturbation of H 0 : H = H 0 + O( x -2µ-) for some > 0, modifying V 0 outside a sufficiently large compact if necessary, we can decompose H = H 0 + W (x) where H 0 still satisfies the weighted coercive condition (2.3) with the same index µ and W (x) is of compact support. In the following we only restrict ourselves to compactly supported perturbations of the model operator H 0 :

H = -∆ + V (x) = H 0 + W (x) (1.5)
with H 0 = -∆ + V 0 (x) satisfying (2.3) and W (x) = V (x) -V 0 (x) is a bounded, compactly supported measurable function.

One of the results proved in this work is the large-time expansion for the Schrödinger semigroup e -itH , t ≥ 0, with sub-exponential time-decay estimates on the remainder. Let the model potential V 0 be in the class of holomorphic potentials A introduced in Definition 2.4 (which implies in particular H 0 satisfied (2.3) for some µ ∈]0, 1[). Let H be compactly supported perturbation of H 0 = -∆ + V 0 (x). Then H has at most a finite number of complex eigenvalues in the region {z ∈ C; 0 ≤ arg z ≤ 3π 2 } and a finite number of outgoing positive resonances. We use analytic distortion H(θ) of H outside some large compact set to define quantum resonances of H as poles of the meromorphic extension of the resolvent R(z, θ) = (H(θ) -z) -1 from the infinity of the upper half complex plane C + . The real resonances of H are generalized eigenvalues defined through Definition 2.5. It will be proved that the quantum resonances in C + are eigenvalues of H and those located in R + are outgoing real resonances of H (see theorem 5.1). Moreover there exists a contour located in the lower half-plane touching the real axis only at the point 0 such that there is no quantum resonances of H between this curve and the real axis. We shall prove that the Schrödinger semigroup e -itH , t ≥ 0, admits a large-time expansion of the form

χ   e -itH - λ∈σ d (H)∩C + e -itH Π λ -Π 0 (t) - ν∈r + (H) e -itν P ν (t)   χ L 2 →L 2 ≤ C χ e -ct 1-µ 1+µ t > 1.
(1.6) Here χ ∈ C ∞ 0 (R n ), c > 0 is independent of χ, r + (H) is the set of outgoing positive resonances of H (see Definition 2.5), Π λ is the Riesz projection of H associated with discrete eigenvalue λ, Π 0 (t) and P ν (t) are some operators of finite rank depending polynomially on t, arising respectively from threshold eigenvalue and positive resonance ν > 0 of H. See Section 2 for more precise statement of conditions and results.

The proof of (1.6) combines several technics: threshold spectral analysis for non-selfadjoint operators, method of quantum resonances and Gevrey estimates of the resolvent at threshold zero for a class of second order elliptic operators (Theorem 2.1). To prove (1.6), we use both the technics of analytic dilation and analytic deformation to study R(θ, z). The analytic dilation is applied to the model operator H 0 to show that there exists a resonance-free sector below the positive half-axis in which a uniform bound holds for the dilated resolvent. Then we study the analytic deformation of H outside some sufficiently large ball in R n and prove the existence of a curve Γ in the lower half-plane, intersecting the real axis only at point 0, such that above this curve, the meromorphic extension of cut-off resolvent χR(z)χ from C + with Im z >> 1 has at most a finite number of poles and those located in ]0, +∞[ are precisely outgoing positive resonances. In particular, we prove that if the model potential V 0 belongs to the class A, zero is not an accumulation point of quantum resonances of H located in the region above the curve Γ and there is a uniform bound for the cut-off resolvent for z near zero and z above Γ. Under some assumption on the eigenfunctions associated with eigenvalue zero, we compute the resolvent expansion at threshold in presence of threshold eigenvalue and prove the Gevrey estimates on the remainder. Then (1.6) is deduced by representing χe -itH χ as sum of some residue terms and a Cauchy integral of the cut-off resolvent on Γ. The subexponential time-decay estimate is obtained from the Gevrey estimates on the remainder of the resolvent expansion. The method of threshold spectral analysis for non-selfadjoint Schrödinger operators initiated in this work can be applied to other non-selfadjoint spectral problems (see Remark 5.4 and [START_REF] Aafarani | Large-time behavior for solutions to Schrödinger equation with spectral singularities in dimension three[END_REF]).

Real resonances, called spectral singularities by J. Schwartz in [START_REF] Schwartz | Some non-selfadjoint operators[END_REF] in more general framework and exceptional points by Y. Saito in [START_REF] Saito | The principle of limiting absorption for the nonselfadjoint Schrödinger operator in R N (N = 2)[END_REF], are the main obstacle to understand spectral properties of non-selfadjoint Schrödinger operators near positive half-axis. In general case, one only knows that real resonances form a bounded set with Lebesgue measure zero ( [START_REF] Saito | The principle of limiting absorption for the nonselfadjoint Schrödinger operator in R N (N = 2)[END_REF]). In this work we prove that for potentials belonging to the class A, outgoing positive resonances are at most finite. We also give some classes of analytic potentials for which real resonances are at most a countable set with zero as the only possible accumulation point. It will be shown that each outgoing positive resonance is a pole of the meromorphic extension of the resolvent from the upper half-plane, hence does contribute to large time asymptotics of solutions as t → +∞.

A key ingredient of the proof of (1.6) is Gevrey estimates on the remainder for the resolvent expansions at threshold zero which will be deduced from Gevrey estimates of the model resolvent at threshold zero. To establish Gevrey estimates on the resolvent of the model operator H 0 at the threshold, we first prove an energy estimate depending uniformly on powers of weight s ∈ R. This kind of estimate for fixed s has already appeared in [START_REF] Yafaev | Spectral properties of the Schrödinger operator with a potential having a slow falloff[END_REF]. The uniformity on s ∈ R is crucial in present work, because it allows to control norms of the resolvent in weighted spaces with respect to some parameters (Theorem 3.4), from which we deduce Gevrey estimates on the model resolvent at threshold zero (Theorem 2.1). To estimate remainders in the asymptotic expansions of the full resolvent R(z) = (H -z) -1 near z = 0, we make use of Theorem 2.1 for the model operator and operations for operator-valued functions in Gevrey classes. When threshold eigenvalue is absent, one can iterate the first resolvent equation and it is sufficient to use Gevrey estimates for the free resolvent at threshold and a polynomial bound of the full resolvent on some curves. When threshold eigenvalue is present, we need uniform Gevrey estimates on the remainders on these curves. This explains why the remainder estimate in Theorem 2.4 (a) is not as good as in other situations.

The organisation of this paper is as follows. In Section 2, we state the main results obtained in this work. Sections 3 and 4 are devoted to the model operator H 0 = -∆ + V 0 (x) verifying the weighted coercive condition (2.3). In Section 3, we prove Gevrey estimates of the model resolvent at threshold zero (Theorem 2.1). We first establish a uniform energy estimate which allows to control the growth of powers of the resolvent at threshold in weighted spaces. Then Theorem 2.1 is deduced by an appropriate induction. In Section 4, we study spectral properties of H 0 in the right half-plane and establish resolvent bounds along certain curves located in the right or the lower half-planes where are used respectively for the heat or Schrödinger semigroups. As the first application of Gevrey estimates of the resolvent, we prove sub-exponential time-decay estimates for the semigroups e -tH 0 and e -itH 0 and a low-energy estimate on the spectral density in case when H 0 is selfadjoint. Compactly supported perturbations H of the model operator H 0 are studied in Sections 5. We first study properties of real resonances in Subsection 5.1 and show in Subsection 5.2 how to deduce from Gevrey estimates of the resolvent the large-time expansion for the semigroups e -tH and e -itH with sub-exponential time-decay estimates on the remainder (Theorem 2.2). In Subsection 5.3, we prove Theorem 2.3. Since the method of low-energy spectral analysis used in the proof of Theorem 2.3 is well known for selfadjoint operators, we only emphasize upon Gevrey estimates on the remainders. Finally in Subsection 5.4, we study more difficult case of threshold eigenvalue in non-selfadjoint case and prove Theorem 2.4. Note that algebraic multiplicity and Riesz projection for embedded eigenvalues are not defined. Instead, we use Birmann-Schwinger method to construct an explicit representation for the Riesz projection of eigenvalue -1 of some compact operator. This allows to construct a Grushin problem and to obtain the resolvent expansion under some condition on the eigenfunction. The main attention here is payed to the calculation of leading terms in resolvent expansion. The Gevrey estimates on remainders can be proved as in Subsection 5.3 for seladjoint case and hence the details are omitted in Subsection 5.4.

Part of the results on the model operator H 0 are announced in [START_REF] Wang | Gevrey type resolvent estimates at the threshold for a class of non-selfadjoint Schrödinger operators[END_REF].

Notation. We denote H r,s , r ≥ 0, s ∈ R the weighted Sobolev space of order r with the weight

x s on R n : H r,s = {u ∈ S (R n ); u r,s = x s (1 -∆) r 2 u L 2 < ∞}.
For r < 0, H r,s is defined as the dual space of H -r,-s with dual product identified with the scalar product •, • of L 2 (R n ). Set H 0,s = L 2,s . B(r, s; r , s ) stands for the space of continuous linear operators from H r,s to H r ,s . If (r, s) = (r , s ), we denote B(r, s) = B(r, s; r , s ). Unless otherwise mentioned explicitly, • denotes norm in L 2 (R n ) or in B(L 2 ) when no confusion is possible. C ± denote respectively the upper and the lower open half-plane and C ± their closure. Set C * = C \ {0}. For θ 1 < θ 2 and r > 0, S(θ 1 , θ 2 ) denotes the sector

S(θ 1 , θ 2 ) = {z ∈ C * ; θ 1 < arg z < θ 2 } and Ω(r, θ 1 , θ 2 ) is a part of S(θ 1 , θ 2 ) near zero : Ω(r, θ 1 , θ 2 ) = {z ∈ S(θ 1 , θ 2 ); |z| < r}.
In this work, the scalar product denoted as •, • is assumed to be linear with respect to the left variable.

Statement of the results

The main tool of this work is Gevrey estimates of the resolvent at threshold zero for a class second order elliptic operators satisfying a weighted coercive condition. Let

H 0 = - n i,j=1 ∂ x i a ij (x)∂ x j + n j=1 b j (x)∂ x j + V 0 (x), (2.1) 
where a ij (x), b j (x) and V 0 (x) are complex-valued measurable functions. Suppose that a ij , b j are of class C 1 b on R n (i. e., bounded C 1 functions with bounded first order derivatives) and there exists some constant c > 0 such that

Re (a ij (x)) ≥ cI n , ∀x ∈ R n . (2.2)
Assume that V 0 is relatively bounded with respect to -∆ with relative bound zero, Re H 0 ≥ 0 and that there exists some constants 0 < µ < 1 and c 0 > 0 such that

| H 0 u, u | ≥ c 0 ( ∇u 2 + x -µ u 2 ), ∀ u ∈ H 2 , (2.3) sup x | x µ b j (x)| < ∞, j = 1, • • • , n. (2.4) Condition (2.3) is called weighted coercive condition. Remark 2.1. If H 0 = -∆ + V 0 (x) with V 0 (x) = V 1 (x) -iV 2 (x) with real V j . Assume that -α∆ + V 1 (x) ≥ τ (x) ≥ 0 for some α ∈ [0, 1[ in sense of selfadjoint operators. If V 2 ≥ 0 is such that for some c > 0 τ (x) + V 2 (x) ≥ c x -2µ , x ∈ R n . (2.5) then the weighted coercive condition (2.3) is satisfied. If V 1 (x) is slowly decaying (i. e. V 1 (x) ≥ c x -2µ for some µ ∈]0, 1[ and c > 0), then (2.3) is satisfied by H 0 = -∆ + V 1 (x) -iV 2 (x)
for any real function V 2 which is -∆-bounded with relative bound zero.

Note that when we study Schrödinger operators H 0 = -∆ + V 0 by technics of analytic dilation or analytic deformation, if H 0 verifies (2.3), the analytically dilated or distorted operators obtained from H 0 are of the form (2.1) and still satisfy (2.3) if the dilation or distortion parameter is small. The condition that V 0 (x) is -∆-bounded with relative bound zero allows to include a class of N -body potentials.

Under the assumptions 2.2, 2.3 and 2.4, one can show that H 0 is bijective from Lemma 3.3). To simplify notation, we still denote by G 0 its extension by density so that G 0 is regarded as a bounded operator from L 2,s to L 2,s-2µ . Consequently for any

D(H 0 ) = H 2 (R n ) onto R(H 0 ) and R(H 0 ) is dense in L 2 (R n ). Let G 0 : R(H 0 ) → D(H 0 ) be the algebraic inverse of H 0 . Denote D = ∩ s∈R L 2,s . Then G 0 (D) ⊂ D and G 0 is a densely defined, continuous from R(H 0 ) ∩ L 2,s to L 2,s-2µ for any s ∈ R (see
N ∈ N * , G N 0 : L 2,s → L 2,s-2µN is well defined for any s ∈ R. Let R 0 (z) = (H 0 -z) -1 for z ∈ σ(H 0 ). Since Re H 0 ≥ 0 on L 2 , zR 0 (z) is uniformly bounded for z ∈ S(δ) = {z; π 2 + δ < arg z < 3π 2 -δ} for each fixed δ > 0. From the equation R 0 (z) = G 0 + zG 0 R 0 (z)
and an argument of density, we deduce that s-lim

z∈S(δ),z→0 x -2µ (R 0 (z) -G 0 ) = 0 in L 2 (R n ).
The same limit also holds in B(0, s; 0, s) for any s ∈ R.

Theorem 2.1. Assume the conditions (2.1)-(2.4). Then for any a > 0, there exist some constants C a , c a > 0 such that

x -τ e -a x 1-µ G N 0 x τ + x τ G N 0 e -a x 1-µ x -τ ≤ C a c N +τ a (N + τ ) τ 1-µ +γN (2.6)
for all N ∈ N * and τ ≥ 0. Here γ = 2µ 1-µ .

Remark 2.2. Since Re H 0 ≥ 0 and H 0 verifies (2.3), H 0 -λ also verifies (2.3) uniformly in λ ≤ 0. Repeating the proof of Theorem 2.1 with H 0 replaced by H 0 -λ, one can show that

x -τ e -a x 1-µ R 0 (λ) N x τ ≤ C a c N +τ a (N + τ ) τ 1-µ +γN (2.7)
for all N ∈ N * and τ ≥ 0, uniformly in λ < 0. In Section 3, uniform Gevrey estimates for R 0 (z) will be proved for z in larger domains.

Since one has at least formally

d N dz N R 0 (z)| z=0 = N !G N +1 0 ,
Theorem 2.1 with τ = 0 says that derivatives of the resolvent of H 0 at threshold zero satisfies the Gevrey estimates of order σ = 1 + γ as operators from L 2 (R n ; dx) to L 2 (R n ; e -a x 1-µ dx) for any a > 0. Estimate (2.6) with τ > 0 will be used when we want to pass the weight x -τ across G N 0 . It follows from (2.6) with τ = 0 that there exists some constant C > 0 (independent of cut-offs χ) such that ∀χ ∈ C ∞ 0 (R n ), there exists some constant

C χ > 0 such that χG N 0 + G N 0 χ ≤ C χ C N N γN , ∀N ∈ N * . (2.8)
Theorem 2.1 can be applied, for example, to the Laplace-Beltrami operator on some complete and non-compact Riemannian manifolds or to N -body Schrödinger operators with repulsive interactions. In this paper we use Theorem 2.1 to study non-selfadjoint Schrödinger operators H = -∆ + V (x) which are perturbation of a model operator

H 0 = -∆ + V 0 (x), with V 0 (x) = V 1 (x) -iV 2 (x) and V 1 , V 2 real
-valued, satisfying the conditions of Theorem 2.1. As explained in Introduction, we can assume without loss in some situation that H is a compactly supported perturbation of H 0 :

H = H 0 + W (x), W = V -V 0 ∈ L ∞ comp (R n ). (2.9) Denote H 1 = -∆ + V 1 (x)
(2.10) the selfadjoint part of H 0 . In order to study large time behavior of the semigroups e -tH and e -itH , t ≥ 0, we introduce two classes of model potentials V and A. .11) and

Definition 2.3. Let V be the class of complex-valued potentials V 0 (x) = V 1 (x) -iV 2 (x) with V 1 , V 2 real-valued such that V 0 is -∆-compact and (2.3) is satisfied for some constant µ ∈]0, 1[. ( 2 
H 1 ≥ -α∆ and |V 2 (x)| ≤ C x -2µ 2 (2.
12) for some constants α, µ 2 , C > 0.

Results for the heat semigroup e -tH will be proved for model potentials V 0 ∈ V. To study the Schrödinger semigroup e -itH we will use both technics of analytic dilation and analytic deformation, hence introduce a class of potentials with more restrictive conditions. Recall that V 0 (x) is sais to be dilation analytic if V 0 (e θ x) defined for real θ admits a holomorphic extension for θ in a complex neighborhood of zero and V 0 (e θ x)(-∆ + 1) -1 is a compact operator-valued holomorphic function for θ ∈ C with |θ| small ([3]). Definition 2.4. Let A denote the class of complex-valued potentials V 0 (x) = V 1 (x) -iV 2 (x) for x ∈ R n with n ≥ 2 such that H 1 satisfies (2.3) for some constant µ ∈]0, 1[. Assume in addition that V 1 and V 2 are dilation analytic and extend holomorphically into a complex region of the form Ω = {x ∈ C n ; |x| > c -1 , |Im x| < c| Re x|} for some c > 0 and satisfy for some constants c 1 , c 2 > 0 and R ∈ [0, +∞]

|V j (x)| ≤ c 1 Re x -2µ , x ∈ Ω, j = 1, 2, (2.13) V 2 (x) ≥ 0, ∀x ∈ R n , (2.14) x • ∇V 1 (x) ≤ -c 2 x 2 x 2µ+2 , x ∈ R n with |x| ≥ R, and
(2.15)

V 2 (x) ≥ c 2 x -2µ , x ∈ R n with |x| < R. (2.16) If Condition (2.16
) is satisfied with R = 0, we assume in addition

0 < µ < 3 4 , if n = 2 and 0 < µ < 1, if n ≥ 3.
(2.17)

Remark that when R = 0, (2.15) is a global virial condition on V 1 and (2.16) is void; while if R = +∞, no virial condition is needed on V 1 , but (2.16) is required on the whole space which means that the dissipation is strong. Assume that V 2 (x) is non-negative and dilation analytic and extends holomorphically into Ω satisfying |V 2 (x)| ≤ C Re x -2µ for x ∈ Ω. Then potentials of the form 

V 0 (x) = c x 2µ -iV 2 (x), ( 2 
= +∞ if c = 0 and V 2 (x) ≥ c x -2µ , ∀x ∈ R n , for some c > 0. If n = 3, Coulomb-type potential V 0 = a-ib |x| belongs to the class A if a, b ≥ 0 with a + b > 0.
For V 0 ∈ A, one can study quantum resonances of H 0 = -∆ + V 0 (x) by both analytic dilation or analytic deformation outside some large compact ([3, 12, 25]). Conditions (2.15), (2.16) and (2.17) are used to prove the absence of quantum resonances in a sector below the positive half-axis and the uniform boundedness of the cut-off resolvent there. See Lemma 4.6

Let V 0 ∈ V and H 0 = -∆ + V 0 (x). Let H = H 0 + W (x) be a compactly supported perturbation of H 0 : W ∈ L ∞ comp = {u ∈ L ∞ (R n ); supp u is compact }. Let σ d (H) (σ p (H), resp.
) denote the set of discrete eigenvalues of H (the set of eigenvalues of H, resp.). It will be proved in Section 5 that H has at most a finite number of discrete eigenvalues located on the left of a curve Γ of the form

Γ = {z ∈ C; Re z ≥ 0, |Im z| = C(Re z) µ } (2.19)
for some constants C, µ > 0 and that there exists a nice bound for the resolvent of H 0 on Γ. Complex eigenvalues of H may accumulate to zero from the right-hand side of Γ. Note that zero may be an embedded eigenvalue of H, but we shall see that it is never a resonance of

H, i. e., if u ∈ L 2 (R n ; x 2s dx) ∩ H 2 loc (R n ) for some s ∈ R such that Hu = 0, then u ∈ H 2 (R n ) which means u is an eigenfunction of H.
More subtle is the role of positive resonances of non-selfadjoint Schrödinger operators. Recall that if V is of short-range:

V (x) = O( x -1-) for some > 0, λ > 0 is called real resonance of H = -∆ + V (x) if the equation Hu = λu admits a non-trivial solution u ∈ H 2 loc (R n
) satisfying one of Sommerfeld radiation conditions:

u(x) = e ±i √ λ|x| |x| n-1 2 (a ± (ω) + o(1)), |x| → ∞, (2.20) 
for some a ± ∈ L 2 (S n-1 ), a ± = 0. λ is called an outgoing (resp., incoming) positive resonance of H if u verifies (2.20) with sign + (resp. with sign -). It is known that if V (x) is real, then positives resonances are absent ( [START_REF] Agmon | Spectral properties of Schrödinger operators and scattering theory[END_REF]) and if Im V ≤ 0, outgoing resonances are absent ( [START_REF] Royer | Analyse haute-fréquence de l'équation de Helmholtz dissipative[END_REF]).

