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GEVREY ESTIMATES OF THE RESOLVENT AND
SUB-EXPONENTIAL TIME-DECAY OF SOLUTIONS

XUE PING WANG

Abstract. In this article, we study a class of nonselfadjoint Schrödinger operators
which are perturbation of a model operator satisfying some weighted coercive assump-
tion. For the model operator, we prove that the derivatives of the resolvent satisfy
some Gevrey estimates at the threshold zero. As application, we establish large time
expansions for the semigroups e−tH and e−itH for t > 0 with subexponential time-
decay estimates on the remainder. We also study the case when zero is an embedded
eigenvalue of non-selfadjoint Schrödinger operators.

1. Introduction

This work is concerned with the time-decay of semigroups e−tH and e−itH as t→ +∞
whereH is a compactly supported perturbation of some model operatorH0 = −∆+V (x)
with a complex-valued potential V (x) = V1(x)− iV2(x), where either V1(x) or V2(x) are

slowly decreasing like 1
⟨x⟩2µ for some 0 < µ < 1. Here ⟨x⟩ = (1+ |x|2) 1

2 . There are many

works on low-energy spectral analysis of selfadjoint Schrödinger operators −∆ + V (x)
with a real decreasing potential V (x) verifying

|V (x)| ≤ C⟨x⟩−ρ, x ∈ Rn, (1.1)

for some ρ > 0. Here we only mention [2, 10] for quickly decaying potentials (ρ > 2),
[15] for critically decaying potentials (ρ = 2) under an assumption of Hardy inequality
for the model operator and [14] in one-dimensional case when this Hardy condition is
not satisfied. For slowly decreasing potentials (0 < ρ < 2), there are works of [5] when
the potential is negative and [13, 19] when it is globally positive. When ρ ≥ 2, thresh-
old zero may be an eigenvalue and/or a resonance and for critically decaying potentials,
threshold resonance may appear in any space dimension with arbitrary multiplicity. For
slowly decreasing potentials (0 < ρ < 2), threshold resonance is absent and low-energy
spectral analysis has not yet been done in presence of zero eigenvalue. We study here a
class of non-selfadjoint Schödinger operators which are compactly supported perturba-
tion of some model operator H0 which satisfies a weighted coercive condition. Part of
the results of this work are announced in [18].

The analysis of the class of non-selfadjoint operators considered in this work is in part
motivated by large-time behavior of solutions to the Kramers-Fokker-Planck equation
with a slowly increasing potential. After a change of unknowns and for appropriate
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values of physical constants, the Kramers-Fokker-Planck equation can be written into
the form

∂tu(t;x, v) + Pu(t;x, v) = 0, (x, v) ∈ Rn × Rn, n ≥ 1, t > 0, (1.2)

with some initial data

u(0;x, v) = u0(x, v). (1.3)

Here P is the Kramers-Fokker-Planck operator:

P = −∆v +
1

4
|v|2 − n

2
+ v · ∇x − (∇U(x)) · ∇v, (1.4)

where the potential U(x) is supposed to be a real-valued C1 function. Define M by

M(x, v) =
1

(2π)
n
4

e−
1
2
( v

2

2
+U(x)). (1.5)

Then one has PM = 0. If |∇U(x)| ≥ C > 0 and U(x) > 0 outside some compact, U(x)
increases at least linearly and M ∈ L2, then 0 is in the discrete spectra of P and after
suitable normalization, one has in L2(R2n)

e−tPu0 = ⟨M, u0⟩M+O(e−σt), t→ +∞. (1.6)

for some σ > 0 depending on the spectral gap between 0 (see for example [7, 8, ?]).
In this case when where U(x) is of short-range, the essential spectrum of P is equal
to [0,∞[. It is proved in [17] by scattering method that for short-range potentials in
dimension three one has

e−tPu0 =
1

(4πt)
3
2

⟨M, u0⟩M+O(t−
3
2
−ϵ), t→ +∞, (1.7)

in appropriately weighted L2-spaces. It is conjectured in [17] that when the potential
U(x) increases sublinearly: U(x) ∼ |x|τ , 0 < τ < 1, then one should have

e−tPu0 = ⟨M, u0⟩M+O(e−σt
τ

2−τ
), t→ +∞. (1.8)

There exists a probabilistic approach of subexponentially convergence to invariant mea-
sures in Markov processes. See the lecture notes of P. Cattiaux [3] for an overview
on this approach. While polynomially decaying remainder estimate is obtained in [4],
the subexponential remainder estimate (1.18) is proved in a recent work of T. Li and
Z. Zhang ([12]) using method of weak Poincaré inequality. Note that M. Klein and J.
Rama ([11]) used Gevrey estimates in different context to study large time evolution
of quantum resonance states. In this article we only study Schrödinger operators. The
Gevrey estimate of the resolvent at threshold proved in this work is of interest in itself.
It allows us to study not only semigroup of the heat equation, but also that of the
Schrödinger equation under some analyticity assumption on potentials.

Before stating our results, let us recall some known results ([13, 19, 20]) for selfadjoint
Schrödinger operators with globally positive and slowly decreasing potentials. Let H0 =
−∆+V (x) be selfadjoint. Assume that there exist some constants µ ∈]0, 1[ and c1, c2 > 0
such that

c1⟨x⟩−2µ ≤ V (x) ≤ c2⟨x⟩−2µ, x ∈ Rn. (1.9)
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Under some additional conditions on derivatives of V , it is known ([13, 20]) that the
spectral measure E ′(λ) of H0 is smooth at λ = 0 and satisfies for any N ≥ 0

∥E ′(λ)∥L2
comp→L2

loc
= O(|λ|N), λ→ 0, (1.10)

∥e−tH0∥L2
comp→L2

loc
= O(e−ctβ) (1.11)

where β = 1−µ
1+µ

and c is some positive constant. In one dimensional case, if V (x) is in

addition analytic, D. Yafaev ([19]) proves that

∥e−itH0∥L2
comp→L2

loc
= O(e−c|t|β), |t| → +∞. (1.12)

The proof of [19] is based on an explicit construction of solutions to time-dependent
Schrödinger equation in one dimensional case. This kind of construction is not avail-
able in higher dimensions. When specified to the selfadjoint case (V2 = 0), the Gevrey
estimates of the resolvent at threshold obtained in this work allow to prove a subexpo-
nential estimate for E ′(λ) near zero and (1.12) in dimensions n ≥ 2.

The model operator H0 used in this work is a class second order elliptic operators
satisfying a weighted coercive condition. Consider

H0 = −
n∑

i,j=1

∂xi
aij(x)∂xj

+
n∑

j=1

bj(x)∂xj
+ V (x), (1.13)

where aij(x), bj(x) and V (x) are complex-valued measurable functions. Suppose that
aij, bj ∈ C1

b (Rn) and that there exists c > 0 such that

Re (aij(x)) ≥ cIn, ∀x ∈ Rn. (1.14)

Assume that V is relatively bounded with respect to −∆ with relative bound zero,
ReH0 ≥ 0 and that there exists some constants 0 < µ < 1 and c0 > 0 such that

|⟨H0u, u⟩| ≥ c0(∥∇u∥2 + ∥⟨x⟩−µu∥2), for all u ∈ H2, (1.15)

sup
x

|⟨x⟩µbj(x)| <∞, j = 1, · · · , n. (1.16)

Condition (1.15) is called weighted coercive condition.

Remark 1.1. If H0 = −∆ + V (x) with V (x) = V1(x) − iV2(x) with Vj(x) ≥ 0, the
weighted coercive condition (1.15) is satisfied if

V1(x) + V2(x) ≥ c⟨x⟩−2µ, x ∈ Rn. (1.17)

If V1(x) is globally positive and slowly decaying (i. e. V1(x) ≥ c⟨x⟩−2µ for some µ ∈]0, 1[
and c > 0), then (1.15) is satisfied by −∆ + V1(x) − iV2(x) for any real function V2
which is −∆-bounded with relative bound zero.

Note also that when we study Schrödinger operators H0 = −∆ + V by technics of
analytic deformation, the deformed operator can be written in the form (1.13). Condi-
tion V (x) is −∆-bounded allows to include a class of multiparticle interactions.
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Under the assumptions 1.14, 1.15 and 1.16, one can show that H0 is bijective from
D(H0) = H2(Rn) to R(H0) and R(H0) is dense in L2(Rn). Let G0 : R(H0) → D(H0)
be the algebraic inverse of H0. Denote L

2,s = L2(Rn
x; ⟨x⟩2sdx) and D = ∩s∈RL

2,s. Then
G0(D) ⊂ D and G0 is a densely defined, continuous from R(H0) ∩ L2,s to L2,s−2µ for
any s ∈ R. (See Lemma 2.3). To simplify notion, we still denote by G0 its continuous
extension by density so that G0 is regarded as a bounded operator from L2,s to L2,s−2µ.
Consequently for any N ∈ N, GN

0 : L2,s → L2,s−2µN is well defined for any s ∈ R. Let
R0(z) = (H0 − z)−1 for z ̸∈ σ(H). One has

s- lim
z∈Ω(δ),z→0

R0(z) = G0

as operators from L2,s to L2,s−2µ, where Ω(δ) = {z; π
2
+δ < arg z < 3π

2
−δ} for some δ > 0.