In this paper, we use a slight different definition for real resonances, because our potentials V (x) may have a complex long-range tail. Let U 0 be a complex valued potential such that (x•∇ x ) j U 0 , j = 0, 1, 2, are -∆-compact. Assume Im U 0 ≤ 0. Then for any λ > 0 the boundary value of the resolvent

(-∆ + U 0 -(λ + i0)) -1 = lim z→λ,Im z>0 (-∆ + U 0 -z) -1 (2.21)
exists in B(0, s; 0, -s) for any s > 1 2 and is Hölder-continuous for λ > 0. See [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF]. Definition 2.5. Let U (x) be a Lebesgue measurable function such that U (x)-U 0 (x) is bounded and of short-range on R n . λ > 0 is called outgoing resonance of If U is of short-range, our definition coincides with the usual one given in [START_REF] Schwartz | Some non-selfadjoint operators[END_REF]. See also [START_REF] Saito | The principle of limiting absorption for the nonselfadjoint Schrödinger operator in R N (N = 2)[END_REF] where complex short-range perturbations of real long-range electro-magnetic potentials are considered. In fact if U is of short-range, then U 0 is also of short-range. In this case, the equation

H = -∆ + U if -1 is an eigenvalue of the compact operator (-∆ + U 0 -(λ + i0)) -1 (U -U 0 ) in L 2,-s for s >
1 + (-∆ -z) -1 U = 1 + (-∆ -z) -1 U 0 1 + (-∆ + U 0 -z) -1 (U -U 0 )
valid for z ∈ σ(-∆ + U 0 ) can be extended up to z = λ + i0 in B(0, -s), s > 1 2 . It follows that -1 is an eigenvalue of the compact operator (-∆ + U 0 -(λ + i0)) -1 (U -U 0 ) if and only if -1 is an eigenvalue of (-∆ -(λ + i0)) -1 U . The latter is equivalent with the condition that the equation (-∆ + U (x) -λ)u = 0 admits a solution satisfying the outgoing Sommerfeld radiation condition.

In the case zero is not an eigenvalue of non-selfadjoint Schrödinger operator H = H 0 +W (x), we prove the following Theorem 2.2. Assume that zero is not an eigenvalue of H.

(a). Let V 0 ∈ V. For any a > 0 there exist c a , C a > 0 such that

e -a x 1-µ   e -tH - λ∈σ d (H),Re λ≤0 e -tH Π λ   ≤ C a e -cat β t > 0, (2.22) 
where

β = 1 -µ 1 + µ . (2.23) (b). Let V 0 ∈ A.
Then the set of outgoing resonances r + (H) of H is at most finite. There exists some constant c > 0 such that for any

χ ∈ C ∞ 0 (R n ) one has χ   e -itH - λ∈σ d (H)∩C + e -itH Π λ - ν∈r + (H) e -itν P ν (t)   χ ≤ C χ e -c t β t > 0, (2.24) 
Here Π λ denotes the Riesz projection associated with the discrete eigenvalue λ of H and P ν (t) is an operator depending polynomially on t with coefficients of rank not exceeding m + (ν).

Remark that for λ

∈ σ d (H) ∩ C + , e -itH Π λ = e -itλ Q λ (t)
where Q λ (t) is polynomial in t with rank less than or equal to the algebraic multiplicity of eigenvalue λ. If in addition Im V ≤ 0, then the set of positive resonances r + (H) is empty.

Recall that for any λ > 0, one can construct a complex-valued potential V ∈ C ∞ 0 (R n ) with Im V ≥ 0 such that λ is an outgoing positive resonance of H. See [START_REF] Wang | Time-decay of semigroups generated by dissipative Schrödinger operators[END_REF] for example of incoming positive resonance with V ∈ C ∞ 0 and Im V ≤ 0. The result (2.24) for n ≥ 2 is new even for the selfadjoint model operator H = H 0 . See [START_REF] Yafaev | The low-energy scattering for slowly decreasing potentials[END_REF] for a result in one dimensional case.

Consider now the case when zero is an eigenvalue of H. If H is selfadjoint, then H has only a finite number of negative eigenvalues and both positive eigenvalues and positive resonances of H are absent. We can apply the known method in threshold spectral analysis for selfadjoint operators ( [START_REF] Jensen | Spectral properties of Schrödinger operators and time decay of wave functions[END_REF]) to compute low-energy expansion of the resolvent. Theorem 2.1 allows to estimate the remainder in Gevrey spaces and to prove the following Theorem 2.3. Assume that zero is an eigenvalue of H and that both H and H 0 are selfadjoint. (a). If V 0 ∈ V, then for any a > 0, there exist some constants c a , C a > 0 such that

e -a x 1-µ   e -tH - λ∈σp(H) e -tλ Π λ   ≤ C a e -cat β t > 0, (2.25) (b). Let V 0 ∈ A.
Then there exists some constant c > 0 such that for any

χ ∈ C ∞ 0 (R n ), one has χ   e -itH - λ∈σp(H) e -itλ Π λ   χ ≤ C χ e -c t β t > 0, (2.26) 
where β = 1-µ 1+µ and Π λ is the orthogonal eigenprojection of H associated with eigenvalue λ. The case of threshold eigenvalue in non-selfadjoint case is more difficult, because in this case the associated algebraic multiplicity and Riesz projection are not defined. There does not yet exist general method to treat resolvent expansion near threshold eigenvalue. In [START_REF] Goldberg | A Dispersive Bound for Three-Dimensional Schrödinger Operators with Zero Energy Eigenvalues[END_REF], threshold eigenvalue of H is studied under several conditions on subspaces Ker (H j ) in L 2 (R n ), j ∈ N * . In this work, we generalize the usual approach in threshold spectral analysis known in selfadjoint case ( [START_REF] Jensen | Spectral properties of Schrödinger operators and time decay of wave functions[END_REF][START_REF] Wang | Asymptotic expansion in time of the Schrödinger group on conical manifolds[END_REF]) to non-selfadjoint problems. Under the conditions of Theorem 2.1, G 0 W is a compact operator on L 2 (R n ). One can show that zero is an eigenvalue of H if and only if -1 is an eigenvalue of compact operator G 0 W . Consequently, threshold eigenvalue of H, if it does exist, is of finite geometrical multiplicity. Although the algebraic multiplicity of eigenvalue zero of H is not defined, that of eigenvalue -1 of compact operator G 0 W is well defined. Let m denote the algebraic multiplicity of eigenvalue -1 of operator G 0 W . Then we shall show that there exists some numerical Gevrey function ω(z) such that for z near zero, z ∈ σ d (H) if and only if ω(z) = 0. (See Proposition 5.12). In addition, ω(z) admits an asymptotic expansion of any order in powers of z: there exist some constants

ω j ∈ C, j ∈ N, such that ω(z) = ω 1 z + • • • + ω N z N + O(|z| N +1 ), (2.27 
) for z near 0 and Re z < 0 and for any N ∈ N * . Theorem 2.4. Assume that zero is an eigenvalue of H and that there exists some constant

ω k = 0 such that ω(z) = ω k z k + O(|z| k+1 ),
(2.28) for z near 0 and Re z < 0. Then the following results hold.

(a). If V 0 ∈ V, then for any a > 0 there exist some constants c a , C a > 0 such that

e -a x 1-µ   e -tH - λ∈σ d (H),Re λ≤0 e -tH Π λ -Π 0 (t)   ≤ C a e -cat β t > 0, (2.29) 
where β = 1-µ 1+κµ for some integer κ ≥ 1 given by Corollary 4.2. (b). Let V 0 ∈ A. Then the set of outgoing resonances r + (H) of H is at most finite and there exists c > 0 such that for any

χ ∈ C ∞ 0 (R n ), one has χ   e -itH - λ∈σ d (H)∩C + e -itH Π λ -Π 0 (t) - ν∈r + (H) e -itν P ν (t)   χ ≤ C χ e -c t β t > 0,
(2.30) Here β, Π λ and P ν (t) have the same meaning as in Theorem 2.2 (b) and Π 0 (t) is polynomial in t of the form

Π 0 (t) = k-1 j=0 t j Π 0,j (2.31) 
where Π 0,j , 0 ≤ j ≤ k -1 is an operator of rank not exceeding m, m being the algebraic multiplicity of -1 as eigenvalue of G 0 W .

Remarks 2.6. 1. If H 0 is selfadjoint or if Re H 0 already satisfies (2.3) for some µ ∈]0, 1[ and µ 2 ≥ µ, one can take κ = 1 in Theorem 2.4 (a) and recovers β = β. See Remark 4.1.

2. If threshold zero is an eigenvalue of selfadjoint Schrödinger operator H, the condition (2.28) is always satisfied and Π 0 (t) = Π 0 is the eigenprojection associated with the eigenvalue zero of H. In non-selfadjoint case, under the (2.28), the existence of a resolvent expansion near threshold can be deduced by standard method of threshold spectral analysis. Now non-trivial problems are to check when the condition (2.28) is satisfied and to calculate more explicitly the term Π 0 (t). In fact a large part of Subsection 5.4 is devoted to proving the following more explicit results:

• Assume that threshold eigenvalue of H is geometrically simple.

-If (2.28) is satisfied, then Π 0,k-1 is of rank one and is given by

Π 0,k-1 = •, Jψ 0 ψ 0 (2.32)
for some eigenfunction ψ 0 associated with threshold eigenvalue of H. Here J is the complex conjugation J : f (x) → f (x);

-If there exists an associated eigenfunction ϕ 0 such that

R n (ϕ 0 (x)) 2 dx = 1, (2.33) 
then Condition (2.28) is satisfied with k = 1 and one has

Π 0 (t) = Π 0 = •, Jϕ 0 ϕ 0 . (2.34) 
Note that although the Riesz projection is not defined for threshold eigenvalue in non-selfadjoint case, Π 0 is a projection from L 2 (R n ) onto the eigenspace associated with eigenvalue zero of H. • Assume that eigenvalue -1 of G 0 W is semi-simple (i.e. its algebraic and geometrical multiplicities are equal) with multiplicity m and that condition (5.83) is satisfied. Then (2.28) is valid with k = m and one has Π 0,j = 0, j = 1, • • • , m -1 and Π 0,0 is given by

Π 0,0 = m j=1 •, Jψ j ϕ j (2.35)
where {ϕ j ; j = 1, • • • , m} and {ψ j ; j = 1, • • • , m} are two basis of the eigenspace of H associated with eigenvalue zero.

The method developed in the proof of Theorem 2.4 is general and applies to some other situations. See Remarks 5.2 and 5.4. At the end of this paper, we give an example such that threshold eigenvalue of H is geometrically simple and (2.33) is satisfied.

Gevrey resolvent estimates for the model operator

The starting point of our Gevrey estimates of the resolvent of H 0 is a uniform a priori energy estimate for the model operator H 0 . In the sequel, we need to apply this kind of energy estimates to the Schrödinger operator -∆ + V 1 (x) -iV 2 (x) and to its analytically deformed versions as well. For this purpose, we begin with a class of second order elliptic differential operators of the form

H 0 = - n i,j=1 ∂ x i a ij (x)∂ x j + n j=1 b j (x)∂ x j + V 0 (x) (3.1)
satisfying conditions (2.2), (2.3) and (2.4).

Denote b = (b 1 , • • • , b n ) and |a| ∞ = max 1≤i,j≤n sup x∈R n |a ij (x)|, |b| µ,∞ = max 1≤j≤n sup x∈R n | x µ b j (x)|. (3.2) For s ∈ R, denote ϕ s (x) = 1 + |x| 2 R 2 s s , (3.3) 
where

R s = M s 1 1-µ with M = M (c 0 , |a| ∞ , |b| ∞ ) > 1 large enough, but independent of s ∈ R.
For each s, ϕ s is equivalent to a weight of order s in x. Rescaling x by the s-dependent function R s = M s 1 1-µ in ϕ s is crucial in this work, because it allows to prove an energy estimate uniformly in s ∈ R (Lemma 3.1) and to control the size of constants appeared in the inductive proof of Gevrey estimates of the resolvent (see (3.26) ). A key estimate for ϕ s which is used in the proof of the following Lemma 3.1 is

|∇ϕ s (x)| 2 ≤ cϕ s (x) 2 M 2(1-µ) x 2µ , x ∈ R n , (3.4) 
for some constant c > 0 independent of M and s.

3.1.

A uniform energy estimate.

Lemma 3.1. Let H 0 be given by (3.1). Under the conditions (2.2), (2.3) and (2.4) with 0 < µ < 1, there exist some constants C, M > 0 depending only on |a| ∞ , |b| µ,∞ and c 0 given in (2.3) such that

x -µ ϕ s (x)u + ∇(ϕ s (x)u) ≤ C x µ ϕ s (x)H 0 u (3.5) for any s ∈ R and u ∈ H 2 loc (R n ) with x s+µ H 0 u ∈ L 2 . Proof. We calculate u, ϕ 2 s H 0 u for u ∈ C ∞ 0 : u, ϕ 2 s H 0 u = ϕ s u, H 0 (ϕ s u) + ϕ s u,   n i,j=1 ∂ x i a ij ∂ x j , ϕ s   u -ϕ s u, (b • ∇ϕ s )u) = I + II + III, (3.6) 
where

I = ϕ s u, H 0 (ϕ s u) II = ϕ s u, n i,j=1 (∂ x i ϕ s )a ij ∂ x j u + ∂ x i (a ij (∂ x j ϕ s )u) III = -ϕ s u, (b • ∇ϕ s )u . Since ϕ s ∂ x j u = ∂ x j (ϕ s u) -(∂ x j ϕ s )u, one has | ϕ s u, (∂ x i ϕ s )a ij ∂ x j u + ∂ x i a ij (∂ x j ϕ s )u | = | (∂ x i ϕ s )u, a ij ∂ x j (ϕ s u) -(∂ x j ϕ s )u + ϕ s u, ∂ x i (a ij (∂ x j ϕ s )u) | = | (∂ x i ϕ s )u, a ij ∂ x j (ϕ s u) -(∂ x j ϕ s )u -∂ x i (ϕ s u), a ij (∂ x j ϕ s )u | ≤ |a| ∞ (∂ x i ϕ s )u ( ∂ x j (ϕ s u) + (∂ x j ϕ s )u ) + ∂ x i (ϕ s u) (∂ x j ϕ s )u
The term II in (3.6) can be bounded by

|II| ≤ |a| ∞ ( n i=1 (∂ x i ϕ s )u ) n j=1 (2 ∂ x j (ϕ s u) + (∂ x j ϕ s )u ) ≤ n 2 |a| ∞ (∇ϕ s )u (2 ∇(ϕ s u) + (∇ϕ s )u )) ≤ n 2 |a| ∞ ∇(ϕ s u) 2 + (1 + 1 ) (∇ϕ s )u 2
for any > 0. Clearly, III verifies

|III| ≤ |b| µ,∞ x -µ ϕ s u (∇ϕ s )u ≤ |b| µ,∞ ( x -µ ϕ s u 2 + 1 4 (∇ϕ s )u 2 ) (3.7) Taking = (c 0 , |a| ∞ , |b| µ,∞ ) > 0 appropriately small where c 0 > 0 is given by (2.3), it follows from (2.3) that | u, ϕ 2 s H 0 u | ≥ |I| -|II| -|III| (3.8) ≥ c 0 2 ( ∇(ϕ s u) 2 + x -µ ϕ s (x)u 2 ) -u, W s u where W s (x) = c 1 |∇ϕ s | 2 with c 1 > 0 some constant depending only on c 0 , |a| ∞ and |b| µ,∞ .
One can check that

|∇ϕ s | 2 = 4s 2 x 2 R 4 s (1 + x 2 R 2 s ) 2 (1 + x 2 R 2 s ) 2s ≤ 4s 2 x 2 (R 2 s + x 2 ) 2 ϕ 2 s ≤ 4s 2 R 2 s + x 2 ϕ 2 s Since R 2 s + x 2 ≥ 2 -2µ R 2(1-µ) s x 2µ and R s = M s 1 1-µ , W s (x) is bounded by 0 ≤ W s (x) ≤ 4c 1 s 2 R 2 s + x 2 ϕ 2 s ≤ 2 2µ 4c 1 M 2(1-µ) x 2µ ϕ 2 s . (3.9) Noticing that 0 < µ < 1, one can choose M = M (c 0 , |a| ∞ , |b| µ,∞ ) > 1 large enough so that 2 2µ 4c 1 M 2(1-µ) < c 0 4
. Consequently, the above estimate combined with (3.8) gives

| u, ϕ 2 s H 0 u | ≥ c 0 4 ( ∇(ϕ s u) 2 + x -µ ϕ s u 2 ). (3.10) Remark that | u, ϕ 2 s H 0 u | ≤ x -µ ϕ s u x µ ϕ s H 0 u ≤ c 0 8 x -µ ϕ s u 2 + 2 c 0 x µ ϕ s H 0 u 2 .
It follows from (3.10) that

x µ ϕ s H 0 u 2 ≥ c 2 0 16 ( x -µ ϕ s u 2 + ∇(ϕ s u) 2 ), u ∈ C ∞ 0 (R n ). (3.11)
By an argument of density, one obtains (3.5) with some constant C > 0 independent of s ∈ R.

The same proof as that for Lemma 3.1 shows that

x -µ ϕ s (x)u + ∇(ϕ s (x)u) ≤ C x µ ϕ s (x)(H 0 -1)u (3.12)
uniformly in s ∈ R, λ ≤ 0 and and u ∈ H 2 loc (R n ) with x s+µ H 0 u ∈ L 2 . Corollary 3.2. Under the conditions of Lemma 3.1, there exists some constant C > 0 such that for any r ∈ R, f ∈ L 2,r and u ∈ H 2 loc such that

H 0 u = f , one has: u ∈ L 2,r-2µ , ∇u ∈ L 2,r-µ and x r-µ ∇u + x r-2µ u ≤ C x r f . (3.13) Proof. It follows from Lemma 3.1 with s = r-µ 2 . Lemma 3.1 shows that H 0 : D(H 0 ) → R(H 0 ) := Range(H 0 ) ⊂ L 2 (R n ) is bijective. Let G 0 denote its algebraic inverse with domain D(G 0 ) = R(H 0 ). Then one has H 0 G 0 = 1 on R(H 0 ), G 0 H 0 = 1 on D(H 0 ) (3.14) Lemma 3.3. Let D = ∩ s∈R L 2,s . Then one has (a). D ⊂ D(G 0 ). G 0 maps D into D and is a densely defined closed operator on L 2 (R n ). If H 0 is selfadjoint (resp., maximally dissipative), then -G 0 is also selfadjoint (resp., maximally dissipative).
(b). There exists some constant C > 0 such that

∇(ϕ s G 0 ϕ -s x -µ w) + x -µ ϕ s G 0 ϕ -s x -µ w) ≤ C w (3.15)
for all w ∈ D and s ∈ R.

Proof. We first show that

D ⊂ D(G 0 ). Remark that Re H 0 ≥ 0. Let f ∈ D and u = (H 0 + ) -1 f , > 0.
Since Re H 0 ≥ 0 and H 0 verifies the weighted coercive condition (2.3), H 0 + satisfies also (2.3) with the same constant c 0 > 0 independent of > 0. Following the proof of Lemma 3.1 with H 0 replaced by H 0 + , one has that for any s > 0

x s-µ ∇u + x s-2µ u ≤ C s x s f (3.16)
uniformly in > 0. For s > 2µ, this estimate implies that the sequence {u ; ∈]0, 1]} is relatively compact in L 2 . Therefore there exists a subsequence {u k ; k ∈ N} and u ∈ L 2 such that Lemma 3.3 shows that for any s, x -µ ϕ s G 0 ϕ -s x -µ defined on D can be uniquely extended to a bounded operator on L 2 (R n ), or in other words, for any

k → 0 and u k → u in L 2 as k → +∞. It follows that H 0 u = f in the sense of distributions. The ellipticity of H 0 implies that u ∈ H 2 (R n ). Therefore f ∈ R(H 0 ) = D(G 0 ). This shows that D ⊂ D(G 0 ). In particular D(G 0 ) is dense in L 2,
s ∈ R, G 0 is bounded from D(G 0 ) ∩ L 2,s to L 2,s-2µ : x -µ ϕ s G 0 u ≤ C ϕ s x µ u (3.17)
uniformly in u ∈ D(G 0 ) ∩ L 2,s and s ∈ R. This implies that G 0 maps D into D and G 0 extends to a continuous operator from L 2,s to L 2,s-2µ for any s ∈ R. By an induction, one can check that G N 0 extends to a bounded operator from L 2,s to L 2,s-2N µ for any s ∈ R. To simplify notation, we still denote G 0 (resp., G N 0 ) its continuous extension by density as operator from L 2,s to L 2,s-2µ (resp., from L 2,s to L 2,s-2N µ ). D is a core of G N 0 for any N ≥ 1.

3.2.

Resolvent estimates at threshold for the model operator.

Theorem 3.4. Let M > 1 be given in Lemma 3.1. Denote

x N,r = x R N,r with R N,r = R (2N -1+r)µ = M (2N -1 + r)µ 1 1-µ (3.18)
where N ∈ N * and r ∈ R + and M > 0 is a constant given by Lemma 3.

1. Set x N,r = (1 + |x N,r | 2 ) 1 2
. Then there exists some constant C > 0 such that

x N,r -(2N +r)µ G N 0 x N,r rµ ≤ C N (2N -1 + r)µ γN , (3.19) 
for any integer N ≥ 1 and any r ≥ 0. Here

γ = 2µ 1 -µ . (3.20)
Proof. Making use of Lemma 3.1, one can check that operator

I N = x N,r -2N µ-rµ G N 0 x N,r rµ (3.21)
is well defined on D and extends to a bounded operator on L 2 . To show the estimate (3.19), we use an induction on N . Since

x ≤ R x R for R ≥ 1, it follows from (3.15) that x R s -s-µ G 0 x R s s-µ ≤ C R 2µ s ≤ C 1 s γ (3.22)
uniformly in s, where

R s = M s 1 1-µ . In particular, when s = (1 + r)µ, one has R s = M (1 + r)µ 1 1-µ = R 1,r and I 1 ≤ C 1 (1 + r)µ γ (3.
23) for all r ≥ 0, which proves (3.19) when N = 1. Assume now that N ≥ 2 and that one has proved for some C > 0 independent of N and r ≥ 0 that

I N -1 ≤ C N -1 (2N -3 + r)µ γ(N -1) . (3.24) 
Write I N as

I N = x N,r -(2N +r)µ G 0 x N -1,r (2N -2+r)µ • I N -1 • x N -1,r -rµ x N,r rµ Notice that x N,r ≤ x N -1,r ≤ R N,r R N -1,r x N,r
for any N ≥ 2. Applying (3.22) with s = (2N -1 + r)µ, one obtains

x N,r -(2N +r)µ G 0 x N,r (2N -2+r)µ ≤ C 1 (2N -1 + r)µ γ .
Making use of the induction hypothesis (3.24), one can estimate I N as follows:

I N ≤ x N,r -(2N +r)µ G 0 x N -1,r (2N -2+r)µ • I N -1 ≤ x N,r -(2N +r)µ G 0 x N,r (2N -2+r)µ • ( x N -1,r x N,r ) (2N -2+r)µ L ∞ • I N -1 ≤ C 1 (2N -1 + r)µ γ • (2N -1 + r)µ (2N -3 + r)µ γ(2N -2+r) • C N -1 (2N -3 + r)µ γ(N -1) ≤ C 1 2N -1 + r 2N -3 + r γ(2N -2+r) C N -1 (2N -1 + r)µ γN . (3.25)
The sequence { 2m-1+r 2m-3+r γ(2m-2+r)

; m ≥ 2} is uniformly bounded in r ≥ 0. Hence there exists some constant C 2 > 0 independent of m such that

C 1 2m -1 + r 2m -3 + r γ(2m-2+r) ≤ C 2 (3.26)
for all m ≥ 2 and r ≥ 0. Increasing the constant C if necessary, one can suppose without loss that C 2 ≤ C and obtains from (3.26) that

I N ≤ C N (2N -1 + r)µ N γ (3.27)
Theorem 3.4 is proved by an induction on N .

(3.19) with r = 0 shows that there exists some contant C > 0 such that

x -2N µ G N 0 + G N 0 x -2N µ ≤ C N N γN (3.28) for all N ≥ 1. Let R 0 (z) = (H 0 -z) -1 denote the resolvent of H 0 and Ω -(δ) ≡ Ω δ, π 2 + δ, 3π 2 -δ = z ∈ C * ; |z| < δ, π 2 + δ < arg z < 3π 2 -δ ,
with δ > 0. Since Re H 0 ≥ 0, there exists some constant

C 1 > 0 such that R 0 (z) ≤ C 1 |z| , z ∈ Ω -(δ). From the equation R 0 (z) = G 0 + zG 0 R 0 (z), it follows that as operators from L 2,s to L 2,s-2µ , s ∈ R, R 0 (z) is uniformly bounded for z ∈ Ω -(δ) and one has s- lim z∈Ω -(δ),z→0 R 0 (z) = G 0 . (3.29)
Similarly one can check that for any N ∈ N * , one has s-lim

z∈Ω -(δ),z→0 R 0 (z) N = G N 0 . (3.30) 
as operators from L 2,s to L 2,s-2N µ . By an abuse of notation, we set

R 0 (0) = G 0 . Thus R 0 (z) is defined for z in Ω -(δ) ∪ {0}.
Corollary 3.5. For any a > 0, there exists some constant C a > 0 such that one has

e -a x 1-µ R 0 (z) N + R 0 (z) N e -a x 1-µ ≤ C N +1 a N γN (3.31) for all N ≥ 1 and z ∈ Ω -(δ) ∪ {0}. Here γ = 2µ 1-µ . Proof. Since Re H 0 ≥ 0, one has R 0 (z) ≤ 1 |Re z| for Re z < 0. Hence zR 0 (z) is uniformly bounded for z in Ω -(δ) ∪ {0} (δ > 0 is fixed). Iterating the first resolvent equation, one has R 0 (z) N = G N 0 (1 + zR 0 (z)) N .
According to Theorem 3.4 with r = 0, one has for some constant C > 0 depending on δ

x N,0 -2N µ R 0 (z) N ≤ x N,0 -2N +µ G N 0 (1 + zR 0 (z) N ) ≤ C N N γN , (3.32) 
for any integer N ≥ 1 and

z ∈ Ω -(δ) ∪ {0}. Let a > 0. Then e -a x 1-µ R 0 (z) N ≤ e -a x 1-µ x N,0 2N µ L ∞ C N N γN . To evaluate the norm e -a x 1-µ x N,0 2N µ L ∞ , consider the function f (r) = e -ar 1-µ r R N 2N µ , where r = |x| and R N = R N,0 = M (2N -1)µ 1 1-µ . One calculates: f (r) = f (r) r µ (R 2 N + r 2 ) -2a(1 -µ)(R 2 N + r 2 ) + 2N µr 1+µ , r ≥ 1. Let A ≥ 1. Since R N ∼ c N 1 1-µ for some constant c > 0 as N → ∞, one can check that N r 1+µ ≤ c A 1-µ r 2 if r ≥ AR N for some constant c > 0 independent of A, r and N . Therefore, if A = A(µ, a) > 1 is chosen sufficiently large, one has f (r) < 0, r > AR N , thus f (r) is decreasing in [AR N , +∞[. It is now clear that e -a x 1-µ x N,0 2N µ L ∞ ≤ sup 0≤r≤AR N f (r) ≤ A 2N µ
Corollary 3.5 is proved for some appropriate constant C a .

Proof of Theorem 2.1. Theorem 2.1 for τ = 0 is a particular case of Corollary 3.5. In the general case τ ≥ 0, we apply Theorem 3.4 with τ = rµ and remark that

1 R N,r x ≤ x N,r ≤ x .
As in the proof of Corollary 3.5, one can show that

x -rµ e -a x 1-µ G N 0 x rµ ≤ B 1 B N 2 R rµ N,r x N,r -(2N +r)µ G N 0 x N,r rµ (3.33) ≤ D 1 D N +rµ 2 (N + r) rµ 1-µ +γN
for some constants B j , D j > 0, uniformly in r ≥ 0 and N ∈ N * . The proof of Theorem 2.2 is complete for all τ = rµ ≥ 0 and N ∈ N * .

Heat and Schrödinger semigroups of the model operator

As the first application of Theorem 2.1, we show in this Section how to deduce subexponential time-decay estimates for the heat and Schrödinger equations associated with a model operator of the form

H 0 = -∆ + V 0 (x) with V 0 (x) = V 1 (x) -iV 2 (x), V 1 (x) and V 2 (x)
being real and satisfying Condition (2.3).

4.1. Sub-exponential time-decay of the heat semigroup. To study the heat semigroup e -tH 0 , t ≥ 0, we use Cauchy integral formula for semigroups and need an upper-bound of the resolvent on a contour in the right half-plane passing through the origin.

Proposition 4.1. Assume that Re H 0 ≥ -a∆ for some a > 0 and that the imaginary part of the potential V 0 (x) verifies the estimate

|V 2 (x)| ≤ C x -2µ 2 , ∀x ∈ R n , (4.1) 
for some µ 2 > 0. Let µ such that 0 < µ ≤ min{µ 2 , 1} and 0 < µ < n 2 . Then there exists some constant C 0 > 0 such that the numerical range N (H 0 ) of H 0 is contained in a region of the form {z; Re z ≥ 0, |Im z| ≤ C 0 (Re z) µ }. Consequently, for δ > 0 small enough there exists some constant M 0 such that

R 0 (z) ≤ M 0 |z| 1 µ (4.2) for z ∈ O(δ)
where

O(δ) = {z ∈ C * ; |z| < δ, Re z < δ|Im z| 1 µ }. (4.3) Proof. For z = u, H 0 u ∈ N (H 0 ) where u ∈ D(H 0 ) and u = 1, one has Re z = Re u, H 0 u ≥ a ∇u 2 |Im z| ≤ u, |V 2 |u ≤ C x -µ 2 u 2 .
According to the generalized Hardy inequality ( [START_REF] Herbst | Spectral theory of the operator (p 2 +m 2 ) 1 2 -Ze 2 r[END_REF]), for 0 < µ < n 2 and 0 < µ ≤ µ 2 there exists some constant C µ such that

x -µ 2 u 2 ≤ |x| -µ u 2 ≤ C µ |∇| µ u 2 . (4.4)
Let û denote the Fourier transform of u normalized such that û = u and τ = ∇u . Then for 0 < µ ≤ 1 noticing that u = 1, one has

|∇| µ u 2 = |ξ| µ û 2 = |ξ| µ û 2 L 2 (|ξ|≥τ ) + |ξ| µ û 2 L 2 (|ξ|<τ ) ≤ τ 2(µ -1) |ξ|û 2 L 2 (|ξ|≥τ ) + τ 2µ û 2 L 2 (|ξ|<τ ) ≤ 2τ 2µ = 2 ∇u 2µ .
This proves that Re z ≥ 0 and |Im z| ≤ C 0 (Re z) µ when z ∈ N (H 0 ). The other assertions of Proposition are immediate, since σ(H 0 ) ⊂ N (H 0 ) and

R 0 (z) ≤ 1 dist(z, N (H 0 )) . Remark 4.1. Let H 1 = -∆ + V 1 (x) be the real part of H 0 . From the proof of Proposition 4.1, one sees that if V 1 ∈ V for some µ ∈]0, 1[ and if µ 2 ≥ µ, then the numerical range of H 0 is contained in the sector {z; Re z ≥ 0, |Im z| ≤ CRe z} for some C > 0.
Therefore the results of Proposition 4.1 hold with µ = 1. In particular, this is the case if V 2 = 0 and V 1 ∈ V. Note that Proposition 4.1 can be applied to operators of the form

H 0 = -∆ -i 1 x 2µ , µ ∈]0, 1[. Making use of the equation R 0 (z) = κ-1 j=0 z j G j+1 0 + z κ G κ 0 R 0 (z) (4.5)
we deduce from Theorem 3.4 (with r = 0 and N = κ) and Proposition 4.1 that for κ ∈ N * and κ ≥ 1 µ , one has

x -2κµ R 0 (z) ≤ C (4.6)
uniformly in z ∈ Ω and z near 0. It follows that

G 0 = s-lim z∈Ω,z→0 R 0 (z)
as operator from L 2,s to L 2,s-2κµ . As before we denote R 0 (0) = G 0 . Notice that under the conditions of Proposition 4.1, one can not exclude possible accumulation of complex eigenvalues towards zero. Making use of Proposition 4.1, one can prove the following uniform Gevrey estimates in a domain located in the right half-plane. Corollary 4.2. Under the conditions of Proposition 4.1, let κ ∈ N * be the smallest integer such that κ ≥ 1 µ . For any a > 0, there exist c, C > 0 such that

e -a x 1-µ d N -1 dz N -1 R 0 (z) ≤ Cc N N (1+κγ)N , ∀N ≥ 1, (4.7 
)

uniformly in z ∈ O 0 (δ) ≡ O(δ) ∪ {0}, where O(δ) is defined by (4.3). Proof. For z ∈ Ω, decompose R 0 (z) as R 0 (z) = A(z) + G κ 0 B(z) with A(z) = κ-1 j=0 z j G j+1 0 and B(z) = z κ R 0 (z). By Proposition 4.1, B(z) is uniformly bounded for z ∈ Ω. Theorem 3.4 shows that for some constant C 1 x κ,r -(2κ+r)µ G κ 0 x κ,r rµ ≤ C 1 (2κ + r)µ γκ , (4.8) 
x κ,r

-(2κ+r)µ A(z) x κ,r rµ ≤ C 1 (2κ + r)µ γκ (4.9)
for any r ≥ 0 and |z| ≤ 1. Making use of the relation

R 0 (z) N = A(z)R 0 (z) N -1 + G κ 0 R 0 (z) N -1 B(z) one can
show by an induction on N that there exists some constant C > 0 such that

x κN,0 -2κN µ R 0 (z) N ≤ C N N N γκ (4.10)
for any N ≥ 1 and z ∈ Ω. In fact, the case N = 1 follows from (4.6). If (4.10) is proved with N replaced by N -1 for some N ≥ 2, noticing that x κN,0 = x κ,2κ(N -1) , (4.8) and (4.9) with r = 2κ(N -1) show that

x κN,0 -2κN µ R 0 (z) N ≤ C 1 (2κN -1)µ γκ ( x κ(N -1),0 -2κ(N -1)µ R 0 (z) N -1 + x κ(N -1),0 -2κ(N -1)µ R 0 (z) N -1 B(z) ) ≤ C 2 C N -1 N N γκ
for some constant C 2 independent of N . Increasing the constant C if necessary, one obtains (4.10) for all N ≥ 1 by induction. (4.7) is deduced from (4.10) as in the proof of Corollary 3.5.

By Remark 4.1, if V 1 ∈ V for some µ ∈]0, 1[ (which implies in particular that H 1 = -∆ + V 1 (x) satisfies (2.3)) and V 2 = O( x -2µ
), then one can take κ = 1 in Corollary 4.2 and the order of Gevrey estimates in Corollary 4.2 is the same as in Corollary 3.5. As another consequence of Proposition 4.1, we establish the following estimate on resolvent expansion at threshold. Corollary 4.3. Under the conditions of Proposition 4.1, assume in addition (2.3) with µ ∈ ]0, 1[. Then for any a > 0, there exist some constants C, c > 0 such that for any z ∈ O(δ), one has for some N (depending on z) such that

e -a x 1-µ (R 0 (z) - N j=0 z j G j+1 0 ) ≤ Ce -c|z| -1 γ . (4.11)
Proof. It follows from (4.5) and Theorem 2.1 with τ = 2κµ that for some C a , c a > 0

e -a x 1-µ (R 0 (z) - N j=0 z j G j+1 0 ) ≤ C a c N a N γN |z| N +1 , (4.12) 
for all z ∈ O(δ). The remainder estimate can be minimized by choosing an appropriate N in terms of |z|. For fixed M > 1 and z = 0, take N = [

1 (caM |z|) 1 γ
]. Then

c N a N γN |z| N +1 ≤ e -c|z| -1 γ for z ∈ O(δ)
, where c > 0 is independent of z and N .