Theorem 1.1. Assume the conditions (1.13), (1.14), (1.15) and (1.16). The following
estimates hold.

(a). For any a > 0, there exists Ca > 0 such that

∥e−a⟨x⟩1−µ

GN
0 ∥+ ∥GN

0 e
−a⟨x⟩1−µ∥ ≤ CN

a N
γN ,∀N. (1.18)

(b). There exists some constant C > 0 such that ∀χ ∈ C∞
0 (Rn), one has for some

Cχ > 0
∥χ(x)GN

0 ∥+ ∥GN
0 χ(x)∥ ≤ CχC

NNγN ,∀N. (1.19)

Here γ = 2µ
1−µ

.

Since one has
dN

dzN
R0(z)|z=0 = N !GN+1

0 ,

the estimates given in Theorem 1.1 can be regarded as Gevrey estimates of the resolvent
at threshold zero.

To study large time behavior of semigroups, we introduce two classes of potentials V
and A. Let V denote the class of complex-valued potentials V such that

V is −∆-compact and (1.15) is satisfied for some µ ∈]0, 1[. (1.20)

and
ReH0 ≥ −α∆ and |ImV (x)| ≤ C⟨x⟩−2µ′

(1.21)

for some constants α, µ′, C > 0.

To study the time-decay of the Schrödinger equation, we will use both technics of
analytical dilation and analytical deformation. Let A denote the class of complex-
valued potentials V (x) = V1(x) − iV2(x) for x ∈ Rn with n ≥ 2 such that −∆ + V (x)
satisfies the estimate (1.15) for some µ ∈]0, 1[ verifying

0 < µ < 3
4
if n = 2 and 0 < µ < 1 if n ≥ 3; (1.22)

and that V1 and V2 are dilation analytic ([1]) and extend holomorphically into a complex
region of the form

Ω = {x ∈ Cn; |Imx| < c|Rex|} ∪ {x ∈ Cn; |x| > c−1}
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for some c > 0 and satisfy for some cj > 0 and R ∈ [0,+∞]

|Vj(z)| ≤ c1⟨Re z⟩−2µ, z ∈ Ω, j = 1, 2, (1.23)

V2(x) ≥ 0, ∀x ∈ Rn, (1.24)

x · ∇V1(x) ≤ −c3
x2

⟨x⟩2µ+2
, x ∈ Rn with |x| ≥ R, and (1.25)

V2(x) ≥ c5⟨x⟩−2µ, x ∈ Rn with |x| < R. (1.26)

Remark that when R = 0, (1.25) is a global virial condition on V1 and (1.26) is void;
while if R = +∞, no virial condition is needed on V1, but (1.26) is required on the
whole space which means that the dissipation is strong. Potentials of the form

V (x) =
c

⟨x⟩2µ
− iV2(x) (1.27)

satisfy conditions (1.23-(1.26) with R = 0, if V2 ≥ 0 and V2 is holomorphic in Ω satis-
fying |V2(z)| ≤ C⟨z⟩−2µ for z ∈ Ω.

Clearly, A ⊂ V . For V ∈ A, one can study quantum resonances of H0 = −∆+ V (x)
by both analytical dilation or analytical deformation outside some compact ([1, 6]). We
shall show that under the conditions (1.24), (1.25) and (1.26), there are no eigenvalues
nor quantum resonances of H0 in a sector below the positive real half-axis in complex
plane.

Let V ∈ V , H0 = −∆ + V (x) and H = H0 + W (x) be a compactly supported
perturbation of H0: W ∈ L∞

comp = {u ∈ L∞(Rn), suppu compact }. Then one can prove
that H has only at most a finite number of discrete eigenvalues located at the left of a
curve Γ of the forme

Γ = {z; Re z ≥ 0, |Im z| = C(Re z)µ
′}

and there exists a nice control of the resolvent of H0 on Γ. Note that zero may be an
embedded eigenvalue, but it is never a resonance of H and that complex eigenvalues of
H may accumulate to zero from the right side of Γ. Let σd(H) (σp(H), resp.) denote
the set of discrete eigenvalues of H (the set of eigenvalues of H, resp.).

Theorem 1.2. Assume that 0 is not an eigenvalue of H. The following statements hold.

(a). Let V ∈ V. For any a > 0 there exist ca, Ca > 0 such that

∥e−a⟨x⟩1−µ

(e−tH −
∑

λ∈σd(H),Reλ≤0

e−tHΠλ)∥ ≤ Cae
−cat

1−µ
1+µ

t > 0, (1.28)

(b). Let V ∈ A. Then there exists some constant c > 0 such that for any χ ∈ C∞
0 (Rn)

one has

∥χ(e−itH −
∑

λ∈σd(H)∩R−

e−itHΠλ)χ∥ ≤ Cχe
−ct

1−µ
1+µ

t > 0, (1.29)

Here Πλ denotes the Riesz projection associated with the discrete eigenvalue λ of H.
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When zero is an embedded eigenvalue, in the selfadjoint case, we can apply Grushin-
Feshbach method to compute low-energy expansion. Theorem 1.1 allows to estimate
remainders in Gevrey spaces and to prove the following

Theorem 1.3. Assume that 0 is an embedded eigenvalue of H and that both H and H0

are selfadjoint.

(a). If V ∈ V, then for any a > 0, there exist some constants ca, Ca > 0 such that

∥e−a⟨x⟩1−µ

(e−tH −
∑

λ∈σp(H),Reλ≤0

e−tλΠλ)∥ ≤ Cae
−cat

1−µ
1+µ

t > 0, (1.30)

(b). Let V ∈ A. Then there exists some constant c > 0 such that for any χ ∈ C∞
0 (Rn),

one has

∥χ(e−itH −
∑

λ∈σp(H)∩R−

e−itλΠλ)χ∥ ≤ Cχe
−ct

1−µ
1+µ

t > 0, (1.31)

Here Πλ denotes the eigenprojection of H associated with eigenvalue λ of H.

Theorem 1.3 can be applied to a class of Witten Laplacians for which zero is an eigen-
value embedded in the continuous spectrum which is equal to [0,+∞[. Our result is
new concerning the Schrödinger equation associated to this class of Witten Laplacians.
See Section 6.

The case zero is an embedded eigenvalue of non-seladjoint Schrödinger operator H is
more difficult. There is not yet general method for threshold spectral analysis of non-
selfadjoint operators. In this work, we only the case zero eigenvalue is geometrically
simple under some condition. Remark that zero is an eigenvalue of H if and only if −1 is
an eigenvalue of G0W . Since in our case G0W is compact on L2(Rn), zero eigenvalue of
H is of finite geometrical multiplicity. Since this eigenvalue is embedded in the essential
spectrum, we do not know how to definite its algebraic multiplicity.

Theorem 1.4. Assume that 0 is a geometrically simple eigenvalue of H and that there
exists an associated eigenfunction φ such that∫

Rn

(φ0(x))
2dx = 1. (1.32)

Let Π0 be defined by
Π0 = ⟨·, Jφ0⟩φ0 (1.33)

where J is complex conjugaison: J : f(x) → f(x). The following results hold.
(a). If V ∈ V, then for any a > 0, there exist some constants ca, Ca > 0 such that

∥e−a⟨x⟩1−µ

(e−tH −
∑

λ∈σd(H),Reλ≤0

e−tHΠλ − Π0)∥ ≤ Cae
−cat

1−µ
1+µ

t > 0, (1.34)

(b). Let V ∈ A. Then there exist c > 0 such that for any χ ∈ C∞
0 (Rn),

∥χ(e−itH −
∑

λ∈σd(H)∩R−

e−itHΠλ − Π0)χ∥ ≤ Cχe
−ct

1−µ
1+µ

t > 0, (1.35)
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Here if λ ̸= 0, Πλ denotes the Riesz projection of H associated with eigenvalue λ of H.