Theorem 4.4. Let H 0 = -∆ + V 0 (x) with V 0 ∈ V. Then for any a > 0, there exist some constants c a , C a > 0 such that e -a x 1-µ e -tH 0 + e -tH 0 e -a x 1-µ ≤ C a e -cat β , t > 0, (

with β given by (2.23).

Proof. Let Γ be the contour defined by Γ = {z; Re z ≥ 0, |Im z| = C(Re z) µ } oriented in anti-clockwise sense, where C > 0 is sufficiently large. Here µ > 0 is appropriately small such that both conditions (2.12) and (4.1) are satisfied. By Proposition 4.1, the numerical range of H 0 is located on the right-hand side of Γ and one has

e -tH 0 = i 2π Γ e -tz R 0 (z)dz. (4.14)
Decompose Γ as Γ = Γ 0 + Γ 1 where Γ 0 is the part of Γ with 0 ≤ Re z ≤ δ while Γ 1 is the part of Γ with Re z > δ where δ > 0 is sufficiently small. Clearly, the integral on Γ 1 is exponentially decreasing as t → ∞

Γ 1 e -tz R 0 (z)dz ≤ Ce -δt , t > 0, for some constant C > 0. For z ∈ Γ 0 , denote f N (z) = R 0 (z) -N j=0 z j G j+1 0 . Then f N (z) = z N +1 G N +1 0 R 0 (z).
Then Theorem 2.1 with τ = 2κµ shows that for any a > 0 there exist some constants

C, C 1 > 0 such that e -a x 1-µ f N (z) ≤ C 1 C N |z| N +1 N γN (4.15) for z ∈ Γ 0 . It follows that Γ 0 e -tz e -a x 1-µ R 0 (z)dz ≤ N j=0 e -a x 1-µ G j+1 0 | Γ 0 e -tz z j dz| + Γ 0 e -tz e -a x 1-µ f N (z)dz ≤ C 2 N j=0 C j j γj e -δt + C 2 C N N γN Γ 0 |e -tz ||z| N +1 |dz|
for some C 2 > 0 and for all t > 0 and N ≥ 1. Parameterizing Γ 0 by z = λ ± icλ 1 µ with λ ∈]0, δ], one can evaluate the last integral as follows:

Γ 0 |e -tz ||z| N +1 |dz| ≤ C N 3 δ 0 e -tλ λ N +1 dλ = C N 3 t -N -2 δt 0 e -τ τ N +1 dτ ≤ C N 4 t -N -2 N N for some C 3 , C 4 > 0.
This proves that there exist some constants B 0 and B 1 > 0 such that

Γ 0 e -tz e -a x 1-µ R 0 (z)dz ≤ B 0 B N 1 N γN (N e -δt + N N t -N -2 ) (4.16)
for any t > 0 and N ≥ 1. To minimize the remainder, we choose N in terms of t such that

N ( t M 1 B 1 )
1 1+γ as t → +∞ for some fixed appropriately chosen constant M 1 . One obtains

Γ 0 e -tz e -a x 1-µ R 0 (z)dz ≤ Ce -δ 0 t 1 1+γ (4.17)
for some C, δ 0 > 0. This proves that there exist some constants C, c > 0 such that e -a x 1-µ e -tH 0 ≤ Ce -c t β , t > 0, (4.18)

with β = 1+µ 1-µ .
As a consequence of Theorem 4.4, one obtains that there exists some constant c > 0 such that e -tH 0 f ≤ C R e -c t β f , t > 0, (

for all f ∈ L 2 (R n ) with support contained in {|x| ≤ R}, R > 0. In selfadjoint case, this result is already proved by S. Nakamura in [START_REF] Nakamura | Low energy asymptotics for Schrödinger operators with slowly decreasing potentials[END_REF] by different method.

4.2. Sub-exponential time-decay of the Schrödinger semigroup. To obtain sub-exponential time-decay of solutions to the Schrödinger equation associated with H 0 , we take V 0 ∈ A and use both techniques of analytic dilation and analytic deformation to study quantum resonances of H 0 . It is well known that these different techniques give rise to the same set of quantum resonances ( [START_REF] Aguilar | A class of analytic perturbations for one-body Schrödinger Hamiltonians[END_REF][START_REF] Helffer | Comparaison entre les diverses notions de résonances. (French) [Comparison among the various notions of resonance[END_REF][START_REF] Hunziker | Distorsion analyticity and molecular resonance curves[END_REF][START_REF] Simon | Resonances and complex scaling: a rigorous overview[END_REF]). The conditions for potentials V 0 in the class A are used, among others, to show that quantum resonances of H 0 do not accumulate to threshold zero.

The main task of this subsection is to prove that the resolvent of the analytically distorted Hamiltonian H 0 (θ) of H 0 verifies Gevrey estimates along some curve located in C -.

Firstly, we use the analytic dilation method to prove that if V 0 ∈ A, then quantum resonances of H 0 = -∆ + V 0 (x) can not accumulate to zero. Denote H 0 (θ) the operator obtained from H 0 by analytic dilation:

H 0 (θ) = -(1 + θ) -2 ∆ + V 0 ((1 + θ)x) for θ ∈ C and θ near 0. Set R 0 (z, θ) = ( H 0 (θ) -z) -1 . For θ real, R 0 (z, θ) is holomorphic in C + and meromorphic in C \ R + . Since V 0 ∈ A,
there exists some constant δ > 0 such that { H 0 (θ); θ ∈ C, |θ| < δ} is a holomorphic family of type A. One has

σ ess ( H 0 (θ)) = { r (1 + θ) 2 ; r ≥ 0}. (4.20)
Consequently for Im θ > 0 and |θ| small enough, the resolvent R 0 (z, θ) defined for z ∈ C + with Im z >> 1 can be meromorphically extended across the positive real half-axis R + into the sector {z; arg z > -Im θ}. The poles of this meromorphic extension of R 0 (z, θ) are by definition quantum resonances of H 0 , which are independent of θ ( [START_REF] Aguilar | A class of analytic perturbations for one-body Schrödinger Hamiltonians[END_REF]).

We begin with the following elementary Hardy type inequality.

Lemma 4.5. Let n ≥ 2 and 0 < s < n -1. One has

x -1-s 2 u 2 ≤ 1 2 (n -1)(n -1 -s) ( ∇u 2 + x -s u 2 ) (4.21) for all u ∈ H 1 (R n ).
Proof. Let x = rω, r ≥ 0 and ω ∈ S n-1 . For u ∈ S(R n ), denote

F (r, ω) = |u(rω)| 2 r n-1 r s .
Then one has

F r (r, ω) = ((n -1)(1 + r 2 ) -sr 2 )|u(rω)| 2 r n-2 r s+2 + 2 r n-1 r s Re (u r (rω)u(rω)).
Here F r (r, ω) is the derivative of F (r, ω) with respect to r. Since n ≥ 2 and u ∈ S one has

R + ×S n-1 F (r, ω) drdω = 0. It follows that R n (n -1) + (n -1 -s)r 2 r r s+2 |u(x)| 2 dx = -2 R n x -s Re (u r u) dx (4.22)
for any u ∈ S(R n ). Inequality (4.21) follows from the trivial bounds

2 (n -1)(n -1 -s) ≤ (n -1) + (n -1 -s)r 2 r and -2 R n x -s Re (u r u) dx ≤ 2 u r x -s u ≤ ∇u 2 + x -s u 2
together with an argument of density.

Lemma 4.6. Let V 0 ∈ A. Then there exist some constants c 0 > 0 and γ 0 ∈]π, 3π 2 [ such that for θ ∈ C with |θ| sufficiently small and Im θ > 0, one has

σ( H 0 (θ)) ∩ S(-c 0 θ, γ 0 ) = ∅ (4.23)
and

x -2µ R 0 (z, θ) ≤ 1 c 0 Im θ z (4.24)
for z ∈ S(-c 0 θ, γ 0 ). Here

S(-c 0 θ, γ 0 ) = {z ∈ C * ; -c 0 Im θ < arg z < γ 0 } (4.25) 
Proof. We only consider the case θ = iτ with τ > 0 small enough. Since

V 0 = V 1 -iV 2 ∈ A, one has V 0 ((1 + iτ )x) = V 1 (x) + τ x • ∇V 2 (x) -i(V 2 (x) -τ x • ∇V 1 (x) + O(τ 2 x -2µ )
for τ > 0 sufficiently small. Let z = u, H 0 (θ)u , u ∈ H 2 with u = 1. Then,

Re z = 1 -τ 2 (1 + τ 2 ) 2 ∇u 2 + u, (V 1 (x) + O(τ x -2µ ))u , (4.26) 
Im z = - 2τ (1 + τ 2 ) 2 ∇u 2 -u, (V 2 (x) -τ x • ∇V 1 (x))u + u, O(τ 2 x -2µ ))u . (4.27) 
Since Re H 0 ≥ 0 and satisfies (2.3), there exists c > 0 such that

Re z ≥ c( ∇u 2 + x -µ u 2 ) (4.28)
for τ > 0 sufficiently small. If R ∈]0, ∞], one has for some c > 0

V 2 (x) -τ x • ∇V 1 (x) ≥ c τ x -2µ , ∀x ∈ R n , which gives that Im z ≤ -c τ ( ∇u 2 + x -µ u 2 ) (4.29)
for some c > 0. This shows that Im z ≤ -Cτ Re z

(C = c c -1 ) if R ∈]0, +∞]. If R = 0, one has V 2 (x) ≥ 0 for all x ∈ R n and V 2 (x) -τ x • ∇V 1 (x) ≥ c 3 τ x 2 x 2µ+2 , ∀x ∈ R n ,
for some c 3 > 0. In this case, one has

Im z ≤ -Cτ ( ∇u 2 + u, x 2 x 2µ+2 u ) + Cτ 2 x -µ u 2 .
(4.30) Lemma 4.5 with s = µ shows 1

x 2µ+2 ≤ 1 2 (n -1)(n -1 -µ) (-∆ + 1 x 2µ )
in the sense of selfadjoint operators. For 0 < µ < 3 4 when n = 2 and µ ∈]0,

1[ if n ≥ 3, one has α ≡ 1 2 (n -1)(n -1 -µ) < 1.
This proves that

∇u 2 + u, x 2 x 2µ+2 u = ∇u 2 + u, ( 1 x 2µ - 1 x 2µ+2 )u ≥ (1 -α)( ∇u 2 + x -µ u 2 ).
Consequently, one obtains

Im z ≤ -C(1 -α)τ ( ∇u 2 + x -µ u 2 ) + Cτ 2 x -µ u 2 ≤ -C 1 τ Re z (4.31)
for some C 1 > 0 if τ > 0 is small enough. This proves that the numerical range

N ( H 0 (θ)) of H 0 (θ) is contained in Σ θ where Σ θ = {z; Re z ≥ 0, Im z ≤ -C 1 Im θRe z}, Im θ > 0, (4.32) 
for some constant

C 1 > 0. Since σ( H 0 (θ)) ⊂ Σ θ and R 0 (z, θ) ≤ dist(z, Σ θ ) -1 , one has R 0 (z, θ) ≤ 1 c 0 Im θ |z| (4.33)
for z ∈ C\{0} with -c 0 Im θ < arg z < 3π 2 -c 0 for some c 0 > 0 small enough. For V 0 ∈ A, H 0 (θ) verifies Conditions (2.1) -(2.4) uniformly in θ with Im θ ≥ 0 and |θ| < δ. G 0 (θ) = H 0 (θ) -1 is well defined as in the case of θ = 0 and Theorem 3.4 holds for G 0 (θ). (4.24) follows from the equation

R 0 (z, θ) = G 0 (θ) + z G 0 (θ) R 0 (z, θ)
and Theorem 3.4 applied to G 0 (θ).

In order to obtain sub-exponential time-decay estimates for χe

-itH 0 χ, χ ∈ C ∞ 0 (R n ), we use analytic distortion of H 0 outside the support of χ. Let R 0 > 1 and ρ ∈ C ∞ (R) with 0 ≤ ρ ≤ 1 and ρ(r) = 0 if r ≤ 1 and ρ(r) = 1 if r ≥ 2. Set F θ (x) = x 1 + θρ( |x| R 0 ) , x ∈ R n . (4.34) When θ ∈ R with |θ| sufficiently small, x → F θ (x) is a global diffeomorphism on R n . Set U θ f (x) = |DF θ (x)| 1 2 f (F θ (x)), f ∈ L 2 (R n ), (4.35) 
where DF θ (x) is the Jacobi matrix and |DF θ (x)| the Jacobian of the change of variables:

x → F θ (x). One has

|DF θ (x)| = 1, |x| < R 0 ; (1 + θ) n , |x| > 2R 0 (4.36)
U θ is unitary in L 2 (R n ) for θ real with |θ| sufficiently small. Define the distorted operator H 0 (θ) by

H 0 (θ) = U θ H 0 U -1 θ . (4.37) One can calculate that H 0 (θ) = -∆ θ + V (F θ (x)) (4.38) where -∆ θ = t ∇ θ • ∇ θ with ∇ θ = ( t DF θ ) -1 • ∇ - 1 |DF θ | 2 ( t DF θ ) -1 • (∇|DF θ |) (4.39)
In particular, ∇ θ f = (1+θ) -1 ∇f if f is supported outside the ball B(0, 2R 0 ). If V 0 ∈ A, H 0 (θ) can be extended to a holomorphic family of type A for θ in a small complex neighborhood of zero. H 0 (θ) and H 0 (θ) coincide outside the ball B(0, 2R 0 ) and they have the same essential spectra. In addition their discrete eigenvalues are also the same so long as they are uncovered by the essential spectra ( [START_REF] Aguilar | A class of analytic perturbations for one-body Schrödinger Hamiltonians[END_REF][START_REF] Hunziker | Distorsion analyticity and molecular resonance curves[END_REF][START_REF] Helffer | Comparaison entre les diverses notions de résonances. (French) [Comparison among the various notions of resonance[END_REF]). Since R 0 (z, θ) is holomorphic for z in S(-c 0 θ, γ 0 ), so is R 0 (z, θ) = (H 0 (θ) -z) -1 . We want to establish an upper bound on R 0 (z, θ) when z in S(-c 0 θ, γ 0 ) which will imply x -2µ R 0 (z, θ) is uniformly bounded for z near zero and z in S(-c 0 θ, γ 0 ).

Remark that if V 0 ∈ A, the distorted operator H 0 (θ) satisfies the conditions (2.3) and (2.4) with some constant c 0 > 0 independent of R 0 > 1 and θ ∈ C with |θ| small. Therefore Lemma 3.1 can be applied to H 0 (θ). One can define G 0 (θ) by

G 0 (θ) = s - lim Re z<0,z→0 R 0 (z, θ)
as operators from L 2,s to L 2,s-2µ and Theorem 3.4 holds for G 0 (θ) uniformly in θ when |θ| is small. To simplify statement, denote

R 0 (0, θ) = G 0 (θ).
In the following θ is fixed with |θ| small and Im θ > 0. Although R 0 (z, θ) and R 0 (z, θ) have same poles, their norms may be rather different. In the following Proposition we give an argument to deduce an estimate on R 0 (z, θ) for z near 0 from those on R 0 (z, θ) and R 0 (0, θ).

Proposition 4.7. Assume the conditions of Lemma 4.6. Then one has σ(H 0 (θ))∩S(-c 0 θ, γ 0 ) = ∅ and there exists some constant C > 0 such that

x -2µ R 0 (z, θ) ≤ C z , z ∈ S(-c 0 θ, γ 0 ). ( 4 

.40)

Proof. For z ∈ S(-c 0 θ, γ 0 ) and |z| large, (4.40) follows from Lemma 4.6 by an argument of perturbation. For z ∈ S(-c 0 θ, γ 0 ) with |z| bounded, we compare R 0 (z, θ) with R 0 (z, θ) for |x| large and with R 0 (0, θ) for |z| small.

Let χ ∈ C ∞ 0 (R n ) such that χ(x) = 1 if |x| ≤ 2R 0 . Take χ ∈ C ∞ 0 (R n ) such that χχ = χ. On the support of 1 -χ, H 0 (θ) = H 0 (θ). For z ∈ S(-c 0 θ, γ 0 ) and |z| small, one has R 0 (z, θ) = R 0 (0, θ) + zR 0 (0, θ)R 0 (z, θ) = R 0 (0, θ) + zR 0 (0, θ)( χ + (1 -χ))R 0 (z, θ) = R 0 (0, θ) + zR 0 (0, θ) χR 0 (z, θ) +zR 0 (0, θ)(1 -χ) R 0 (z, θ)(1 -χ) +zR 0 (0, θ)(1 -χ) R 0 (z, θ)[(1 + θ) -2 ∆, χ]R 0 (z, θ).
Recall that for Im θ > 0, there exists some constant C > 0 such that

R 0 (z, θ) x -2µ ≤ C, for z ∈ S(-c 0 θ, γ 0 ).
By the ellipticity of the operator and the first resolvent equation

R 0 (z, θ) = R 0 (-1, θ) + (z -1) R 0 (z, θ) R 0 (-1, θ)
we derive that R 0 (z, θ)(1 -∆) x -2µ ≤ C, (4.41) for z ∈ S(-c 0 θ, γ 0 ) and |z| ≤ 1. Therefore there exists some constant C 1 such that

x -2µ R 0 (z, θ) x -2µ ≤ C 1 + C 1 |z| x -2µ R 0 (z, θ) x -2µ (4.42)
for z ∈ S(-c 0 θ, γ 0 ) and |z| ≤ 1. This shows that x -2µ R 0 (z, θ) x -2µ is uniformly bounded for z ∈ S(-c 0 θ, γ 0 ) and |z| sufficiently small. (4.40) now follows from Lemme 4.6 and the second resolvent equation

R 0 (z, θ) = R 0 (z, θ) + R 0 (z, θ)( H 0 (θ) -H 0 (θ)) R 0 (z, θ) (4.43)
since H 0 (θ) -H 0 (θ) is a second order differential operator with compactly supported coefficients.

Let Im θ > 0 and δ > 0 be small. Set

Ω(δ, θ) = {z ∈ C * ; |z| < δ, -δIm θ < arg z < 3π 2 -δ} and Ω 0 (δ, θ) = Ω(δ, θ) ∪ {0}. (4.44)
Corollary 4.8. With the convention R 0 (0, θ) = G 0 (θ), for any a > 0, there exist some constants c, C > 0 such that

e -a x 1-µ R 0 (z, θ) N ≤ Cc N N γN , N ∈ N * (4.45)
for all z ∈ Ω 0 (δ, θ).

Proof. In the proof of Lemma 4.6, it is shown that R 0 (z, θ) ≤ C δ,θ |z| -1 for z ∈ Ω(δ, θ) if δ > 0 is small enough. Since H 0 (θ) and H 0 (θ) differ only in a compact set, we deduce from Proposition 4.7 and (4.43) that R 0 (z, θ) ≤ C θ |z| -1 for z ∈ Ω(δ, θ). With the above bound, (4.45) follows from Theorem 2.1 applied to G 0 (θ) and the equation R 0 (z, θ) N = G 0 (θ) N (1 + zR 0 (z, θ)) N , z ∈ Ω(δ, θ).

Theorem 4.9. Let V 0 ∈ A. There exists some constant c > 0 such that for any function χ ∈ C ∞ 0 (R n ) there exists some constant C χ > 0 such that χe -itH 0 χ ≤ C χ e -c|t| β , t > 0. (4.46)

Proof. Let R 1 > 0 such that suppχ ⊂ B(0, R 1 ). Let U (θ) be defined as before with R 0 > R 1 and H 0 (θ) = U (θ) -1 H 0 U (θ). Then one has χR 0 (z)χ = χR 0 (z, θ)χ and χe -itH 0 χ = χe -itH 0 (θ) χ for θ ∈ R with |θ| small. Since V 0 ∈ A, the right hand sides of the above equations can be extended holomorphically in z to a complex neighborhood of 0. For θ ∈ C with θ near zero and Im θ > 0, H 0 (θ) is strictly sectorial and the resolvent R 0 (z, θ) is holomorphic in z ∈ C with -cIm θ < arg z < π + c for some c > 0. Making use of Proposition 4.7, one can check that

χe -itH 0 χ = i 2π Γ e -itz χR 0 (z, θ)χdz (4.47) where Γ = {z = re -iη ; r ≥ 0} ∪ {z = -re iη , r ≥ 0}
for some η = η(θ) > 0 small enough. Γ is oriented in anti-clockwise sense.

The remaining part of the proof of (4.46) is the same as in Theorem 4.4 and will not be repeated here. We just indicate that

R 0 (z, θ) = N j=0 z j G 0 (θ) j + z N +1 G 0 (θ) N R 0 (z, θ)
for z ∈ Γ and z near 0. Theorem 2.1 and Proposition 4.7 show that for a > 0

χG 0 (θ) N R 0 (z, θ)χ (4.48) ≤ C χ e -a x 1-µ G 0 (θ) N R 0 (z, θ) x -2µ ≤ C a,χ,Im θ C N a
N γN with some constant C a independent of χ. By choosing appropriately N in terms of t as in the proof of Theorem 4.4, one obtains (4.46) with some constant c > 0 independent of χ. Theorem 4.9 generalizes a result of D. Yafaev [START_REF] Yafaev | The low-energy scattering for slowly decreasing potentials[END_REF] for one-dimensional selfadjoint Schrödinger operators to higher dimensions n ≥ 2.

Example 4.2. If n = 3, Coulomb-type potential V 0 (x) = a-ib
|x| with a, b ≥ 0 and a + b > 0 belongs to the class A with µ = 1 2 . Consequently, the results of this section can be applied to

H 0 = -∆ + a-ib |x| .
In particular, for any χ ∈ C ∞ 0 (R 3 ), making use of analytic deformation outside the support of χ, one has χR 0 (z)χ = χR 0 (z, θ)χ. Corollary 4.8 shows that χR 0 (z)χ satisfies Gevrey estimates of order 3 for z ∈ Ω 0 (δ, θ) and (4.46) holds with β = 1 3 .

4.3.

A low-energy estimate on the spectral density. For the selafdjoint Schrödinger operator H 0 with slowly decreasing potential V 0 , it is proved by S. Nakamura ( [START_REF] Nakamura | Low energy asymptotics for Schrödinger operators with slowly decreasing potentials[END_REF]) that under some additional conditions the spectral density E 0 (λ) of H 0 satisfies the estimate that for any N > 0 E 0 (λ) = O N (λ N ), (4.49) in appropriately weighted spaces, as λ → 0 + . The Gevery estimates of the resolvent at threshold allow to improve this result.

Lemma 4.10. Let V 0 (x) = V 1 (x) -iV 2 (x) with V 1 (x), V 2 (x) real. Assume that V 1 is of class C 2 on
R n and that there exists µ ∈]0, 1[ and some constants c j > 0, j = 1, 2, 3, such that

c 1 x -2µ ≤ V 1 (x) ≤ c 2 x -2µ , (4.50) |(x • ∇) j V 1 (x)| ≤ c 2 x -2µ , j = 1, 2 (4.51) x • ∇V 1 (x) ≤ -c 3 x -2µ , |x| > R for some R > 0, (4.52) |V 2 (x)| ≤ c 2 x -1-µ-0 , 0 > 0. (4.53)
Then the eigenvalues of H 0 are absent in a neighborhood of zero and the boundary values of the resolvent R 0 (λ ± i0) = lim z→λ,±Im z>0 (H 0 -z) -1 exist for λ ∈ [0, δ] for some δ > 0 and are Hölder continuous as operators in B(0, s;

0 -s), s > 1+µ 2 . Proof. Let H 1 = -∆ + V 1 (x) be the selfadjoint part of H 0 and R 1 (z) = (H 1 -z) -1 .
Then one knows from [START_REF] Nakamura | Low energy asymptotics for Schrödinger operators with slowly decreasing potentials[END_REF] that under the condition of this Lemma, R 1 (λ ± i0) exists for λ ∈ [0, δ] for some δ > 0 and are Hölder continuous as operators in B(0, s; 0, -s), s > 1+µ 2 . Note that the smoothness assumption on the potential used in [START_REF] Nakamura | Low energy asymptotics for Schrödinger operators with slowly decreasing potentials[END_REF] is only needed for higher order resolvent estimates.

One knows that G 0,1 = lim z→0,z ∈R + R 1 (z) exists and that G 0,1 V 2 is a compact operator in L 2,-s for 1+µ 2 < s < 1+µ+ 0

2

. Therefore the kernel of 1 + iG 0,1 V 2 is of finite dimension. From Lemma 3.3 applied to G 01 , one deduces that this kernel is contained in L 2,r for any r > 0.

Since (1 + iG 0,1 V 2 )u = 0 if and only if H 0 u = 0, Lemma 3.1 implies that Ker(1 + iG 0,1 V 2 ) in L 2,-s is trivial. Therefore (1+iG 0,1 V 2 ) -1 is bounded in L 2,-s . By the continuity of R 1 (z) for z near 0 and z ∈ R + , one deduces that 1+iR 1 (z)V 2 is invertible in L 2,-s and its inverse is Hölder continuous in B(L 2,-s ) for z near 0 and z ∈ R + . This implies in particular that the eigenvalues of H 0 are absent in a neighborhood of zero and the limits R 0 (λ±i0) = lim z→λ,±Im z>0 (H 0 -z) -1 exist for λ ≥ 0 and small enough and are Hölder continuous in λ ∈ [0, δ] for some δ > 0.

Corollary 4.11. Under the conditions of Lemma 4.10, assume in addition that H 0 is selfadjoint (V 2 = 0). Denote by E 0 (λ) the spectral projection of H 0 associated with the interval ] -∞, λ]. Let s > 1+µ 2 . Then for any a > 0, there exist some constants c a , C a > 0 such that

e -a x 1-µ E 0 (λ) x -s ≤ C a e -ca|λ| -1 γ , 0 < λ ≤ δ. (4.54) Proof. Since E 0 (λ) = 1 2πi (R(λ + i0) -R(λ -i0)), x -s E 0 (λ)
x -s is uniformly bounded for λ > 0 and λ near 0, if s > 1+µ 2 ( see [START_REF] Nakamura | Low energy asymptotics for Schrödinger operators with slowly decreasing potentials[END_REF]). Iterating the first resolvent equation, one obtains for any

N ∈ N * E 0 (λ) = λ N G N 0 E 0 (λ), 0 < λ ≤ δ. (4.55)
Applying Theorem 2.1 with τ = s, one deduces that for any a > 0, there exist some constants c a , C a > 0 such that

e -a x 1-µ E 0 (λ) x -s ≤ C a c N a N γN λ N (4.56)
for all N ∈ N * and λ ∈]0, δ]. It remains to minimize the right-hand side by choose N in terms of λ > 0 such that N cλ

-1 γ as λ → 0 + for some appropriate c > 0. Then c N a N γN λ N ≤ C e -c λ -1 γ , 0 < λ ≤ δ,
for some constants c , C > 0. (4.54) is proved.

Heat et Schrödinger semigroups for perturbed operators

Consider non-selfadjoint Schrödinger operator H of the form

H = H 0 + W (x). (5.1)
where

H 0 = -∆ + V 0 (x) with V 0 ∈ V and W ∈ L ∞ comp (R n ).
Then the essential spectrum of H is equal to [0, +∞[ and the possible accumulation points of complex eigenvalues of H are contained in R + . We begin with the analysis of positive resonances for non-selfadjoint Schrödinger operator H = -∆ + V (x) with V (x) holomorphic outside some compact set. Since we are interested in behavior of solutions as t → +∞, the main attention is paid to outgoing positive resonances, because incoming positive resonances are invisible in the limit t → +∞.

Positive resonances of non-selfadjoint Schrödinger operators.

To begin with, consider a class of non-selfadjoint Schrödinger operators H = -∆ + V (x) which are compactly supported perturbations of H 0 = -∆ + V 0 with Im V 0 (x) ≤ 0 and V 0 (x) extends to a holomorphic function in a region of the form {x ∈ C n ; |x| > R, |Im x| < δ|Re x|} and satisfies there

|V 0 (x)| ≤ C Re x -ρ (5.2)
for some constants R, δ, C, ρ > 0. Suppose in addition (x•∇ x ) j V 0 , j = 0, 1, 2, are -∆-compact.

Then the set r + (H) of outgoing positive resonances of H is well defined by Definition 2.5. Since H 0 is dissipative, one has r + (H 0 ) = ∅ and the boundary value of the resolvent

R 0 (λ + i0) = lim z→λ,Im z>0 (H 0 -z) -1 (5.3)
exists in B(-1, s; 1, -s), s > 1 2 , for λ > 0 and is Hölder-continuous in λ > 0 ( [START_REF] Royer | Limiting absorption principle for the dissipative Helmholtz equation[END_REF]). Let U θ be the analytic distortion defined by (4.35) with R 0 sufficiently large. Then H θ H θ = U θ HU -1 θ defined for θ real can be extended to a holomorphic family of type A for θ in a complex neighborhood of zero. For Im θ > 0, spectrum of H θ in {z, arg z > -cIm θ} is discrete for some constant c > 0 and is independent of the function ρ used in the distortion ( [START_REF] Hunziker | Distorsion analyticity and molecular resonance curves[END_REF]).

Theorem 5.1. Let H = H 0 +W (x) be a compactly supported perturbation of H 0 = -∆+V 0 (x). Assume (5.2) is satisfied. Then there exists some constant θ 0 > 0 such that for Im θ > 0 and |θ| < θ 0 one has

σ d (H(θ)) ∩ R + = r + (H) and (5.4) σ d (H(θ)) ∩ C + = σ d (H) ∩ C + .
(5.5)

In particular, outgoing positive resonances of H are at most countable with zero as the only possible accumulation point.

Proof. Let λ 0 > 0. Note that positive eigenvalues of H are absent ( [START_REF] Jerison | Unique continuation and absence of positive eigenvalues for Schrödinger operators[END_REF]). If

λ 0 ∈ r + (H), then -1 is not an eigenvalue of the compact operator R 0 (λ 0 + i0)W in L 2,-s for 1 2 < s < ρ -1 2 . Therefore operator 1 + R 0 (λ 0 + i0)W is invertible in L 2,-s . Since λ → R 0 (λ + i0
) is continuous as operator from L 2,s to L 2,-s , we deduce that -1 is not an eigenvalue of R 0 (λ + i0)W for λ ∈ R and λ sufficiently near λ 0 . It follows that the boundary value of the resolvent R(λ + i0) = lim z∈C + ,z→λ R(z) exists and

x -s R(λ + i0) x -s ≤ C (5.6)
for λ near λ 0 and s > 1 2 . This proves that for any χ ∈ C ∞ 0 (R n ), χR(z)χ is bounded for z ∈ C + and z near λ 0 . Therefore the meromorphic extension of χR(z)χ from the upper half-plane is in fact holomorphic in complex neighborhood of λ 0 . It follows that λ 0 ∈ σ d (H θ ). This proves the inclusion

σ d (H θ ) ∩ R + ⊂ r + (H).
Conversely if λ 0 ∈ r + (H), then there exists a non-zero function u ∈ L 2,-s for any s > 1

2 such that u = -R 0 (λ 0 + i0)W u. Let R 0 (z, θ) = U θ R 0 (z)U -1 θ and u θ = U θ u, for θ ∈ R. Then one has u θ = -R 0 (λ 0 + i0, θ)W u (5.7)
if the analytic distorsion is made outside the support of W . Since outgoing resonances of the dissipative operator H 0 are absent, R 0 (z, θ) defined for Im z > 0 and θ real can be holomorphically extended for θ ∈ C with Im θ > 0 and |θ| < θ 0 for some θ 0 > 0 depending on domain of the analyticity of V 0 . After this extension in θ, R 0 (z, θ) is holomorphic for z near λ 0 and Im z > -cIm θRe z for some c > 0. By (5.7), u θ can be extended in θ for Im θ > 0.

u θ ∈ L 2 because R 0 (λ 0 + i0, θ) is bounded on L 2 when Im θ > 0. It is clear that u θ = 0 when |θ| is small, because x -s (u θ -u) ≤ x -s (R 0 (λ 0 + i0, θ) -R 0 (λ 0 + i0))W u ≤ C|θ| η (5.8)
for some η > 0 if s > 1 2 , because (-∆ -e 2θ (λ + i0)) -1 is Hölder continuous in θ ∈ D + (0, θ 0 ) as operator-valued function from L 2,s to L 2,-s . This proves λ 0 is an eigenvalue of H θ with u θ as an eigenfunction when Im θ > 0 and |θ| is small enough. Therefore r + (H) ⊂ σ d (H θ ) which completes the proof of (5.4).

To prove (5.5), notice that the resolvent R

(z) = (H -z) -1 is meromorphic in C + with poles at σ d (H) ∩ C + . Let χ ∈ C ∞ 0 (R n ) with χ(x) = 1
on supp W such that the analytic distortion of H is made outside the support of χ. For θ ∈ R and |θ| < θ 0 , one has χR(z)χ = χR(z, θ)χ (5.9)

for z ∈ C + with Im z > 1 large enough. Since θ → H(θ) is a holomorphic family of type A ( [START_REF] Kato | Perturbation Theory of Linear Operators[END_REF]), the above equality still holds for Im θ > 0 and |θ| < θ 0 and for z ∈ C + with Im z > 1 large enough. The uniqueness of meromorphic extensions in C + implies that the above equality holds as meromorphic functions in C + , therefore the poles of the two cut-off resolvents are the same. Since the poles of R(z, θ) are independent of the analytic distortion used ( [START_REF] Helffer | Comparaison entre les diverses notions de résonances. (French) [Comparison among the various notions of resonance[END_REF]), the support of the cut-off χ can be arbitrarily large. Noticing that

σ d (H(θ)) ∩ C + = ∪ χ∈C ∞ 0 { poles of χR(z, θ)χ in C + } and the same property for H, we obtain σ d (H(θ)) ∩ C + = σ d (H) ∩ C + .
In Theorem 5.1, the condition Im V 0 ≤ 0 is used to study the outgoing real resonances. Similarly if Im V 0 ≥ 0 one can prove

σ d (H θ ) ∩ R + = r -(H) (5.10)
for Im θ < 0 and |θ| < θ 0 and r -(H) is at most a countable set. Consequently we obtain the following Corollary 5.2. Under the conditions of Theorem 5.1, suppose in addition that V 0 (x) is realvalued for x ∈ R n . Then, real resonances of H = H 0 + W (x) are at most countable with zero as the only possible accumulation point.

The condition on Im V 0 is not necessary if V 0 is of short-range (consequently V = V 0 +W is of short-range). For simplicity we only give a result in dilation analytic case. Let H = -∆+V (x) with V a dilation analytic short-range potential: V θ (x) = V (e θ x) defined for θ real extends to a holomorphic function for θ in a complex neighborhood of zero:

|V θ (x)| ≤ C x -ρ ,
(5.11) for x ∈ R n and |θ| < θ 0 for some C, θ 0 > 0 and ρ > 1. Then H θ = -e -2θ ∆ + V θ is a holomorphic family of type A for θ ∈ C, |θ| < θ 0 Theorem 5.3. Let H = -∆ + V (x) where V (x) is a short-range dilation analytic potential verifying (5.11) for some ρ > 1. One has

σ d (H θ ) ∩ R + = r ± (H) (5.12)
for ±Im θ > 0 and |θ| < θ 0 . In particular, positive resonances of H form an at most countable set with zero as the only possible accumulation point.

Proof. The inclusion σ d (H θ ) ∩ R + ⊂ r + (H) for Im θ > 0 can be proved in the same way as the first part of the proof of Theorem 5.1. It remains to show that r

+ (H) ⊂ σ d (H θ ), Im θ > 0. Let λ ∈ r + (H). Then -1 is an eigenvalue of the compact operator K = (-∆ -λ -i0) -1 V on L 2,-s , 1 2 < s < ρ 2 . Let K θ = (-e -2θ ∆ -λ -i0) -1 V θ = e 2θ (-∆ -e 2θ (λ + i0)) -1 V θ ,
for Im θ ≥ 0, |θ| < θ 0 . K θ is a family of compact operators on L 2,-s continuous with respect to θ in the half disk

D + (0, θ 0 ) = {θ ∈ C; Im θ ≥ 0, |θ| < θ 0 }
and holomorphic for θ in its interior. In addition,

x -s (K θ -K) x s ≤ C|θ| η (5.13)
for 1 2 < s < ρ 2 and for some η > 0. It follows that in any small neighborhood of -1, K θ has at least one eigenvalue z θ for θ ∈ D + (0, δ) if δ > 0 is sufficiently small. Since K θ and K θ are unitarily equivalent if Im θ = Im θ , z θ is independent of Re θ. It follows that z θ is independent of θ for Im θ > 0 and |θ| < δ (Theorem 1.9 in Chapter VII of [START_REF] Kato | Perturbation Theory of Linear Operators[END_REF]). Since z θ → -1 as θ → 0, it follows that z θ = -1 for all θ ∈ D + (0, δ) if δ > 0 is small enough. This proves that λ is an eigenvalue of H θ if θ ∈ D + (0, δ) . Therefore r + (H) ⊂ σ d (H θ ) which completes the proof of (5.12) with sign +. The equality with sign -can be proved in the same way. The last affirmation is immediate since the set of positive resonances of H is equal to r + (H) ∪ r -(H).