The organisation of this paper is as follows. Sections 2− 5 are devoted to the analysis
of the model operator H0 = −∆ + V (x) verifying condition (1.15). In Section 2, we
prove Theorem 1.1. We first establish a uniform energy estimate which allows to control
the growth of powers of the resolvent at threshold in weighted spaces. Then Theorem
1.1 is deduced by an appropriate induction. In Section 3, we evaluate the numerical
range of H0 and prove resolvent estimates for H0 on a curve located in the right half
complex-plane. An estimate like (1.28) is proved for H0. In Section 4, we prove the

absence of complex eigenvalues for a class of non-selfadjoint Schrd̈inger operators H
which are compactly supported perturbation of H0 and we also give an improvement
for the estimate on spectral measure obtained by S. Nakamura [13] in selfadjoint case.
The subexponential time-decay of e−itH0 is studied in section 5 when potential V be-
longs to the class A. We show that there exists a contour located in the lower half
complex plane passing by 0 on which the cut-off resolvent χ(H0 − z)−1χ is uniformly
bounded and that there are no quantum resonances and eigenvalues of H0 in a sector
below the positive half real axis. (1.29) for H0 is then obtained by deforming the in-
tegral contour into the lower half complex plane. Compactly supported perturbations
of H0 are studied in Sections 6 and 7. In Section 6, we study the low-energy resolvent
expansion for H and prove Theorems 1.2 and 1.3. Since the method of low-energy
spectral analysis used in this Section is known, we emphasize upon Gevrey estimates on
remainders and Theorems 1.2 and 1.3 are proved from low-energy resolvent expansion
by the same methods used for H0. Finally in Section 7, we study threshold eigenvalue
for non-selfadjoint Schrödinger operators and prove Theorem 1.4. We firstly establish a
representation formula for the Riesz projection π1 associated to the compact operator
G0W with eigenvalue −1 and then use Grushin method to compute the leading term of
the resolvent. The Gevrey estimates of the remainder can be obtained as in Section 6
and hence the details are omitted in Section 7.

Notation. We denote Hr,s, r ≥ 0, s ∈ R the weighted Sobolev space of order r with
the weight ⟨x⟩s on Rn:

Hr,s = {u ∈ S ′(Rn); ∥u∥r,s = ∥⟨x⟩s(1−∆)
r
2u∥L2 <∞}.

For r < 0, Hr,s is defined as dual space of H−r,−s with dual product identified with
the scalar product ⟨·, ·⟩ of L2(Rn). Denote H0,s = L2,s. L(r, s; r′, s′) stands for the
space of continuous linear operators from Hr,s to Hr′,s′ . If (r, s) = (r′, s′), we denote
L(r, s) = L(r, s; r′, s′).

2. Gevrey estimates of the resolvent at threshold

The starting point of our Gevrey estimates of the resolvent is a uniform a priori
energy estimate for the model operator H0. In the sequel, we need to apply this kind
of energy estimates both to the Schrödinger operator −∆ + V1(x) − iV2(x) and to its
analytically dilated or distorted versions as well. For this purpose, we begin with a
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setting where H0 is a second order elliptic differential operator of the form

H0 = −
n∑

i,j=1

∂xi
aij(x)∂xj

+
n∑

j=1

bj(x)∂xj
+ V (x) (2.1)

satisfying conditions (1.13), (1.14), (1.15) and (1.16).
Denote b = (b1, · · · , bn) and

|a|∞ = max
1≤i,j≤n

sup
x∈Rn

|aij(x)|, |b|µ,∞ = max
1≤j≤n

sup
x∈Rn

|⟨x⟩µbj(x)|. (2.2)

For s ∈ R, denote

φs(x) = (1 +
|x|2

R2
s

)s, (2.3)

where Rs = M⟨s⟩
1

1−µ with M = M(c0, |a|∞, |b|∞) > 1 large enough, but independent
of s ∈ R. The uniformity in s ∈ R in the following lemma is important for Gevrey
estimates of the resolvent at threshold.

Lemma 2.1. Let H0 be given by (2.1). Under the conditions (1.15) and (1.16) with
0 < µ < 1, there exist some constants C,M > 0 depending only on |a|∞, |b|µ,∞ and c0
given in (1.15) such that

∥⟨x⟩−µφs(x)u∥+ ∥∇(φs(x)u)∥ ≤ C∥⟨x⟩µφs(x)H0u∥ (2.4)

for any s ∈ R and u ∈ H2(Rn) with ⟨x⟩|s|+µHu ∈ L2.

Proof. We calculate ⟨u, φ2
sH0u⟩ for u ∈ C∞

0 :

⟨u, φ2
sH0u⟩ (2.5)

= ⟨φsu,H0(φsu)⟩+ ⟨φsu, [
n∑

i,j=1

∂xi
aij∂xj

, φs]u⟩ − ⟨φsu, (b · ∇φs)u)⟩

= I + II + III, (2.6)

where

I = ⟨φsu,H0(φsu)⟩

II = ⟨φsu,
n∑

i,j=1

(
(∂xi

φs)a
ij∂xj

u+ ∂xi
(aij(∂xj

φs)u)
)
⟩

III = −⟨φsu, (b · ∇φs)u)⟩.

Since φs∂xj
u = ∂xj

(φsu)− (∂xj
φs)u, one has

|⟨φsu, (∂xi
φs)a

ij∂xj
u+ ∂xi

(aij(∂xj
φs))u)⟩|

= |⟨(∂xi
φs)u, a

ij(∂xj
(φsu)− (∂xj

φs)u)⟩+ ⟨φsu, ∂xi
(aij(∂xj

φs)u)⟩|
= |⟨(∂xi

φs)u, a
ij(∂xj

(φsu)− (∂xj
φs)u)⟩ − ⟨∂xi

(φsu), a
ij(∂xj

φs)u⟩|
≤ |a|∞(∥(∂xi

φs)u∥(∥∂xj
(φsu)∥+ ∥(∂xj

φs)u∥) + ∥∂xi
(φsu)∥∥(∂xj

φs)u∥)



GEVREY ESTIMATES OF THE RESOLVENT 9

The term II in (2.5) can be bounded by

|II| ≤ |a|∞(
n∑

i=1

∥(∂xi
φs)u∥)(

n∑
j=1

(2∥∂xj
(φsu)∥+ ∥(∂xj

φs)u∥))

≤ n2|a|∞∥(∇φs)u∥)(2∥∇(φsu)∥+ ∥(∇φs)u∥))

≤ n2|a|∞(ϵ∥∇(φsu)∥2 + (1 +
1

ϵ
)∥(∇φs)u∥2)

for any ϵ > 0. Clearly, III verifies

|III| ≤ |b|µ,∞∥⟨x⟩−µφsu∥∥(∇φs)u∥ ≤ |b|µ,∞(ϵ∥⟨x⟩−µφsu∥2 +
1

4ϵ
∥(∇φs)u∥2) (2.7)

Taking ϵ = ϵ(c0, |a|∞, |b|µ,∞) > 0 appropriately small where c0 > 0 is given by (1.15), it
follows from (1.15) that

|⟨u, φ2
sHu⟩| ≥ |I| − |II| − |III| (2.8)

≥ c0
2
(∥∇(φsu)∥2 + ∥⟨x⟩−µφs(x)u∥2)− ⟨u,Wsu⟩

where Ws(x) = c1|∇φs|2 with c1 > 0 some constant depending only on c0, |a|∞ and
|b|µ,∞. One can check that

|∇φs|2 =
4s2x2

R4
s(1 +

x2

R2
s
)2
(1 +

x2

R2
s

)2s

≤ 4s2x2

(R2
s + x2)2

φ2
s ≤

4s2

R2
s + x2

φ2
s

Since R2
s + x2 ≥ 2−2µR

2(1−µ)
s ⟨x⟩2µ and Rs =M⟨s⟩

1
1−µ , W (x) is bounded by

0 ≤ Ws(x) ≤
4c1⟨s⟩2

R2
s + x2

φ2
s ≤

42µc1
M2(1−µ)⟨x⟩2µ

φ2
s. (2.9)

Since 0 < µ < 1, one can choose an M = M(c0, |a|∞, |b|µ,∞) > 1 large enough so that
42µc1

M2(1−µ) <
c0
4
. Consequently, the above estimate combined with (2.8) gives

|⟨u, φ2
sH0u⟩| ≥

c0
4
(∥∇(φsu)∥2 + ∥⟨x⟩−µφsu∥2). (2.10)

Remark that

|⟨u, φ2
sH0u⟩| ≤ ∥⟨x⟩−µφsu∥∥⟨x⟩µφsH0u∥ ≤ c0

8
∥⟨x⟩−µφsu∥∥2 +

2

c0
∥⟨x⟩µφsH0u∥2.