In the above proof, we showed that if λ ∈ r + (H), then there exists c > 0 such that -1 is the only eigenvalue of K θ inside the disk D(-1, c) for all θ ∈ D + (0, δ). Therefore one can define the Riesz projection of eigenvalue -1 of K θ by

π θ = 1 2πi |z+1|= c 2 (z -K θ ) -1 dz, ∀θ ∈ D + (0, δ). (5.14)
The following result is immediate.

Corollary 5.4. Assume the conditions of Theorem 5.3. Let λ > 0 be an outgoing resonance of

H = -∆ + V . Denote π θ the Riesz projection of eigenvalue -1 of K θ , θ ∈ D + (0, δ), δ > 0.
Then as operators on L 2,-s , 1 2 < s < ρ 2 , π θ is continuous for θ ∈ D + (0, δ) and holomorphic for θ in the interior of this half disk.

The case zero is not an eigenvalue.

In this subsection, we study the case zero is not an eigenvalue of H and prove Theorem 2.2.

Proposition 5.5. Let H 0 = -∆ + V 0 (x) with V 0 ∈ V. Let W ∈ L ∞ (R n ) with compact support and H = H 0 + W (x)
. Assume that 0 is not an eigenvalue of H. Then one has: (a). There exist some constants c 1 , µ > 0 such that outside the set

Ω 1 = {z ∈ C; Re z ≥ 0 and |Im z| ≤ c 1 |Re z| µ },
there are at most a finite number of discrete eigenvalues of H. There exists some δ > 0 such that

R(z) ≤ C |z| 1 µ
for z ∈ Ω 1 and |z| < δ.

(5.15)

(b). The limit R(0) = s -lim z→0,z ∈Ω 1 R(z) (5.16) 
exists in B(0, s; 0, s -2κµ), κ ≥ 1 µ , for any s ∈ R and one has

e -a x 1-µ R(z) N ≤ C N +1 a N γN (5.17) 
for all N ∈ N * and z ∈ Ω -(δ) ∪ {0}. Here a > 0 and C a , c a are some positive constants and

Ω -(δ) = {z ∈ C * ; |z| < δ, π 2 + δ < arg z < 3π 2 -δ}. Proof.
Note that G 0 W is a compact operator and that 0 is not an eigenvalue of H if and only if -1 is not an eigenvalue of G 0 W . So if 0 is not an eigenvalue of H, operator 1 + G 0 W is invertible on L 2 . From Proposition 4.1, one deduces that 1 + R 0 (z)W is invertible for |z| small and z ∈ Ω 1 and

(

1 + R 0 (z)W ) -1 ≤ C (5.18)
uniformly for |z| small and z ∈ Ω 1 . This shows that 0 is not an accumulation point of σ(H)\Ω 1 .

In addition, z → 1 + R 0 (z)W is holomorphic in C \ Ω 1 . The analytic Fredholm Theorem shows that (1 + R 0 (z)W ) -1 is a meromorphic function with at most a discrete set of poles in C \ Ω 1 (with c 1 replaced by a slightly bigger constant in the definition of Ω 1 ). Therefore the number of eigenvalues of H in C \ Ω 1 is at most finite. (5.15) follows from Proposition 4.1 and the equation

R(z) = (1 + R 0 (z)W ) -1 R 0 (z).
Noticing that G 0 = s-lim z→0,z ∈Ω 1 R 0 (z) exists as operators from L 2,s to L 2,s-2κµ , one obtains (5.16) with R(0

) = (1 + G 0 W ) -1 G 0 .
To prove that Gevrey estimates of the resolvent R(z), we remark that if F (z) and G(z) are two bounded operator-valued functions on some domain Ω 0 satisfying the Gevrey estimates

F (N ) (z) ≤ AC N 1 (N !) σ (5.19) 
G (N ) (z) ≤ BC N 2 (N !) σ (5.20) 
for all N ∈ N and z ∈ Ω 0 and for some σ > 1 and

A, B, C 1 , C 2 > 0, then F (z)G(z) satisfies the Gevrey estimates (F G) (N ) (z) ≤ ABC N 3 (N !) σ (5.21) 
for all N ∈ N and z ∈ Ω 0 where

C 3 = D σ max{C 1 , C 2 } with D σ = sup N ∈N N j=0 j!(N -j)! N ! σ-1 < ∞. (5.22) 
Here

F (N ) (z) denotes the N -th derivative of F (z). If F (z) is invertible for z ∈ Ω 0 with F (z) -1 ≤ M (5.23) 
uniformly in z ∈ Ω 0 , then the inverse H(z) = F (z) -1 satisfies the Gevrey estimates

H (N ) (z) ≤ M C N 4 (N !) σ (5.24) 
for all N ∈ N and z ∈ Ω 0 , where C 4 = M C 1 D σ . Denote G σ (Ω 0 ) the set of bounded operatorvalued functions on Ω 0 verifying Gevrey estimes of order σ > 1. Since e -a x 1-µ R 0 (z) and χR 0 (z) belong to G σ (Ω -(δ)) with

σ = 1 + γ = 1 + µ 1 -µ , (5.25) 
Seeing the uniform boundedness of (1 + R 0 (z)W ) -1 for z ∈ Ω -(δ), one deduces from (5.24

) that (1 + R 0 (z)W ) -1 ∈ G σ (Ω -(δ)).
(5.17) for z ∈ Ω -(δ) is proved by using the equation Proposition 5.6. Let V 0 ∈ A. Assume that zero is not an eigenvalue of H = H 0 + W (x). Then one has (a). There exists δ > 0 such that H has at most a finite number of eigenvalues in the sector S(-δ, π + δ) = {z ∈ C * ; -δ < arg z < π + δ} and for any χ ∈ C ∞ 0 (R n ), χR(z)χ defined for Im z > 0 extends meromorphically into S(-δ, π+ δ) and there exists some constant C χ , c > 0 such that χR(z)χ ≤ C χ (5.27) for z ∈ S(-δ, π + δ) and |z| < c.

e -a x 1-µ R(z) = e -a x 1-µ R 0 (z)(1 + W R 0 (z)) -1 , (5.26) 
(b). The limit χR (N ) (0)χ = lim z∈S(-δ,π+δ),z→0 χR (N ) (z)χ exists in B(L 2 ) for any N ∈ N and one has

χR (N ) (z)χ ≤ C χ C N N (1+γ)N (5.28)
for any N ∈ N * and z ∈ Ω 0 (δ, θ) for some δ, Im θ > 0, where Ω 0 (δ, θ) is defined by (4.44).

Proof. Let χ ∈ C ∞ 0 (R n ). Let U θ be defined by (4.35) with R 0 > 1 such that supp W and supp χ are contained in the ball {x ∈ R n ; |x| < R 0 }. Let H(θ) = U θ HU -1 θ . Then H(θ) = H 0 (θ) + W and χR(z)χ = χ(1 + R 0 (z, θ)W ) -1 R 0 (z, θ)χ, z ∈ σ(H) (5.29) 
for θ real. H(θ) and H 0 (θ) are holomorphic families of type A for θ ∈ C + with |θ| small (see [START_REF] Kato | Perturbation Theory of Linear Operators[END_REF]). For Im θ > 0, R 0 (z, θ) defined initially for Im z >> 1 extends holomorphically into S(-δ, π + δ) if 0 < δ < cIm θ for some c > 0 small enough. Since 0 is not an eigenvalue of H, -1 is not an eigenvalue of G 0 W . By Proposition 4.7, Since Im V 0 ≤ 0 for V 0 ∈ A, Theorem 5.1 shows that zero is the only possible accumulation point of r + (H). The following statement is an immediate consequence of (5.30) and Theorem 5.1. Then one has

(R 0 (z, θ) -G 0 )W ≤ C(|z| + |θ|) for z ∈ S(-δ, π + δ). Therefore -1 is not an eigenvalue of R 0 (z, θ)W if |z| + |θ| is small enough and (1 + R 0 (z, θ)W ) -1 ≤ C 1 (5.30) 
e -tH - λ∈Λ e -tH Π λ = i 2π Γ e -tz R(z)dz. (5.32)
where Π λ is the Riesz projection of H associated the eigenvalue λ. Making use of Proposition 5.5, one can prove as in Theorem 4.4 that e -a x 1-µ (e -tH -λ∈Λ e -tH Π λ ) ≤ C a e -cat β , t > 0.

(5.33)

(2.22) is proved, because if λ ∈ σ d (H) with Re λ > 0, then e -tH Π λ decreases exponentially in t > 1. (2.24) can be deduced in a similar way.

(b). According to Proposition 5.6 and Corollary 5.7, there exists some η > 0 such that Ω η contains no poles with negative imaginary part of meromorphic extension of χR(z)χ from the upper half-plane. Under the assumptions Theorem 2.2 (b), χR(z)χ has only a finite number of poles in C + which are either discrete eigenvalues or positive outgoing resonances of H. Making use of (5.29) for some fixed θ ∈ C + , one obtains the representation formula for χe -itH χ:

χe -itH χ - λ poles in C + Res(e -itz χR(z)χ; λ) = i 2π Γη e -itz χR(z)χdz, t > 0, (5.34) 
where Res(e -itz χR(z)χ; λ) is the residue of e -itz χR(z)χ at pole λ and Γ η = {z = re -iη ; r ≥ 0} ∪ {z = -re iη ; r ≥ 0} with η > 0 chosen such that there are no eigenvalues of H on Γ η , nor between Γ η and the real axis. It is easy to see that

Res(e -itz χR(z)χ; λ) = χe -itH Π λ χ, if λ ∈ σ d (H),
while for λ ∈ r + (H) we can only affirm that

Res(e -itz χR(z)χ; λ) = χe -itλ P λ (t)χ for some operator of finite rank P λ (t) which is polynomial in t. See Remark 5.2 on the rank of coefficients of P λ (t). From Proposition 4.7, one deduces that

χR(z)χ ≤ C z , z ∈ Γ η , |z| >> 1,
if η > 0 is small in comparing with Im θ. Therefore the part of integral in (5.34) on Γ η ∩ {|z| ≥ δ}, δ > 0, decreases exponentially like O(e -c δ t ), t → +∞, for some c δ > 0. To evaluate the part of integral on

Γ η ∩ {|z| ≤ δ}, let G(θ) = (1 + G 0 (θ)W ) -1 G 0 (θ), Im θ > 0. Then G(θ) verifies the estimates of Theorem 2.1. Notice that χR(z)χ = χ   N j=0 z j G(θ) j+1 + z N +1 G(θ) N +1 R(z, θ)   χ
for Im θ > 0 and z ∈ Ω(δ, θ), if the analytic distortion is made outside a sufficiently large ball. The sub-exponential time-decay of the integral on Γ η ∩ {|z| ≤ δ} can be deduced from the Gevrey estimates on the powers of G(θ) j and the resolvent bound

x -2µ R(z, θ) ≤ C
for z ∈ Ω(δ, θ). The details are the same as in the proof of Theorem 4.9 and are omitted here.

5.3.

Threshold eigenvalue in selfadjoint case. In this subsection, we prove Theorem 2.3. Assume that zero is an eigenvalue of H = H 0 + W . Then -1 is an eigenvalue of G 0 W and Ker(1 + G 0 W ) in L 2 coincides with the eigenspace of H with eigenvalue zero. The following decay estimate of eigenfunctions may be known somewhere. We use this result in the construction of an approximative Grushin problem for the cut-off resolvent.

Lemma 5.8. Assume that H 0 = -∆ + V 0 satisfies the condition (2.3). Then there exists some constant

α 0 > 0 such that if u ∈ H 2 (R n ) verifies Hu = 0, then e α 0 x 1-µ u ∈ L 2 (R n ). Proof. Let ϕ(x) = α x 1-µ , α > 0. Let χ be a smooth cut-off on R n such that 0 ≤ χ ≤ 1, χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. Set ϕ R (x) = χ( x R )ϕ(x), R ≥ 1. Then |∇ϕ R (x)| ≤ α(1 + C R 1-µ ) x -µ ≤ 2α x -µ uniformly in R ≥ R 1 where R 1 is sufficiently large. Let u ∈ H 2 (R n ). Then one has | e 2ϕ R Hu, u | = | H(e ϕ R u), e ϕ R u -[∆, e ϕ R ]u, e ϕ R u | (5.35) = | H(e ϕ R u), e ϕ R u + 2 (|∇ϕ R | 2 e ϕ R u -∇ϕ R • ∇(e ϕ R u), e ϕ R u | ≥ | H(e ϕ R u), e ϕ R u | -(8α 2 + 2α) x -µ e ϕ R u 2 -2α ∇(e ϕ R u) 2 uniformly in R ≥ R 1 .
Since W is compactly supported,ϕ R is bounded on supp W uniformly with respect to R. Making use of the condition (2.3), one obtains for some constants c 0 , C > 0,

| H(e ϕ R u), e ϕ R u | ≥ c 0 ( ∇(e ϕ R u) 2 + x -µ e ϕ R u 2 ) -C u 2 (5.36) 
for all R ≥ R 1 . For α > 0 appropriately small, one deduces that there exists some constant

C 1 > 0 such that x -µ e ϕ R u 2 + ∇(e ϕ R u) 2 ≤ C 1 (| e 2ϕ R Hu, u | + u 2 ) (5.37) for any u ∈ H 2 (R n ) and R ≥ R 1 . If u ∈ H 2 (R n ) such that Hu = 0, it follows that x -µ e ϕ R u 2 + ∇(e ϕ R u) 2 ≤ C 1 u 2 (5.38)
for all R ≥ R 1 . This proves that x -µ e ϕ u ∈ L 2 (R n ) and ∇(e ϕ u) ∈ L 2 (R n ). Lemma 5.8 is proved, provided that 0 < α 0 < α.

Theorem 5.9. Let H 0 = -∆ + V 0 (x) and H = H 0 + W (x) with V 0 ∈ V and W ∈ L ∞ comp . Assume that 0 is an eigenvalue of H and that both H 0 and H are selfadjoint. Let Π 0 denote the eigenprojection of H associated with eigenvalue zero. Then there exists some constant δ > 0 such that

R(z) = - Π 0 z + R 1 (z) (5.39)
for z ∈ O(δ). The remainder R 1 (z) satisfies the estimates

x -s R 1 (z) + R 1 (z) x -s ≤ C s (5.40)
for s > 2µ and z ∈ O(δ). In addition the limit R 1 (0) = lim z→0,z∈O(δ) R 1 (z) exists in B(L 2 , L 2,-s ) and for any a > 0 there exist some constants C a , c a > 0 such that

e -a x 1-µ R (N ) 1 (z) + R (N ) 1 (z)e -a x 1-µ ≤ C a c N a N σN , (5.41) 
for any N ∈ N * and z ∈ Ω 0 (δ). Here σ = 1 + γ.

Proof. We use the Grushin method to study the low-energy asymptotics for the resolvent of H by using the equation

R(z) = (1 + R 0 (z)W ) -1 R 0 (z).
(5.42)

Since the method is well-known in selfadjoint case (see [START_REF] Jensen | Spectral properties of Schrödinger operators and time decay of wave functions[END_REF][START_REF] Wang | Asymptotic expansion in time of the Schrödinger group on conical manifolds[END_REF]), we shall skip over some details and emphasize on the Gevrey estimates for the remainder. Since G 0 is continuous from L 2,s+2µ to L 2,s for any s, Ker L 2,s (1 + G 0 W ) is independent of s ∈ R and coincides with the eigenspace of H associated withe the eigenvalue 0. We need only to work in L 2 (R n ).

Let ψ 1 , • • • , ψ m be a basis of Ker(1 + G 0 W ) such that

ψ j , -W ψ k = δ jk , j, k = 1, • • • , m.
(5.43)

(5.43) can be realized because the quadratic form φ → φ, -W φ = φ, H 0 φ is positive definite on Ker(1

+ G 0 W ). Define Q : L 2 → L 2 by Qf = m j=1 -W ψ j , f ψ j , f ∈ L 2 .
(5.44) for z ∈ O(δ). It follows that if δ > 0 is small enough, 

Set Q = 1 -Q. Then Q commutes with 1 + G 0 W . -1 is not eigenvalue of compact operator Q (G 0 W )Q , hence Q (1 + G 0 W )Q is invertible
E(z) = (Q (1 + R 0 (z)W )Q ) -1 Q (5.
c j ψ j , c = (c 1 , • • • , c m ) ∈ C m , T f = ( -W ψ 1 , f , • • • , -W ψ m , f ) ∈ C m , f ∈ L 2 .
Set W (z) = (1 + R 0 (z)W ) and

E + (z) = S -E(z)W (z)S, (5.49) E -(z) = T -T W (z)E(z),
(5.50)

E -+ (z) = -T W (z)S + T W (z)E(z)W (z)S.
(5.51)

Then one has the formula

(1 + R 0 (z)W ) -1 = E(z) -E + (z)E -+ (z) -1 E -(z) on H 1,-s .
(5.52)

Since E(z), W (z) satisfy Gevrey estimates of the form (5.48) on O 0 (δ), E ± (z) and E -+ (z) satisfy similar Gevrey estimates on O 0 (δ). The leading term of E -+ (z) can be explicitly calculated:

E -+ (z) = -zΨ + z 2 r 1 (z) (5.53)
Let {ψ j , j = 1, • • • , m}, Q and Q be defined as in the proof of Theorem 5.9. Then -1 is not an eigenvalue of the compact operator

Q (G 0 W )Q . Since Q (χ 2 G 0 W )Q converges to Q G 0 W Q in operator norm as R → ∞, -1 is not an eigenvalue of Q χ 2 G 0 W Q for all R ≥ R 1 where R 1 > R 0 is sufficiently large. Then Q (1 + χ 2 G 0 W )Q is invertible on Range Q . So is Q (1 + χ 2 R 0 (z, θ)W )Q for z ∈ Ω(δ, θ)
for some δ > 0, because the analytic distortion is made outside the support of χ 2 and W . The inverse

E 0 (z, θ) = (Q (1 + χ 2 R 0 (z, θ)W )Q ) -1 Q (5.63)
is uniformly bounded in z ∈ Ω(δ, θ) (see Proposition 4.7) and by (5.21) it belongs to Gevrey class G σ (Ω(δ, θ)).