It follows from (2.10) that

∥⟨x⟩µφs(x)H0u∥2 ≥
c20
16

(∥⟨x⟩−µφs(x)u∥2 + ∥∇(φs(x)u)∥2), u ∈ C∞
0 (Rn). (2.11)

By an argument of density, one obtains (2.4) with some constant C > 0 independent of
s ∈ R. �
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Corollary 2.2. Under the conditions of Lemma 2.1, there exists some constant C > 0
such that for any f ∈ L2,r = L2(Rn; ⟨x⟩2rdx) and u ∈ L2

loc such that H0u = f , one has:
u ∈ L2,r−2µ, ∇u ∈ L2,r−µ and

∥⟨x⟩r−µ∇u∥+ ∥⟨x⟩r−2µu∥ ≤ C∥⟨x⟩rf∥. (2.12)

Proof. It follows from Lemma 2.1 with s = r−µ
2
. �

Lemma 2.1 shows that H0 : D(H0) → R(H0) := Range(H0) ⊂ L2(Rn) is bijective.
Let G0 denote its algebraic inverse with D(G0) = R(H0). Then one has

H0G0 = 1 on R(H0), G0H0 = 1 on D(H0) (2.13)

Lemma 2.3. (a). G0 is a densely defined closed operator on L2(Rn). If H0 is self-
adjoint (resp., maximally dissipative), then −G0 is also selfadjoint (resp., maximally
dissipative).

(b). There exists some C such that

∥∇(φsG0φ−s⟨x⟩−µw)∥+ ∥⟨x⟩−µφsG0φ−s⟨x⟩−µw)∥ ≤ C∥w∥ (2.14)

for all w ∈ D and s ∈ R. Here D = ∩s∈RL
2,s.

Proof. We firstly show that D(G0) is dense. Remark that ReH0 ≥ 0. Let f ∈ D
and uϵ = (H0 + ϵ)−1f , ϵ > 0. Since ReH0 ≥ 0 and H0 verifies the weighted coercive
condition (1.15), H0 + ϵ satsifies also (1.15) with the same constant c0 > 9 independent
of ϵ > 0. Following the proof of Lemma 2.1 with H0 replaced by H0 + ϵ, one has that
for any s > 0

∥⟨x⟩s−µ∇uϵ∥+ ∥⟨x⟩s−2µuϵ∥ ≤ Cs∥⟨x⟩sf∥
uniformly in ϵ > 0. For s > 2µ, this estimate implies that the sequence {uϵ; ϵ ∈]0, 1]}
is relatively compact in L2. Therefore there exists a subsequence {uϵk ; k ∈ N} and
u ∈ L2 such that ϵk → 0 and uϵk → u in L2 as k → +∞. It follows that H0u = f
in the sense of distributions. The ellipticity of H0 implies that u ∈ H2(Rn). Therefore
f ∈ R(H0) = D(G0). This shows that D ⊂ D(G0). In particular D(G0) is dense in L

2,r

for any r ∈ R. The closeness of G0 follows from that of H0. The other assertions can
be easily checked.

The argument above shows that for any w ∈ D, one can find u ∈ D(H0) such that
H0u = φ−s⟨x⟩−µw. (2.14) follows from (2.4). �

Lemma 2.3 shows that for any s, ⟨x⟩−µφsG0φ−s⟨x⟩−µ defined on D = ∩s∈RL
2,s can be

uniquely extended to a bounded operator on L2(Rn), or in other words, for any s ∈ R,
G0 is bounded from D(G0) ∩ L2,s to L2,s−2µ:

∥wx−µφsG0u∥ ≤ C∥φs⟨x⟩µu∥ (2.15)

uniformly in u ∈ D(G0) ∩ L2,s and s ∈ R. This implies that G0D ⊂ D and G0 extends
to a continuous operator from L2,s to L2,s−2µ for any s ∈ R. It follows that GN

0 (D) ⊂ D
and by an induction, one can check that GN

0 extends to a bounded operator from L2,s

to L2,s−2Nµ for any s ∈ R. To simplify notation, we still denote G0 (resp., GN
0 ) its

continuous extension by density as operator from L2,s to L2,s−2µ (resp., from L2,s to
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L2,s−2Nµ.

Theorem 2.4. Let M > 1 be given in Lemma 2.1. Denote

xN,r =
x

RN,r

with RN,r ≡ R(2N−1+r)µ =M⟨(2N − 1 + r)µ⟩
1

1−µ (2.16)

where N ∈ N and r ∈ R+ and M > 0 is a constant given by Lemma 2.1. Set ⟨xN,r⟩ =
(1 + |xN,r|2)

1
2 . Then there exists some constant C > 0 such that

∥⟨xN,r⟩−(2N+r)µGN
0 ⟨xN,r⟩rµ∥ ≤ CN⟨(2N − 1 + r)µ⟩γN , (2.17)

for any integer N ≥ 1 and any r ≥ 0. Here

γ =
2µ

1− µ
. (2.18)

Proof. Making use of Lemma 2.1, one can check that operator

IN = ⟨xN,r⟩−2Nµ−rµGN
0 ⟨x⟩rµ (2.19)

is well defined on D = ∩s∈RL
2,s and extends to a bounded operator in L2. To show the

estimate (2.17), we use an induction on N . Since ⟨x⟩ ≤ 1
R
⟨ x
R
⟩ for R ≥ 1, it follows from

(2.14) that

∥⟨ x
Rs

⟩−s−µG0⟨
x

Rs

⟩s−µ∥ ≤ C ′R2µ
s ≤ C1⟨s⟩γ (2.20)

uniformly in s, where R = M⟨s⟩
1

1−µ . In particular, when s = (1 + r)µ, one has Rs =

M⟨(1 + r)µ⟩
1

1−µ = R1,r and

∥I1∥ ≤ C1⟨(1 + r)µ⟩γ (2.21)

for all r ≥ 0, which proves (2.17) when N = 1. Assume now that N ≥ 2 and that one
has proved for some C > 0 independent of N and r ≥ 0 that

∥IN−1∥ ≤ CN−1⟨(2N − 3 + r)µ⟩γ(N−1). (2.22)

Write IN as

IN = ⟨xN,r⟩−(2N+r)µG0⟨xN−1,r⟩(2N−2+r)µ · IN−1 · ⟨xN−1,r⟩−rµ⟨xN,r⟩rµ

Notice that

⟨xN,r⟩ ≤ ⟨xN−1,r⟩ ≤
RN,r

RN−1,r

⟨xN,r⟩

for any N ≥ 2. Applying (2.20) with s = (2N − 1 + r)µ, one obtains

∥⟨xN,r⟩−(2N+r)µG0⟨xN,r⟩(2N−2+r)µ∥ ≤ C1⟨(2N − 1 + r)µ⟩γ.



12 XUE PING WANG

Making use of the induction hypothesis, one can estimate IN as follows:

∥IN∥ ≤ ∥⟨xN,r⟩−(2N+r)µG0⟨xN−1⟩(2N−2+r)µ∥ · ∥IN−1∥

≤ ∥⟨xN,r⟩−(2N+r)µG0⟨xN,r⟩(2N−2+r)µ∥ · ∥(⟨xN−1⟩
⟨xN,r⟩

)(2N−2+r)µ∥ · ∥IN−1∥

≤ C1⟨(2N − 1 + r)µ⟩γ ·
(
⟨(2N − 1 + r)µ⟩
⟨(2N − 3 + r)µ⟩

)γ(N−1+ r
2
)

· CN−1⟨(2N − 3 + r)µ⟩γ(N−1)

≤ C1

(
2N − 1 + r

2N − 3 + r

)γ(N−1+ r
2
)

CN−1⟨(2N − 1 + r)µ⟩γN . (2.23)

Since the sequence {
(
2m−1+r
2m−3+r

)γ(m−1+ r
2
)
;m ≥ 2} is uniformly bounded in r ≥ 0, there

exists some C2 > 0 such that

C1

(
2m− 1 + r

2m− 3 + r

)γ(m−1+ r
2
)

≤ C2

for any m ≥ 2 and r ≥ 0. Increasing the constant C if necessary, one can suppose
without loss that C2 ≤ C and one obtains from (2.23) that

∥IN∥ ≤ CN⟨(2N − 1 + r)µ⟩Nγ (2.24)

Theorem 2.4 is proven by induction. �

Let R0(z) denote the resolvent of H0 and

Ω(δ) = {z ∈ C∗;
π

2
+ δ < arg z <

3π

2
− δ},

δ > 0. Since ReH0 ≥ 0, there exists some C1 > 0 such that

∥R0(z)∥ ≤ C1

|z|
, z ∈ Ω.

From the equation R0(z) = G0+ zG0+ z2G2
0R(z), it follows that as operators from L2,s

to L2,s−2µ, s ∈ R, one has
s- lim

z∈Ω(δ),z→0
R0(z) = G0 (2.25)

for any δ > 0. Similarly one can check that for any N ∈ N∗, one has

s- lim
z∈Ω(δ),z→0

R0(z)
N = GN

0 . (2.26)

as operators from L2,s to L2,s−2Nµ. By an abuse of notation, we denote R(0) = G0.
Thus the resolvent R0(z) is defined for z in Ω(δ) ∪ {0}. As a consequence of Theorem
2.4, one can deduce the following

Corollary 2.5. The following Gevrey estimates of the resolvent hold.

(a). For any a > 0, there exists some constant Ca > 0 such that

∥e−a⟨x⟩1−µ

R0(z)
N∥+ ∥R0(z)

Ne−a⟨x⟩1−µ∥ ≤ CN
a N

γN (2.27)

for any integer N ≥ 1 and z ∈ Ω(δ) ∪ {0}.
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(b). Then there exists some constant C > 0 such that

∥χ(x)R0(z)
N∥+ ∥R0(z)

Nχ(x)∥ ≤ CχC
NNγN (2.28)

for any χ ∈ C∞
0 (Rn), N ≥ 1 and z ∈ Ω(δ) ∪ {0}. Here γ = 2µ

1−µ
.

Proof. Notice that ∥zR0(z)∥ is uniformly bounded in L(L2) for z ∈ Ω(ϵ) and that

R0(z)
N = GN

0 (1 + zR0(z))
N .

According to Theorem 2.4 with r = 0, one has for some constant C > 0

∥⟨xN,0⟩−2NµR0(z)
N∥ ≤ CNNγN , (2.29)

for any integer N ≥ 1 and z ∈ Ω(ϵ) ∪ {0}.

Let a > 0. Then

∥e−a⟨x⟩1−µ

R0(z)
N∥ ≤ ∥e−a⟨x⟩1−µ⟨xN,0⟩2Nµ∥L∞CNNγN .

To evaluate the norm ∥e−a⟨x⟩1−µ⟨xN,0⟩2Nµ∥L∞ , consider the function

f(r) = e−ar1−µ⟨ r

RN

⟩2Nµ,

where r = |x| and RN = RN,0 =M⟨(2N − 1)µ⟩
1

1−µ . One calculates:

f ′(r) =
f(r)

rµ(R2
N + r2)

(−2a(1− µ)(R2
N + r2) + 2Nµr1+µ), r ≥ 1.

Let A ≥ 1. Since RN ∼ c′N
1

1−µ for some constant c′ > 0, one can check that Nr1+µ ≤
c

A1−µ r
2 if r ≥ ARN for some constant c > 0 independent of A, r and N . Therefore, if

A = A(µ, a) > 1 is chosen sufficiently large, one has

f ′(r) < 0, r > ARN ,

thus f(r) is decreasing in [ARN ,+∞[. It is now clear that

∥e−a⟨x⟩1−µ⟨xN,0⟩2Nµ∥L∞ ≤ sup
0≤rARN

f(r) ≤ ⟨A⟩2Nµ

This proves Part (a) of Corollary with Ca = C⟨A⟩2µ.

To prove Part (b), let χ ∈ C∞
0 (Rn). Let R > 0 such that supp χ ⊂ B(0, R). (5.1)

shows that there exists some constant C1 > 0 such that

∥χ(x)GN
0 (1 + zR0(z))

N∥ ≤ ∥⟨xN,0⟩2µNχ∥L∞ × CN
1 N

γN

for any χ ∈ C∞
0 (Rn), N ≥ 1 and z ∈ Ω(ϵ) ∪ {0}. Then One can check that

∥⟨xN,0⟩2µNχ∥L∞ ≤ ∥χ∥L∞(1 +
R2

M2((2N − 1)µ)
2

1−µ

)µN ≤ C22
µN

for some constant C2 depending only on χ and R, but independent of N . This proves
(2.28) with Cχ = C2 and C = C12

µ which is independent of χ. �

Theorem 1.1 is a particular case of Corollary 2.5. Corollary 2.5 shows that the
resolvent R0(z) belongs to some Gevrey class of order 1 + γ on Ω(δ) ∪ {0}
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3. Subexponential time-decay of e−tH0

From now on, we consider the model Schrödinger operator H0 = −∆ + V (x) with
V (x) = V1(x) − iV2(x), V1(x), V2(x) being real. Denote R0(z) = (H0 − z)−1. Theorem
2.4 can be used to prove subexponential time-decay for local energies of solutions to
the heat and Schrödinger equations. To do this, we use Cauchy integral formula for
semigroups and need some information of the resolvent on a contour in the right half
complex plane passing through the origin.

Proposition 3.1. Assume that ReH0 ≥ −a∆ for some a > 0 and that the imaginary
part of the potential V (x) verifies the estimate

|V2(x)| ≤ C⟨x⟩−2µ′
, ∀x ∈ Rn, (3.1)

for some for some 0 < µ′ < min{n
2
, 1}. Then there exists some constant C0 > 0 such

that the numerical range N(H0) of H0 is contained in a region of the form {z; Re z ≥
0, |Im z| ≤ C0(Re z)

µ′}. Consequently, for any A0 > C0 there exists some constant M0

such that

∥R0(z)∥ ≤ M0

|z|
1
µ′

(3.2)

for z ∈ Ω := {z ∈ C∗; |z| ≤ 1,Re z < 0 or Re z ≥ 0, |Im z| > A0(Re z)
µ′}.

Proof. For z = ⟨u,H0u⟩ ∈ N(H0) where u ∈ D(H0) and ∥u∥ = 1, one has

Re z = Re ⟨u,H0u⟩ ≥ a∥∇u∥2

|Im z| ≤ ⟨u, |V2|u⟩ ≤ C∥⟨x⟩−µ′
u∥2.

According to the generalized Hardy inequality ([9]), one has for 0 < µ′ < n
2

∥⟨x⟩−µ′
u∥2 ≤ ∥|x|−µ′

u∥2 ≤
Γ(n−2µ′

4
)2

22µ′Γ(n+2µ′

4
)2
∥|∇|µ′

u∥2. (3.3)

Let û denote the Fourier transform of u normalized such that ∥û∥ = ∥u∥ and τ = ∥∇u∥.
Then

∥|∇|µ′
u∥2 = ∥|ξ|µ′

û∥2 = ∥|ξ|µ′
û∥2L2(|ξ|≥τ) + ∥|ξ|µ′

û∥2L2(|ξ|<τ)

≤ τ 2(µ
′−1)∥|ξ|û∥2L2(|ξ|≥τ) + τ 2µ

′∥û∥2L2(|ξ|<τ)

≤ 2τ 2µ
′
= 2∥∇u∥2µ′

.

In the first inequality above, the condition 0 < µ′ ≤ 1 is used. This proves that |Im z| ≤
C0(Re z)

µ′
when z ∈ N(H0). The other assertions of Proposition are immediate, since

σ(H0) ⊂ N(H0) and

∥R0(z)∥ ≤ 1

dist(z,N(H0))
.

�

Notice that under the conditions of Proposition 3.1, one can not exclude possible
accumulation of complex eigenvalues towards zero. Making use of Proposition 3.1, one
can prove the following uniform Gevrey estimates in a domain located in the right half
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complex plane.

Corollary 3.2. Under the conditions of proposition 3.1, let κ be an integer suhc that
κ+ 1 ≥ 1

µ′ . Then for any a > 0 there exist ca, Ca > 0 such that

∥e−a⟨x⟩1−µ dN−1

dzN−1
R0(z)∥ ≤ caC

N
a N

(1+(1+κ)γ)N , ∀N ≥ 1, (3.4)

and there exists some constant C > 0 such that for any χ ∈ C∞
0 (Rn), one has

∥χ(x) d
N−1

dzN−1
R0(z)∥ ≤ CχC

NN (1+(1+κ)γ)N , ∀N ≥ 1, (3.5)

uniformly in z ∈ Ω. Here Ω is defined as in Proposition 3.1.