Define S 1 : C m → L 2 and T 1 :

L 2 → C m by S 1 = χ 1 S, T 1 = T χ 1 (5.64)
where S, T are defined in Theorem 5.9. By Lemma 5.8,

S 1 T 1 = Q + O(e -cR 1-µ ), T 1 S 1 = 1 + O(e -cR 1-µ ) (5.65) for some c > 0. Let W (z, θ) = 1 + χ 2 R 0 (z, θ)W . Consider the Grushin problem W (z, θ) S 1 T 1 0 : L 2 ⊗ C m → L 2 ⊗ C m . (5.66) One has W (z, θ) S 1 T 1 0 E 0 (z, θ) S 1 T 1 -T 1 W (z, θ)S 1 = 1 + R(z, θ) (5.67) 
where

R(z, θ) = QW (z, θ)E 0 (z, θ) + S 1 T 1 -Q (1 -S 1 T 1 )W (z, θ)S 1 T 1 E 0 (z, θ) T 1 S 1 -1 .
(5.68) R(z, θ) is sum of a nilpotent matrix and a matrix of order O(e -cR 1-µ ). Consequently 1 + R(z) is invertible z ∈ Ω(δ, θ) if R > R 1 is sufficiently large. This proves the Grushin problem is invertible from the right. Similarly one can show it is invertible from the left, therefore it is invertible with inverse given by

E 0 (z, θ) S 1 T 1 -T 1 W (z, θ)S 1 (1 + R(z)) -1 := E(z) E + (z) E -(z) E -+ (z) (5.69)
As usual, one has the formula

(1 + χ 2 R 0 (z, θ)W ) -1 = E(z) -E + (z)E -+ (z) -1 E -(z).
(5.70)

E -+ (z) is of the form E -+ (z) = -T 1 W (z, θ)S 1 (1 + O(e -cR 1-µ )) + O(|z| 2 )
By the choice of χ 1 , χ 2 , one has

T 1 W (z, θ)S 1 = T 1 (1 + R 0 (z, θ)W )S 1 = zT 1 G 1 (θ)W )S 1 + O(|z| 2 ) = zT 1 G 1 W S 1 + O(|z| 2 ),
where G 1 (θ) = G 0 (θ) 2 and G 1 = G 2 0 . By the calculation made in the proof of Theorem 5.9, one sees Ψ 1 = T 1 G 1 S 1 is an invertible matrix (if R is large enough). Consequently E -+ (z) is invertible for z ∈ S(-δ, π + δ)(c) with inverse of the form.

E -+ (z) -1 = - 1 z Ψ 1 (1 + O(e -cR 1-µ )) + B(z) (5.71)
where B(z) uniformly bounded on Ω(δ, θ) and continuous up to 0. This proves the existence of an asymptotic expansion for χ 1 R(z)χ 1 for z ∈ Ω(δ, θ) of the form

χ 1 R(z)χ 1 = - U z + R 2 (z) (5.72)
with R 2 (z) uniformly bounded on Ω(δ, θ) and continuous up to 0 and it belongs to G σ (Ω 0 (δ, θ)).

To determine U , we remark that since A ⊂ V, Theorem 5.9 applied to R(z) with Re z < 0 gives U = χ 1 Π 0 χ 1 .

Proof of Theorem 2. where ∇ U = e -U ∇e U and U ∈ C 2 (R n ). Then

-∆ U = -∆ + (∇U )(x) • (∇U )(x) -∆U (x) If U ∈ C 2 (R n ; R) satisfies for some ρ ∈]0, 1[ and c 1 , C 1 > 0, U (x) ≥ c 1 x ρ , |∇U (x)| ≥ c 1 x ρ-1 , |∂ α x U (x)| ≤ C 1 x ρ-|α| (5.76)
for x outside some compact and for α ∈ N n with |α| ≤ 2. Then -∆ U can be decomposed as -∆ U = H 0 + W (x) where H 0 satisfies the conditions of Theorem 2.1 with µ = 1 -ρ and W (x) is of compact support. Zero is a simple eigenvalue of -∆ U embedded in its continuous spectrum [0, +∞[. As consequence of Theorem 2.3, one obtains the following result. Let ϕ 0 (x) be a normalized eigenfunction of -∆ U with eigenvalue zero:

ϕ 0 (x) = Ce -U (x) , ϕ 0 = 1.
(5.77)

Then for any a > 0, there exist some constants C a , c a > 0 such that

e t∆ U f -ϕ 0 , f ϕ 0 ≤ C a e -cat ρ 2-ρ e a x ρ f (5.78)
for t > 0 and f with e a x ρ f ∈ L 2 . Note that the sub-exponential convergence estimate (5.78) without explicit remainder estimate with respect to f is proved in [START_REF] Douc | Subgeometric rates of convergence of f -ergodic strong Markov processes[END_REF] by the method of Markov processes.

5.4.

Threshold eigenvalue in non-selfadjoint case. Finally we study the case zero is an embedded eigenvalue of the non-selfadjoint Schrödinger operator H. Note that one can not define in a natural way Riesz projection or Jordan structure associated with eigenvalues embedded in the essential spectrum. In this Section, we study these notions for eigenvalue -1 of the compact operator K = G 0 W , establish low-energy resolvent expansion with Gevrey estimates on the remainder and prove Theorem 2.4.

Let V 0 ∈ V. Then zero is an eigenvalue of H if and only if -1 is an eigenvalue of compact operator K = G 0 W on L 2 (R n ). The algebraic multiplicity m of eigenvalue -1 of K is finite. Let π 1 : L 2 → L 2 be the associated Riesz projection of K defined by :

π 1 = 1 2πi |z+1|= (z -K) -1 dz
for > 0 small enough. Then m = Rank π 1 .

(5.79) π 1 is continuous on L 2,s for any s ∈ R and π * 1 : L 2 → L 2 is the Riesz projection of K * associated with the eigenvalue -1.

By Corollary 4.2, R 0 (z)W is continuous in z ∈ O(δ), where O(δ) is defined by (4.3). Denote π 1 = 1 -π 1 . π (1 + G 0 W )π is injective on the range of π 1 . The Fredholm Theorem implies that (π 1 (1 + G 0 W )π 1 ) -1 is invertible on L 2 . It follows that B 1 (z) = (π 1 (1 + R 0 (z)W )π 1 ) -1 π 1 (5.80)
is well defined on O(δ) if δ > 0 is sufficiently small. In addition B 1 (z) is uniformly bounded there. Since R 0 (z)W satisfies Gevrey estimates of order σ for z near 0 with Re z < 0 and |Im z| < -CRe z, C > 0, so does B 1 (z). π 1 (1 + R 0 (z)W )π 1 is of finite rank. Set ω(z) = det(π 1 (1 + R 0 (z)W )π 1 ).

(5.81)

Then π 1 (1+R 0 (z)W )π 1 is invertible if and only if ω(z) = 0. ω(z) satisfies the Gevrey estimates of order σ at point z = 0 and has an asymptotic expansion of the form

ω(z) = N j=1 ω j z j + O(|z| N +1 ), z ∈ O(δ), (5.82) 
for any N . The following result gives a sufficient condition to find a leading term in the asymptotic expansion of ω(z) as z → 0.

Lemma 5.11. Assume that eigenvalue -1 of G 0 W is semi-simple (i.e., its algebraic and geometrical multiplicities are equal). Suppose in addition that there exists a basis {ϕ

1 , • • • , ϕ m } of Ker(1 + G 0 W ) such that det( ϕ j , Jϕ k ) 1≤j,k≤m = 0, (5.83)
where J is complex conjugation. Then

ω(z) = ω m z m + O(|z| m+1 ), z ∈ O(δ), (5.84) 
for some ω m = 0.

Proof. When the eigenvalue -1 is semi-simple, one has

Rank π 1 = dim Ker(1 + G 0 W ) = m.
By Fredholm Theorem for compact operators, -1 is also a semi-simple eigenvalue of (G 0 W ) * and Rank π * 1 = m. It follows from relations

H * 0 = JH 0 J, W * = JW J that JW π 1 = π * 1 JW, π 1 JG 0 = JG 0 π * 1 (5.85) JW (1 + G 0 W ) = (1 + (G 0 W ) * )JW, (5.86) (1 + G 0 W )JG 0 = JG 0 (1 + (G 0 W ) * ).
(5.87)

One deduces that JW : Ker(1 + G 0 W ) → Ker(1 + (G 0 W ) * ) is bijective. Therefore π 1 can be written into the form

π 1 = m j=1
•, ψ j ϕ j (5.88)

for some ψ j ∈ Range π * 1 with ϕ j , ψ k = δ jk and ψ j = JW φ j for some φ j ∈ Ker(1 + G 0 W ). One can calculate 

π 1 G 0 ϕ k = m j=1 G 0 ϕ k , JW φ j ϕ j = - m j=1 ϕ k , Jφ j ϕ j for k = 1, • • • , m. Since {φ 1 , • • • , φ m } is a basis of Ker(1 + G 0 W ), condition (5.83) implies that a m = det( ϕ k , Jφ j ) 1≤k,j≤m = 0 (5.89) In the basis ϕ = {ϕ 1 , • • • , ϕ m }, the matrix of π 1 (1 + R 0 (z)W )π 1 on Range π 1 takes the form M ϕ (π 1 (1 + R 0 (z)W )π 1 ) = -z( ϕ k , Jφ j ) 1≤k,j≤m + O(|z| 2 ). ( 5 
R(z) = C -k z k + • • • + C -1 z + R 3 (z) (5.92)
for z ∈ O(δ). The remainder R 3 (z) satisfies the estimate: ∃C, µ , δ > 0 such that

x -2κµ R 3 (z) + R 3 (z) x -2κµ ≤ C s (5.93) for z ∈ O(δ). In particular, σ d (H) ∩ O(δ) = ∅.
(5.94)

In addition R 3 (z) is continuous up to z = 0 and for any a > 0, there exist C a , c a > 0 such that e

-a x 1-µ R (N ) 3 (z) + R (N ) 3 (z)e -a x 1-µ ≤ C a c N a N (1+κγ)N , (5.95) 
for any N ∈ N * and z ∈ O 0 (δ).

Proof. Since ω k = 0, π 1 (1 + R 0 (z)W )π 1 is invertible on the range of π 1 for z ∈ O(δ) with δ > 0 small enough. By Corollary 4.2), it belongs to G 1+κγ (O(δ). Set

B 0 (z) = (π 1 (1 + R 0 (z)W )π 1 ) -1 π 1 .
Then ω(z)B 0 (z) has the same continuity properties as π 1 (1 + R 0 (z)W )π 1 and

B 0 (z) = z -k B (0) -k + • • • z -1 B (0) -1 + R (0) (z) (5.96)
where B

-j , j = 1, • • • , k, are operators of rank ≤ m and R (0) (z) is uniformly bounded for z ∈ O(δ) and belongs to G 1+κγ (O(δ)). Let π 1 = 1 -π 1 . Let B 1 (z) be defined by (5.80). One can check that

(1 + R 0 (z)W )(B 0 (z) + B 1 (z)) = 1 + O(|z|), (B 0 (z) + B 1 (z))(1 + R 0 (z)W ) = 1 + O(|z|) in B(L 2 ). Therefore (1 + R 0 (z)W ) is invertible for z ∈ O(δ) if δ > 0 is small enough and (1 + R 0 (z)W ) -1 = (B 0 (z) + B 1 (z))(1 + O(|z|)) = C 0 (z) + R (1) (z), z ∈ O(δ).
(5.97)

where 

C 0 (z) = z -k C (0) -k + • • • z -1 C (0) -1 ( 
(z) = (1 + R 0 (z)W ) -1 R 0 (z).
Combining proofs of Lemma 5.11 and Proposition 5.12, one concludes that if eigenvalue -1 of G 0 W is semi-simple and if (5.83) is satisfied, then condition (5.91) is true with k = m and (5.92) holds. A direct calculation for B 0 (z) using (5.90) gives that C -m = • • • = C -2 = 0 and C -1 is an operator of rank m. Remark 5.2. Under the conditions of Theorem 5.1, let λ > 0 be an outgoing positive resonance of H. Let π 1 denote the Riesz projection of eigenvalue -

1 of R 0 (λ + i0)W as operator on L 2,-s , 1 2 < s < ρ -1 2 . Denote ω(z) = det (π 1 (1 + χR 0 (z)W )π 1 )
for z ∈ C + , where χ ∈ C ∞ 0 with χW = W . Then one can show that ω(λ) = 0 and ω(z) = 0 for z with Im z >> 1. In addition, ω(z) extends to a holomorphic function into S(-δ, π + δ) for some δ > 0. Since λ is in the interior of S(-δ, π + δ), from the uniqueness of holomorphic functions, one concludes that the order of zero of ω(z) at z = λ is finite. Therefore there exist some k ∈ N * and some ω k = 0 such that

ω(z) = ω k (z -λ) k + O(|z -λ| k+1 ) (5.99)
for z in a complex neighborhood of λ. This means a condition analogous to (5.91) is satisfied for positive resonances under some analyticity condition on potentials. The proof of Proposition 5.12, along with (5.29) for some fixed Im θ > 0, allows to conclude that the meromorphic extension from C + of χR(z)χ admits an expansion around λ of the form:

χR(z)χ = χ C -k (z -λ) k + • • • + C -1 z -λ χ + R3 (z) (5.100)
for z near λ, where C -j is of rank less than or equal to m + (λ) and R3 (z) is holomorphic in a neighborhood of λ. Here m + (λ) = Rank π 1 is the algebraic multiplicity of eigenvalue -1 of R 0 (λ + i0)W . This shows that for ν ∈ r + (H), the coefficients of P ν (t) in Theorem 2.2 (b) are of rank not exceeding m + (ν).

In order to give more precisions on the resolvent expansion of Proposition 5.92, we study in more details the Riesz projection π 1 associated with eigenvalue -1 of operator K = G 0 W . Assume from now on that eigenvalue -1 of K is geometrically simple: dim Ker(1 + K) = 1, Rank π 1 = m.

(5.101)

Proof. We use an induction to prove that for any 1 ≤ l ≤ m, there exist ϕ j ∈ Ker 

(1 + K) j , 1 ≤ j ≤ l such that B(ϕ i , φ m-j+1 ) = δ ij , 1 ≤ j ≤ i ≤ l. (5.112) Since φ 1 ∈ Ker (1 + K) and φ * j ∈ Range (1 + K * ) for 1 ≤ j ≤ m -1, one has φ 1 , φ * j = 0 for j = 1, • • • , m -1. By lemma 5.13, one has necessarily c 1 = φ 1 , φ * m = 0. Set ϕ 1 = 1 c 1 φ 1 . ( 5 
l = k -1, 2 ≤ k ≤ m. Set φ k = φ k - k-1 j=1 B(φ k , φ m-j+1 )ϕ j (5.114) Then φ k = 0, φ k ∈ Ker (1 + K) k and B(φ k , φ m-j+1 ) = 0, j = 1, • • • , k -1. Since φ k ∈ Ker (1 + K) k , one has also φ k , φ * j = B(φ k , φ j ) = 0 (5.115) for j = 1, • • • , m -k, because φ * j = (1 + K * ) m-j φ * m belongs to the range of (1 + K * ) k if 1 ≤ j ≤ m -k. By Lemma 5.13, the constant c k = B(φ k , φ m-k+1 ) must be nonzero. Set ϕ k = 1 c k φ k . (5.116) 
Then (5.112) is proved for l = k. By an induction, one can construct ϕ j , 1 ≤ j ≤ m, such that (5.112) holds with l = m. By (5.115), one has also

B(ϕ i , φ m-j+1 ) = 0 if i > j. Lemma 5.15 is proved by taking χ k = ϕ m-k+1 , 1 ≤ k ≤ m.
One has the following representation of the Riesz projection π 1 .

Corollary 5.16. One has From the proof of Lemma 5.15, one sees that if -1 is a simple eigenvalue of K (m = 1), then the associated Riesz projection is given by

π 1 u = m j=1 u, χ * j φ j , u ∈ L 2 (R n ). ( 5 
π 1 = •, ϕ * ϕ (5.118)
where ϕ is an eigenfunction of K with eigenvalue -1 normalized by

R n W (x)(ϕ(x)) 2 dx = 1.
(5.119)

The existence of such an eigenfunction is guaranteed by Corollary 5.14.

To study the singularity of the resolvent R(z) at threshold zero, we use the resolvent equation

R(z) = (1 + R 0 (z)W ) -1 R 0 (z)
for z ∈ σ(H) and study the following Grushin problem in L 2 × C m :

1 + R 0 (z)W S T 0 : L 2 × C m → L 2 × C m (5.120)
where

S : C m → L 2 , c = (c 1 , • • • , c m ) → Sc = m j=1 c j φ j , (5.121) 
T :

L 2 → C m , f → T f = ( f, χ * 1 , • • • , f, χ * m ).
(5.122) (5.123)

Then ST = π 1 and T S = I n . Since K commutes with its Riesz projection π 1 and since 1 + K is injective on Range π 1 where π 1 = 1 -π 1 , 1 + K is invertible on the range of π 1 . By an argument of perturbation, π 1 (1 + R 0 (z)W )π 1 is invertible on range of π 1 for z ∈ O(δ) if δ > 0 is appropriately small and its inverse E(z) is uniformly bounded on O(δ) where

E(z) = (π 1 (1 + R 0 (z)W )π 1 ) -1 π 1 (5.124)
By the arguments used in Section 6.1, E(z) belongs to the Gevrey class G σ (O 0 (δ)) with σ = 1 + γ. One can check that for z ∈ O(δ),

1 + R 0 (z)W S T 0 -1 = E(z) E + (z) E -(z) E -+ (z) (5.125) 
where

E + (z) = (1 -E(z)R 0 (z)W )S (5.126) E -(z) = T (1 -R 0 (z)W E(z)) (5.127) E -+ (z) = -T (1 + R 0 (z)W )S + T R 0 (z)W E(z)R 0 (z)W S.
(5.128)

It follows that z ∈ σ(P ) if and only if det E -+ (z) = 0 and one has Therefore it has an asymptotic expansion near 0 up to any order Since threshold eigenvalue of H is geometrically simple, one has ψ 0 = ±ϕ 0 . This proves C -1 = -•, Jϕ 0 ϕ 0 .

(1 + R 0 (z)W ) -1 = E(z) -E + (z)E -+ (z) -1 E -(z). ( 5 
E -+ (z) = B 0 + B 1 z + • • • + B N z n + O(|z| N +1 ) (5.130) where B j is some m × m matrix. More precisely, since T R 0 (z)W E(z)R 0 (z)W S = O(|z| 2 ), E -+ ( 
(5.151) Remark 5.19. If zero were a discrete eigenvalue of H, then its algebraic multiplicity might be defined. In this case Condition (5.142) is equivalent with the simplicity of threshold eigenvalue of H. In Theorem 5.18, we do not make assumption on the geometric multiplicity of eigenvalue -1 of G 0 W . In addition, (5.142) does not follow from the simplicity of t eigenvalue -1 of K (see Corollary 5.14). From Formula (5.131) for E -+ (z), one sees that if threshold eigenvalue of H is geometrically simple and if the eigenfunction associated with threshold eigenvalue verifies R n ϕ 0 (x) 2 dx = 0, then b m1 = 0 and Condition (5.137) can only be satisfied for some k ≥ 2. In this case, the leading singularity of resolvent R(z) near 0 may take the form

C -k z k for some k ≥ 2.
To study e -itH in the case H is non-selfadjoint and zero is an eigenvalue of H, we need the following analog of Theorem 5.10 for selfadjoint operators. (b). Similarly to Proposition 5.12, one can show that in general case of threshold eigenvalue of H, Theorem 5.20 still holds if condition (2.28) is satisfied and V 0 ∈ A. But we can then only affirm that C -j is of rank ≤ m, for j = 1, • • • , k, as in Proposition 5.12.