Proof. For z ∈ Ω, decompose R0(z) into

R0(z) = A(z) +Gκ+1
0 B(z)

with A(z) =
∑κ

j=0 z
jGj+1

0 and B(z) = zκ+1R0(z). By Proposition 3.1, ∥B(z)∥ is uni-
formly bounded for z ∈ Ω. Theorem 2.4 shows that for some constant C1

∥⟨xκ+1,r⟩−(2κ+2+r)µGκ+1
0 ⟨xκ+1,r⟩rµ∥ ≤ C1⟨(2κ+ 1 + r)µ⟩γ(κ+1), (3.6)

∥⟨xκ+1,r⟩−(2κ+2+r)µA(z)⟨xκ+1,r⟩rµ∥ ≤ C1⟨(2κ+ 1 + r)µ⟩γ(κ+1) (3.7)

for any r ≥ 0 and |z| ≤ 1. Making use of the relation

R0(z)
N = A(z)R0(z)

N−1 +Gκ+1
0 R0(z)

N−1B(z)

one can show by an induction on N that there exists some constant C > 0 such that

∥⟨x(κ+1)N,0⟩−2(κ+1)N)µR0(z)
N∥ ≤ CNNNγ(1+κ) (3.8)

for any N ≥ 1 and z ∈ Ω. In fact, the case N = 1 follows from (3.6) and (3.7). If
(3.8) is proven with N replaced by N − 1 for some N ≥ 2, noticing that x(κ+1)N,0 =
xκ+1,2(κ+1)(N−1), (3.6) and (3.7) with r = 2(κ+ 1)(N − 1) show that

∥⟨x(κ+1)N,0⟩−2(κ+1)N)µR0(z)
N∥

≤ C1⟨(2(κ+ 1)N − 1)µ⟩γ(κ+1)(∥⟨x(κ+1)(N−1),0⟩−2(κ+1)(N−1)µR0(z)
N−1∥

+∥⟨x(κ+1)(N−1),0⟩−2(κ+1)(N−1)µR0(z)
N−1∥∥B(z)∥)

≤ C2C
N−1NNγ(1+κ)

for some constant C2 independent of N . Increasing the constant C if necessary, this
proves (3.8) for all N ≥ 1 by an induction. (3.4) and (3.5) are deduced from (3.8) as in
the proof of Corollary 2.5. �

As another consequence of Proposition 3.1, we obtain the following estimate on the
expansion of the resolvent at 0:

Corollary 3.3. Under the conditions of Proposition 3.1, assume in addition (1.15) with
µ ∈]0, 1[. Then there exists some constant c > 0 such that for any z ∈ Ω and z near 0,
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one has for some N (depending on z) such that

∥⟨xN,0⟩−2Nµ(R0(z)−
N∑
j=0

zjGj+1
0 )∥ ≤ e−c|z|−

1
γ
. (3.9)

Here ⟨xN,0⟩ is defined in Theorem 2.4 with r = 0.

Proof. Theorem 2.4 and Proposition 3.1 show that for any N , one has

∥⟨xN,0⟩−2Nµ(R0(z)−
N∑
j=0

zjGj+1
0 )∥ ≤ CNNγN |z|N+1− 1

µ′ , (3.10)

for all z ∈ Ω and z near 0. The remainder estimate can be minimized by choosing an
appropriate N in terms of |z|. For fixed M ′ > 1 and z ̸= 0, take N = [ 1

(CM ′|z|)
1
γ
]. Then

one has for z in a small neighbourhood of zero and z ̸= 0:

CNNγN |z|N+1− 1
µ′ ≤ e−c1N logM ≤ e−c2|z|

− 1
γ

where c1, c2 are some positive constants. �

Theorem 3.4. Let H0 = −∆+ V (x) with V ∈ V. Set

β =
1− µ

1 + µ
. (3.11)

Then for any a > 0, there exist some constant ca, C>0 suhc that

∥e−a⟨x⟩1−µ

e−tH0∥+ ∥e−tH0e−a⟨x⟩1−µ∥ ≤ Cae
−catβ , t > 0. (3.12)

Proof. Let Γ be the contour defined by Γ = {z; Re z ≥ 0, |Im z| = C(Re z)µ
′} oriented

in anti-clockwise sense, where C > 0 is sufficiently large. By Proposition 3.1, the
numerical range of H0 is located on the right hand side of Γ and one has

e−tH0 =
i

2π

∫
Γ

e−tzR0(z)dz. (3.13)

Decompose Γ as Γ = Γ0 + Γ1 where Γ0 is the part of Γ with 0 ≤ Re z ≤ δ while Γ1 is
the part of Γ with Re z > δ where δ > 0 is sufficiently small. Clearly, the integral on Γ1

is exponentially decreasing as t→ ∞

∥
∫
Γ1

e−tzR0(z)dz∥ ≤ Ce−
t
C , t > 0,

for some constant C > 0. For z ∈ Γ0, denote fN(z) = R0(z)−
∑N

j=0 z
jGj+1

0 . Then

fN(z) = zN+1GN
0 R0(z).

Let xN = xN,0 be defined as in Theorem 2.4 with r = 0. Then Theorem 2.4 shows
that there exist some constants C,C1 > 0 such that According to Theorem 1.1 and
Proposition 3.1, for any a > 0 there exist some constant C,C1 > 0 such that

∥⟨xN⟩−2NµfN(z)∥ ≤ C1C
N |z|N+1− 1

µ′NγN (3.14)
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for z ∈ Γ0. It follows that

∥
∫
Γ0

e−tz⟨xN⟩−2NµR0(z)dz∥

≤
N∑
j=0

∥⟨xN⟩−2(N+1)µGj+1
0 ∥|

∫
Γ0

e−tzzjdz|+ ∥
∫
Γ0

e−tz⟨xN⟩−2(N+1)µfN(z)dz∥

≤
N∑
j=0

Cjjγje−δt + C1C
NNγN

∫
Γ0

|e−tz||z|N+1− 1
µ′ |dz|

for all t > 0 and N ≥ 1. Parameterizing Γ0 by z = λ ± icλ
1
µ′ with λ ∈]0, δ], one can

evaluate the last integral as follows:∫
Γ0

|e−tz||z|N+1− 1
µ′ |dz| ≤ CN

2

∫ δ

0

e−tλλ
N+1− 1

µ′ dλ

≤ CN
2 t

−N−2+ 1
µ′

∫ δt

0

e−ττ
N+1− 1

µ′ dτ

≤ CN
3 t

−N−2+ 1
µ′NN .

This proves that there exist some different constants C1 and C > 0 such that

∥
∫
Γ0

e−tz⟨xN⟩−2(N+1)µR0(z)dz∥ ≤ C1C
NNγN(Ne−δt +NN t

−N−2+ 1
µ′ (3.15)

for any t > 0 and N ≥ 1. Choosing N in terms of t >> 1 such that N ≃ ( t
M1C

)
1

1+γ for
some fixed appropriate M1 > 1, one obtains that

∥
∫
Γ0

e−tz⟨xN⟩−2(N+1)µR0(z)dz∥ ≤ Ce−δ0t
1

1+γ
(3.16)

for some C, δ0 > 0. This proves that there exists some constants C, c > 0 independent
of N and t such that

∥⟨xN⟩−2(N+1)µe−tH0∥ ≤ Ce−ctβ , t > 0, (3.17)

with N = N(t) chosen as above and β = 1
1+γ

= 1−µ
1+µ

. (3.12) is deduced from (3.17) by

noticing that for any a > 0, there exists some constant Ca > 0 such that

∥e−a⟨x⟩1−µ⟨xN⟩2Nµ∥L∞ ≤ CN
a .

See the proof of Corollary 2.5. �

As a consequence of Theorem 3.4, one obtains that there exists some constant c > 0
such that

∥e−tH0f∥ ≤ CRe
−ctβ∥f∥, t > 0, (3.18)

for all f ∈ L2(Rn) with support contained in {|x| ≤ R}, R > 0.
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4. An estimate on the spectral measure

For the selafdjoint Schrödinger operator with a global positive and slowly decreasing
potential, it is known that under some additional conditions the spectral measure E ′(λ)
satisfies the estimate that for any N > 0

E ′(λ) = O(λN) (4.1)

in appropriate spaces as λ → 0 (see [13]). The Gevery estimates of the resolvent at
threshold allow to give an improvement of this result. Let us begin with the following
results on the boundary values of the resolvent up to real axis.

Lemma 4.1. Let V (x) = V1(x) − iV2(x) with V1(x), V2(x) real. Assume that V1 is of
class C2 on Rn and that there exists µ ∈]0, 1[ and some constants cj > 0, j = 1, 2, 3,
such that

c1⟨x⟩−2µ ≤ V1(x) ≤ c2⟨x⟩−2µ, (4.2)

|(x · ∇)jV1(x)| ≤ c2⟨x⟩−2µ, j = 1, 2 (4.3)

x · ∇V1(x) ≤ −c3⟨x⟩−2µ, |x| > R for some R > 0, (4.4)

|V2(x)| ≤ c2⟨x⟩−1−µ−ϵ0 , ϵ0 > 0. (4.5)

Then the eigenvalues of H0 are absent in a neighbourhood of zero and the boundary
values of the resolvent R0(λ ± i0) = limz→λ,±Im z>0(H0 − z)−1 exist for λ ∈ [0, δ] for

some δ > 0 and are Hölder continuous as operators in L(L2, 1+µ
2 ;L2,− 1+µ

2 ).