Proof of Theorem 2.4. If threshold eigenvalue of H is geometrically simple, Theorem 5.20 implies that outgoing positive resonances are absent in neighborhood of zero. Therefore r + (H) is at most a finite set. The result of Theorem 2.4 for e -tH in the case threshold eigenvalue of H is geometrically simple can be derived from Theorem 5.18 and formula (5.73) when V 0 ∈ V and that for e -itH is obtained from Theorem 5.20 and formula (5.74) when V 0 ∈ A.

Taking notice of Proposition 5.12 and Remark 5.3 (b), one can prove in the same way the results of Theorem 2.4 in general case. Remark 5.4. The methods of this subsection can be applied to other threshold spectral problems. For example for non-selfadjoint Schrödinger operator H = -∆ + V (x) with a quickly decreasing complex potential V (x) on R 3 :

|V (x)| ≤ C x -ρ , ρ > 2, (5.157) 
our method allows to calculate the low-energy asymptotics of the resolvent (H -z) -1 if zero is a resonance but not an eigenvalue. In fact using the same reduction scheme and similar calculations, one can show in this case E -+ (z) takes the form The characterization of resonant state ensures that b m1 = 0. Therefore one can explicitly calculate the leading term of the asymptotic expansion of (H -z) -1 for z near 0 in the case zero is a resonance but not an eigenvalue.

E -+ (z) = -      0 
In [START_REF] Aafarani | Large-time behavior for solutions to Schrödinger equation with spectral singularities in dimension three[END_REF], Maha Aafarani applies the methods developed here to non-selfadjoint Schrödinger operators with rapidly decreasing potential and establishes large-time asymptotics of solutions in cases zero may be a resonance and/or an eigenvalue with arbitrary geometric multiplicity.

Let us end this article with an example of non-selfadjoint operator whose threshold eigenvalue is geometrically simple and condition (5.142) is satisfied. where U ∈ C 2 (R n ; C). Set U (x) = U 1 (x) + iU 2 (x) with U 1 , U 2 real valued functions. Assume that U 1 satisfies the condition (5.76) with U replaced by U 1 and that U 2 is of compact support with ∂ α x U 2 L ∞ sufficiently small for |α| ≤ 2. Considering -∆ U as a perturbation of -∆ U 1 , one can show that -∆ U has only one eigenvalue in a neighborhood of zero which is in addition geometrically simple. Therefore the eigenfunctions associated threshold eigenvalue of -∆ U are of the form ce -U (x) for some c = 0 and one sees that the condition (5.142) is satisfied if U 2 L ∞ is sufficiently small.
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2 and sufficiently close to 1 2 .

 2 Denote r + (H) the set of outgoing resonances of H. For λ ∈ r + (H), define m + (λ) as the algebraic multiplicity of eigenvalue -1 of (-∆ + U 0 -(λ + i0)) -1 (U -U 0 ). Similarly if Im U 0 ≥ 0, one can define the set of incoming positive resonances r -(H) and the algebraic multiplicity m -(λ) for λ ∈ r -(H).

  r for any r ∈ R. The upper-bound(3.16) uniform in > 0 implies that u ∈ L 2,s for any s. Since H 0 is injective by assumption (2.3), one has G 0 f = u and G 0 maps D into D. The closeness of G 0 follows from that of H 0 . The other assertions of Part (a) can be easily checked.The argument used above shows that for any w ∈ D, one can find u ∈ D(H 0 ) such that H 0 u = ϕ -s x -µ w. (3.15) follows from (3.5).

Corollary 3 .

 3 5 and operations in Gevrey class G σ . Making use of Corollary 4.2, one can show that e -a x 1-µ R(z) ∈ G 1+κγ (O 0 (δ)), where O(δ) is defined by (4.3) and O 0 (δ) = O(δ) ∪ {0}.

  uniformly for z ∈ S(-δ, π + δ), Im θ > 0 and |z| + |θ| small. It follows that (1 + R 0 (z, θ)W ) -1 is a meromorphic function for z in S(-δ, π + δ) with only at most a finite number of poles. Since eigenvalues and positive outgoing resonances of H are among discrete eigenvalues of H(θ) with Im θ > 0, (5.30) implies that (σ d (H) ∪ r + (H)) ∩ {z; z ∈ S(-δ, π + δ), |z| ≤ c} = ∅ (5.31) for some c > 0. This proves the finiteness of eigenvalues of H in S(-δ, π + δ), because zero is the only possible accumulation point of eigenvalues of H in S(-δ, π + δ). Estimate (5.27) follows from (4.40) and (5.29)with fixed Im θ > 0. (5.28) can be derived from Corollary 4.8 and (5.29).

Corollary 5 . 7 .

 57 Assume the conditions of Proposition 5.6. Then the set r + (H) is at most finite. Proof of Theorem 2.2 (a). Theorem 2.2 (a) can be proved in the same way as Theorem 4.4 for the model operator H 0 . By Proposition 5.5, one can find a contour Γ in the right half-plane of the form Γ = {z; Re z ≥ 0, |Im z| = C(Re z) µ } for some C, µ > 0 such that σ(H) ∩ Γ = {0} and there are only a finite number of complex eigenvalues of H located on the left of Γ. Let Λ = σ(H) ∩ {z; Re z < 0 or Re z ≥ 0 and |Im z| > C(Re z) µ }.

  on the range of Q with bounded inverse. From Theorem 3.4 with N = 1 and Proposition 4.1, one deduces that (R 0 (z) -G 0 )W = O(|z|) (5.45)

  46) is well-defined and continuous in z ∈ O(δ) and E(z) ≤ C (5.47) uniformly in z ∈ O(δ). By Corollary 4.2 with κ = 1 (because H 0 is selfadjoint) and (5.21), E(z) satisfies Gevrey estimates E (N ) (z) ≤ CC N N σN (5.48) for some C > 0 and for all z ∈ O 0 (δ). Define S : C m → D(H) and T : L 2 → C m by Sc = m j=1

3 .→0+Remark 5 . 1 .

 351 Theorem 2.3 (a) and (b) are respectively deduced from Theorems 5.9 and 5.10 and the formulas for t > 0 e -tH -λ∈σ d (H),Re λ≤0 e -tH Π λ = i 2π lim →0 + Γ( ) e -tz R(z)dz + O(e -ct ) Γη( ) e -itz χR(z)χdz + O(e -ct ) (5.74)where c > 0 andΓ( ) = {z; |z| ≥ , Re z ≥ 0, |Im z| = C(Re z) µ } ∪ {z; |z| = , | arg z| ≥ ω 0 } Γ η ( ) = {z = re -iη , r ≥ } ∪ {z = -re iθ , r ≥ } ∪ {z; |z| = , -η ≤ arg z ≤ π + η}for some appropriate constants C, µ > 0, η > 0. In particular, η > 0 is chosen such that H has no eigenvalues with negative imaginary part above Γ η ( ). Here ω 0 is the argument of the point z 0 with |z 0 | = , Re z 0 > 0 and Im z 0 = C(Re z 0 ) µ . Remark that the sub-exponential time-decay estimates are derived from Gevrey estimates of R 1 (z) and R 2 (z) at zero and their Taylor expansion of order N with N chosen appropriately in terms of t > 0. See the proof of Theorem 4.4 for e -tH 0 . As an example of applications of Theorem 2.3, consider the Witten Laplacian on function defined by -∆ U = t ∇ U • ∇ U (5.75)

  .90) Thus (5.84) holds with ω m = (-1) m a m = 0. In the general case, one can prove the following Proposition 5.12. Let κ be given in Corollary 4.2, O(δ) be defined by (4.3) and O 0 (δ) = O(δ) ∪ {0}. Assume that ω(z) = ω k z k + O(|z| k+1 ) (5.91) for some k ∈ N * and ω k = 0. Then there exist operators C -j , j = 1, • • • , k, with rank less than or equal to m such that

  j = 1, • • • , k, are operators of rank ≤ m and R (1) (z) belongs to G 1+κγ (O(δ) as bounded operator-valued function. (5.92) and (5.95) can now be derived from the equation R

.113) Then ϕ 1 ∈

 1 Ker (1 + K) and B(ϕ 1 , φ m ) = 1. (5.112) is true for l = 1. Assume now that (5.112) is true for some

  .117) Proof. Denote π the operator π : u → m j=1 u, χ * j φ j . Then it is clear that π 2 = π and Range π = Range π 1 . It is trivial that Ker π 1 ⊂ Ker π. If u ∈ Ker π, then u, χ * j = 0 for j = 1, • • • , m. Therefore u ∈ (Range π * 1 ) ⊥ = Ker π 1 which implies that Ker π ⊂ Ker π 1 . This shows that Ker π 1 = Ker π. This proves π = π 1 .

  .129) By operations on Gevrey functions ((5.19) -(5.24)), E -+ (z) is m × m-matrix valued Gevrey function for z ∈ O 0 (δ).

b 1 λ ( 1 +φ 1 ,= φ 1 ,( 1 += d 1 b m1 φ 1 .

 111111 z) verifiesE -+ (z) = -(1 + R 0 (z)W )φ k , χ * j 1≤j,k≤m + O(|z| 2 ) jk = G 1 W φ k , χ * j .(5.132)Note that φ 1 and χ m belong to Ker (1 + G 0 W ) and χ * m = JW χ m , they are rapidly decreasing, by Lemma 5.8. One can calculateb m1 = lim λ→0 - R 0 (λ)W )φ 1 , JW χ m JR 0 (λ)W χ m Jχ m . Similarly one can calculate for 2 ≤ j ≤ m b mj = -W φ j , JG 0 χ m = φ j -φ j-1 , Jχ m .(5.134)Summing up, we have proved the following Proposition 5.17. det E -+ (z) is a Gevrey function of order σ for z ∈ O 0 (δ) and has an asymptotic expansion in powers of zdet E -+ (z) = σ 1 z + • • • σ N z N + O(|z| N +1 ) (5.135)for any N , where σ 1 = -b m1 .(5.136)Theorem 5.18. Let H 0 = -∆ + V 0 (x) and H = H 0 + W (x) with V 0 ∈ V and W ∈ L ∞ comp . Assume that threshold eigenvalue of H is geometrically simple. (a). Suppose that det E -+ (z) = σ k z k + O(|z| k+1 ) (5.137)for some σ k = 0, k ≥ 1. Then there exist operators C j , j = -k, • • • , -1 with ranks less than or equal to m such thatR(z) = C -k z k + • • • + C -1 z + R 3 (z) (5.138)for z ∈ O(δ), where C -j , 1 ≤ j ≤ k -1, are of rank less than or equal to m and C -k is a rank one operator given byC -k = •, Jϕ 1 ϕ 1 ,(5.139)with ϕ 1 an eigenfunction of H associated with threshold eigenvalue. The remainder R 3 (z) satisfies the estimates: ∃C, µ , δ > 0 such thatx -s R 3 (z) + R 3 (z) x -s ≤ C s (5.140)for s ≥ 2κµ and z ∈ O(δ); and for any a > 0, ∃C a , c a > 0 such thate -a x 1-µ R e -a x 1-µ ≤ C a c N a N (1+κγ)N , (5.141) for any N ∈ N * and z ∈ O(δ). κ is given in Corollary 4.2 and O(δ) is defined by (4.3).(b). Suppose in addition that there exists an eigenfunction ϕ 0 of H associated with eigenvalue zero such that R n (ϕ 0 (x)) 2 dx = 1.(5.142)Then Condition (5.137) is satisfied with k = 1 and one hasC -1 = -•, Jϕ 0 ϕ 0 . (5.143)Proof. (a). The existence of the resolvent expansion is proved in Proposition 5.12 and the Gevrey estimates of the remainder can be obtained in the same way as in Theorem 5.9, making use of Corollary 4.2. We only calculate C -k . Under the condition (5.137), one hasE -+ (z) -1 = t Com E -+ (z) det E -+ (z) = z -k C + O(|z| -k+1 ) (5.144) for z ∈ O(δ), where R 0 (z)W ) -1 = -z -k SCT + O(|z| -k+1).(5.145)Using the definition of S and T , one seesSCT f = (-1) m+1 σ k f, χ * m φ 1 (5.146) Noticing that G 0 f, χ * m = f, G * 0 JW χ m = f, JG 0 W χ m = -f, Jχ m , we deduce from (5.42) that R(z) = C -k z k + O(|z| -k+1 ) (5.147)for z ∈ O(δ), where C -k is of rank one, given byC -k f = (-1) m+1 σ k f, Jχ m φ 1 (5.148)Since χ m and φ 1 belong to the one dimensional space Ker (1 + K), C -k can written asC -k f = f, Jϕ 1 ϕ 1 (5.149)where ϕ 1 is an eigenfunction of H with eigenvalue zero. This proves part (a). If (5.142) is satisfied, then m = 1 and one has χ m = d 1 ϕ 0 and φ 1 = d 2 ϕ 0 for some constants d j = 0. Therefore σ 1 = -φ 1 , Jχ m = -d 1 d 2 = 0. Condition (5.137) is satisfied with k = 1. Set ψ 0 (5.150) Then C -1 = -•, Jψ 0 ψ 0 . ψ 0 is an eigenfunction of H with eigenvalue zero and R n (ψ 0 (x)) 2 dx = φ 1 , Jχ m b m1 = 1.

Theorem 5 .•,

 5 20. V 0 ∈ A. Assume that zero is a geometrically simple eigenvalue of H. Let χ ∈ C ∞ 0 (R n ) and Ω(δ, θ), Im θ > 0, be defined as in Corollary 4.8. Under the condition (5.137), the meromorphic extension of χR(z)χ from C + verifiesχR(z)χ = χ C -k z k + • • • + C -1 z χ + R 4 (z) (5.152)for z ∈ Ω(δ, θ), where C -j is the same as in Theorem 5.18 and the remainder R 4 (z) is continuous up to z = 0 and satisfies the Gevrey estimatesR (N ) 4 (z) ≤ C χ C N N σN (5.153) for z ∈ Ω 0 (δ, θ). In addition if (5.142) is true, then Condition (5.137) is satisfied with k = 1 and (5.152) holds with C -1 = -•, Jϕ 0 ϕ 0 . Theorem 5.20 is derived by combining methods used in Theorem 5.10 and Theorem 5.18. Note that when V 0 ∈ A, one can apply Corollary 4.8 instead of Corollary 4.2 to estimate the remainder. The details are omitted. Remark 5.3. (a). Assume that eigenvalue -1 of G 0 W is semi-simple with multiplicity m. Under the condition (5.83), the condition (2.28) is satisfied with k = m according to Lemma 5.11. Using formula (5.88), one can construction a Grushin problem as in the proof of Theorem 5.18 and (5.144) becomes in this caseE -+ (z) -1 = C z + O(1) (5.154)where C is a matrix of rank m. Following the proofs of Theorems 5.18 and 5.20, one concludes that the resolvent expansions given in Theorems 5.18 and 5.20 still hold with k = m and one hasC -m = • • • = C -2 = 0, C -1 = m j=1 Jψ j ϕ j (5.155)where {ψ j , j = 1, • • • , m} and {ϕ j , j = 1, • • • , m} are two basis of the eigenspace of H associated with threshold eigenvalue.

Remark 5 .

 5 3 (a) allows to affirm that if eigenvalue -1 of G 0 W is semi-simple, under the condition (5.83), one hasΠ 0,j = 0, j = 1, • • • , m -1 and Π 0,0 = m j=1 •, Jψ j ϕ j (5.156)where {ϕ j ; j = 1, • • • , m} and {ψ j ; j = 1, • • • , m} are basis of the eigenspace of H associated with eigenvalue zero.

1 •

 1 

Example 5 . 5 .

 55 Consider the non-selfadjoint Witten Laplacian-∆ U = -∆ + (∇U )(x) • (∇U )(x) -∆U (x)

where the matrix Ψ = ( ψ j , ψ k ) 1≤j,k≤m is positive definite and r 1 (z) satisfies the Gevrey estimates of order σ = 1 + γ in O 0 (δ). Consequently,

with r 1 (z) uniformly bounded on O(δ) and continuous up to 0 and r 1 (z) satisfying the Gevrey estimates of the form (5.48) in O 0 (δ). It follows that (1 + R 0 (z)W ) -1 is of the form

where

) is an operator of rank m and B(z) is uniformly bounded in O(δ) and satisfies the Gevrey estimates

and N ∈ N * . This proves (5.40) and (5.41).

Theorem 5. [START_REF] Helffer | Comparaison entre les diverses notions de résonances. (French) [Comparison among the various notions of resonance[END_REF].

Assume that 0 is an eigenvalue of H and that both H 0 and H are selfadjoint. Let Π 0 denote the eigenprojection of H associated with eigenvalue zero. Then there exist some constants C, c, δ > 0 such that for any χ ∈ C ∞ 0 (R n ) the cut-off resolvent χR(z)χ defined for Im z > 0 extends to a holomorphic function in Ω(δ, θ) and one has

for z ∈ Ω(δ, θ) where the remainder R 2 (z) is continuous up to z = 0 and satisfies the Gevrey estimates

) for z ∈ Ω 0 (δ, θ). Here σ = 1 + γ, Ω(δ, θ) and Ω 0 (δ, θ) are the same as in Corollary 4.8.

where R > R 0 is to be adjusted and R 0 is chosen such that supp W ⊂ {x; |x| ≤ R 0 }. Then χ j W = W and χ 1 χ 2 = χ 1 . Then one has

where the analytic distortion is carried out outside the support of χ 2 . (5.62) initially valid for θ real and Im z > 0 allows to extend z → χ 1 R(z)χ 1 meromorphically into a sector below the positive real axis when Im θ > 0. In the following θ ∈ C is fixed with Im θ > 0. According to Corollary 4.8, 1 + χ 2 R 0 (z, θ)W and χ 2 R 0 (z, θ)χ 1 belong to Gevrey class G σ (Ω 0 (δ, θ)).

This condition is equivalent to requiring threshold eigenvalue of H to be geometrically simple.

Operator 1 + K being nilpotent on Range π 1 , there exists some function φ m ∈ range π 1 such that

(5.103) φ 1 , • • • , φ m are linearly independent. Denote J the operation of complex conjugation J : f → f . Remark that H * 0 = JH 0 J, H * = JHJ. One has

Since φ * 1 = 0, it follows that φ * j = 0 for all 1 ≤ j ≤ m. From this, we deduce that {φ *

JW is a bijection from Range π 1 onto Range π * 1 .

Lemma 5.13. Assume that threshold eigenvalue of H is geometrically simple. Then the bilinear form B(•, •) defined on Range π 1 by

As a consequence of Lemma 5.13, one obtains the following Corollary 5.14. If eigenvalue -1 of K is simple (i. e., m = 1), then the eigenfunction ϕ of H associated with threshold eigenvalue satisfies where χ * j = JW χ j , δ ij = 1 if i = j and δ ij = 0 if i = j.