Proof. Let H1 = −∆+ V1(x) be the selfadjoint part of H0 and R1(z) = (H1 − z)−1.
Then one knows from [13] that under the condition of this Lemma, R1(λ ± i0) exists
for λ ∈ [0, δ] for some δ > 0 and are Hölder continuous as operators in L(L2,s;L2,−s),
s > 1+µ

2
. Note that the smoothness assumption on the potential used in [13] is only

needed for higher order resolvent estimates.

One knows that G0,1 = limz→0,z ̸∈R+ R1(z) exists and that G0,1V2 is a compact operator

in L2,−s for 1+µ
2
< s < 1+µ+ϵ0

2
. Therefore the kernel of 1+ iG0,1V2 is of finite dimension.

From Lemma 2.3 applied to G01, one deduces that this kernel is contained in L2,r for any
r > 0. Since (1+ iG0,1V2)u = 0 if and only if H0u = 0, Lemma 2.1 that ker(1+ iG0,1v2)
in L2,−s is trivial. Therefore ((1 + iG0,1V2)

−1 is bounded in L2,−s. By the continuity
of R1(z) for z near 0 and z ̸∈ R+, one deduces that 1 + iR1(z)V2 is invertible in L2,−s

and its inverse is Hölder continuous in L(L2,−s) for z near 0 and z ̸∈ R+. This implies
in particular that the eigenvalues of H0 are absent in a neighbourhood of zero and the
limits R0(λ± i0) = limz→λ,±Im z>0(H0 − z)−1 exist for λ ≥ 0 and small enough and are
Hölder continuous in λ. �

Theorem 4.2. Under the conditions of Lemma 4.1, assume in addition that V2 = 0
such that H0 is selfadjoint. Denote by E(λ) the spectral projection of H0 associated with
the interval ] − ∞, λ]. Let s > 1+µ

2
. Then for any a > 0, there exist some constants

ca, Ca > 0 such that

∥e−a⟨x⟩1−µ

E ′(λ)⟨x⟩−s∥ ≤ Cae
−ca|λ|

− 1
γ
, 0 < λ ≤ δ. (4.6)
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Proof. Since E ′(λ) = 1
2πi

(R(λ + i0) − R(λ − i0)), ∥⟨x⟩−sE ′(λ)⟨x⟩−s∥ is uniformly
bounded for λ > 0 near 0 ([13]). Iterating the resolvent equation, one obtains for any
N ∈ N

E ′(λ) = λNGN
0 E

′(λ), 0 < λ ≤ δ. (4.7)

Applying (2.17 with r = s, one deduces as in the proof of Corollary 2.5 that for any
a > 0, there exist some constants ca, Ca > 0 such that

∥e−a⟨x⟩1−µ

E ′(λ)⟨x⟩−s∥ ≤ Cac
N
a N

γNλN (4.8)

for all N ∈ N and λ ∈]0, δ]. It remains to choose N in terms of λ > 0 (it suffices to take

N equal to integer part of cλ−
1
γ for some appropriate c > 0) such that

cNa N
γNλN ≤ C ′e−c′λ

− 1
γ
, 0 < λ ≤ δ,

for some constants c′, C ′ > 0. (4.6) is proved. �

5. Subexpontial time-decay of e−itH0

To obtain subexponential time-decay of solutions to the Schrödinger equation associ-
ated with H0, we shall use the technique of resonances and deform the integral contour
into the lower half-complex plane.

Let A denote the class of complex-valued potentials V = V1 − iV2 such that V ∈ A,
V1 and V2 extend holomorphically into a region of the form Ω = {x ∈ Cn; |Imx| <
c|Rex|} ∪ {x ∈ Cn; |x| < c} for some c > 0 and satisfy for some cj > 0 and R ∈ [0,+∞]

|Vj(x)| ≤ c1⟨Rex⟩−2µ, x ∈ Ω, j = 1, 2, (5.1)

V2(x) ≥ 0, ∀x ∈ Rn, (5.2)

x · ∇V1(x) ≤ −c3
x2

⟨x⟩2µ+2
, x ∈ Rn with |x| ≥ R, and (5.3)

V2(x) ≥ c5⟨x⟩−2µ, x ∈ Rn with |x| < R. (5.4)

When R = 0, (5.3) is a global virial condition on V1 and (5.4) is void; while if R = +∞,
no virial condition is needed on V1, but (5.4) is required on the whole space which means
that the dissipation is strong. For V ∈ A, one can define the resonances of H0 by both
analytical dilation or analytical deformation methods ([1, 6]). We shall show that con-
ditions (5.2), (5.3) and (5.4) allow to prove the absence of eigenvalues and resonances
in a sector below the positive real half-axis.

Firstly, we use the analytic dilation method. For V ∈ A, denote H̃0(θ) = −(1 +

θ)−2∆+ V ((1 + θ)x) for θ ∈ C and θ near 0. Set R̃0(z, θ) = (H̃0(θ)− z)−1. For θ real,

R̃0(z, θ) is meromorphic in C \ R+. {H̃0(θ); θ ∈ C, |θ| < δ} is a holomorphic family

of type A in the sense of T. Kato. For Im θ > 0 small enough, the resolvent R̃0(z, θ)
defined for z ∈ C+ with Im z >> 1 can be meromorphically extended across the positive

real half-axis R+ into the sector {z; arg z > −Im θ} (c.f. [1]). The poles of R̃0(z, θ) in
this sector are by definition the resonances of H which are independent of θ ([1]).
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We begin with the following elementary Hardy type inequality.

Lemma 5.1. Let n ≥ 2 and 0 < s < n− 1. One has

∥⟨x⟩−1− s
2u∥2 ≤ 1

2
√
(n− 1)(n− 1− s)

(∥∇u∥2 + ∥⟨x⟩−su∥2) (5.5)

for all u ∈ H1(Rn).

Proof. Let x = rω, r ≥ 0 and ω ∈ Sn−1. For u ∈ S(Rn), denote

F (r, ω) =
|u(rω)|2rn−1

⟨r⟩s
.

Then one has

F ′
r(r, ω) =

((n− 1)(1 + r2)− sr2)|u(rω)|2rn−2

⟨r⟩s+2
+ 2

rn−1

⟨r⟩s
Re (u′r(rω)u(rω)).

Here F ′
r(r, ω) is the derivation of F (r, ω) with respect to r. Since for n ≥ 2, one has∫ ∫

R+×Sn−1 F
′(r, ω) drdω = 0, we deduce the identity∫ ∫

Rn

(n− 1) + (n− 1− s)r2

r⟨r⟩s+2
|u(x)|2 dx = −2

∫ ∫
Rn

⟨x⟩−sRe (u′ru) dx (5.6)

for any u ∈ S(Rn). Inequality (5.5) follows from the trivial bounds

2
√
(n− 1)(n− 1− s) ≤ (n− 1) + (n− 1− s)r2

r

and

−2

∫ ∫
Rn

⟨x⟩−sRe (u′ru) dx ≤ 2∥u′r∥∥⟨x⟩−su∥ ≤ ∥∇u∥2 + ∥⟨x⟩−su∥2

and an argument of density. �

Lemma 5.2. Let n ≥ 2 and V ∈ A with 0 < µ < 3
4
when n = 2 and µ ∈]0, 1[ if n ≥ 3.

Then there exists some constant c0 > 0 such that for θ ∈ C with |θ| sufficiently small
and Im θ > 0, one has

σ(H̃0(θ)) ∩ {z ∈ C; Im z > 0 or arg z > −c0Im θ} = ∅ (5.7)

and

∥⟨x⟩−2µR̃0(z, θ)∥ ≤ 1

c0Im θ⟨z⟩
(5.8)

for z ∈ C with arg z > −c0Im θ.

Proof. We only consider the case θ = iτ with τ > 0 small enough. Since V =
V1 − iV2 ∈ A, one has

V ((1 + iτ)x) = V1(x) + τx · ∇V2(x)
−i(V2(x)− τx · ∇V1(x) +O(τ 2⟨x⟩−2µ)
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for τ > 0 sufficiently small. Let z = ⟨u, H̃0(θ)u⟩, u ∈ H2 with ∥u∥ = 1. Then,

Re z =
1− τ 2

(1 + τ 2)2
∥∇u∥2 + ⟨u, (V1(x) +O(τ⟨x⟩−2µ))u⟩, (5.9)

Im z = − 2τ

(1 + τ 2)2
∥∇u∥2 − ⟨u, (V2(x)− τx · ∇V1(x))u⟩

+⟨u,O(τ 2⟨x⟩−2µ))u⟩. (5.10)

This implies that there exists c > 0 such that

Re z ≥ c(∥∇u∥2 + ∥⟨x⟩−µu∥2), (5.11)

for τ > 0 sufficiently small. If R ∈]0,∞], one has for some c′ > 0

V2(x)− τx · ∇V1(x) ≥ c′τ⟨x⟩−2µ,∀x ∈ Rn,

which gives that
Im z ≤ −c′′τ(∥∇u∥2 + ∥⟨x⟩−µu∥2) (5.12)

for some c′′ > 0. This shows that Im z ≤ −CτRe z (C = c′′c−1) if R ∈]0,+∞].

If R = 0, one has V2(x) ≥ 0 for all x and

V2(x)− τx · ∇V1(x) ≥ c3τ
x2

⟨x⟩2µ+2
, ∀x ∈ Rn,

for some c3 > 0. In this case, one has

Im z ≤ −Cτ(∥∇u∥2 + ⟨u, x2

⟨x⟩2µ+2
u⟩) + Cτ 2∥⟨x⟩−µu∥2. (5.13)

Lemma 5.1 with s = µ shows

1

⟨x⟩2µ+2
≤ 1

2
√
(n− 1)(n− 1− µ)

(−∆+
1

⟨x⟩2µ
)

in the sense of selfadjoint operators. For 0 < µ < 3
4
when n = 2 and µ ∈]0, 1[ if n ≥ 3,

one has

α ≡ 1

2
√

(n− 1)(n− 1− µ)
< 1.

This proves that

∥∇u∥2 + ⟨u, x2

⟨x⟩2µ+2
u⟩ = ∥∇u∥2 + ⟨u, ( 1

⟨x⟩2µ
− 1

⟨x⟩2µ+2
)u⟩

≥ (1− α)(∥∇u∥2 + ∥⟨x⟩−µu∥2).
Consequently, one obtains

Im z ≤ −C(1− α)τ(∥∇u∥2 + ∥⟨x⟩−µu∥2) + Cτ 2∥⟨x⟩−µu∥2 ≤ −C1τRe z (5.14)

for some C1 > 0 if τ > 0 is small enough. This proves that the numerical range of H̃0(θ)

is included in the region Γ = {z; Re z ≥ 0, Im z ≤ −C1τRe z}. Since σ(H̃0(θ)) ⊂ Γ and

∥R̃0(z, θ)∥ ≤ dist(z,Γ)−1, one has

∥R̃0(z, θ)∥ ≤ 1

c0Im θ |z|
(5.15)
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for z ∈ C with arg z > −c0Im θ for some c0 > 0. The conclusion of Lemma 5.2 follows

now from Theorem 2.4 (with H = H̃0(θ)). �

In order to obtain subexponential time-decay estimates for e−itH0 , we use the method
of analytical distortion. Let R0 > 1 and ρ ∈ C∞(R) with 0 ≤ ρ ≤ 1 and ρ(r) = 0 if
r ≤ 1 and ρ(r) = 1 if r ≥ 2. Define for R0 > 1

Fθ(x) = x(1 + θρ(
|x|
R0

)), x ∈ Rn. (5.16)

When θ ∈ R with |θ| sufficiently small, x → Fθ(x) is a global diffeomorphism on Rn.
Set

Uθf(x) = |DFθ(x)|
1
2f(Fθ(x)), f ∈ L2(Rn), (5.17)

where DFθ(x) is the Jacobi matrix and |DFθ(x)| the Jacobian of x→ Fθ(x). One has

|DFθ(x)| =
{

1, |x| < R0;
(1 + θ)n, |x| > 2R0

(5.18)

Uθ is unitary in L2(Rn) for θ real with |θ| sufficiently small. Define the distorted operator
H(θ) by

H0(θ) = UθH0U
−1
θ . (5.19)

One can calculate that

H0(θ) = −∆θ + V (Fθ(x)) (5.20)

where −∆θ =
t ∇θ · ∇θ with

∇θ = (tDFθ)
−1 · ∇ − 1

|DFθ|2
(tDFθ)

−1 · (∇|DFθ|) (5.21)

In particular, ∇θf = (1+θ)−1∇f if f is supported outside the ball B(0, 2R0). If V ∈ A,
H0(θ) can be extended to a holomorphic family of type A in sense of T. Kato for θ in

a small complex neighbourhood of zero. H0(θ) and H̃0(θ) coincide outside the ball
B(0, 2R0) and they have the same essential spectra. In addition their complex eigenval-
ues in the region {z ∈ C; Re z ≥ 0, Im z > −cIm θRe z} for some c > 0 small enough are

the same ([6]). Since R̃0(z, θ) is holomorphic in z there, so is R0(z, θ) = (H0(θ)− z)−1.
Remark that the distorted operator H0(θ) satisfies the conditions (1.15) and (1.16) with
some constant c0 > 0 independent of R0 > 1. Lemma 2.1 applied to H0(θ) implies that
⟨x⟩−2µR0(0, θ) is defined on the range of H0(θ) and extends to a bounded operator in
L2(Rn) and Theorem 2.4 holds for G0(θ) = R0(0, θ) for some constant C independent
of R0 used in the analytical distortion.

Proposition 5.3. Assume the conditions of Lemma 5.2. Denote

Ω1(θ) = {z ∈ C; Re z > 0, Im z ≥ −cIm θRe z}.

with c > 0 appropriately small. Then Ω1(θ) is contained in resolvent set of H0(θ) and
there exists some constant C > 0

∥⟨x⟩−2µR0(z, θ)⟨x⟩−2µ∥ ≤ C

⟨z⟩
, z ∈ Ω1(θ). (5.22)
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Proof. For z ∈ Ω1(θ) and |z| large, (5.22) follows from Lemma 5.2 by an argument

of perturbation. For z ∈ Ω1(θ) and |z| small, one compares R0(z, θ) with R̃0(z, θ) and
R0(0, θ).

Let χ ∈ C∞
0 (Rn) such that χ(x) = 1 if |x| ≤ 2R0. On the support of 1 − χ,

H0(θ) = H̃0(θ). For z ∈ Ω1(θ) and |z| small, one has

R0(z, θ) = R0(0, θ) + zR0(0, θ)R0(z, θ)

= R0(0, θ) + zR0(0, θ)(χ(2− χ) + (1− χ)2)R0(z, θ)

= R0(0, θ) + zR0(0, θ)χ(2− χ)R0(z, θ)

+zR0(0, θ)(1− χ)R̃0(z, θ)(1− χ)

+zR0(0, θ)(1− χ)R̃0(z, θ)[(1 + θ)−2∆, χ]R0(z, θ)

Recall that for Im θ > 0, there exists some constant C > 0 such that

∥R̃0(z, θ)⟨x⟩−2µ∥ ≤ C, for z ∈ Ω1(θ).

By the ellipticity of the operator, this implies that

∥R̃0(z, θ)∇⟨x⟩−2µ∥ ≤ C, (5.23)

for z ∈ Ω1(θ) and |z| ≤ 1. Therefore there exists possibly another constant C such that

∥⟨x⟩−2µR0(z, θ)⟨x⟩−2µ∥ ≤ C + C|z|∥⟨x⟩−2µR0(z, θ)⟨x⟩−2µ∥ (5.24)

for z ∈ Ω1(θ) and |z| ≤ 1. This shows that ∥⟨x⟩−2µR0(z, θ)⟨x⟩−2µ∥ is uniformly bounded
for z0 ∈ Ω1(θ) and |z| sufficiently small. (5.22) is proved. �

Theorem 5.4. Assume n ≥ 2. Let V ∈ A with 0 < µ < 3
4
if n = 2 and 0 < µ < 1 if

n ≥ 3. There exists some constant c > 0 such that for any function χ ∈ C∞
0 (Rn) there

exists some constant Cχ > 0 such that

∥χ(x)e−itH0χ(x)∥ ≤ Cχe
−c|t|β , t > 0, (5.25)

where β = 1−µ
1+µ

.

Proof. Let R1 > 0 such that suppχ ⊂ B(0, R1). Let U(θ) be defined as before with
R0 > R1. Then one has

χ(x)e−itH0χ(x) = χ(x)e−itH0(θ)χ(x)

for θ ∈ R with |θ| small. For θ ∈ C with θ near zero and Im θ > 0, H0(θ) is strictly
sectorial and the resolvent R(z, θ) is holomorpic in z ∈ C with −cIm θ < arg z < π + c
for some c > 0. Making use of Proposition 5.3, one can check that

χ(x)e−itH0χ(x) =
i

2π

∫
Γ′
e−itzχ(x)R(z, θ)χ(x)dz (5.26)

where

Γ′ = {z = re−iδ; r ≥ 0} ∪ {z = −reiδ, r ≥ 0}
for δ = δ(Im θ) > 0 small enough. Γ′ is oriented in anti-clockwise sense.



24 XUE PING WANG

The remaining part of the proof of (5.25) is the same as in Theorem 3.4 and will not
be repeated here. We just indicate that if one denotes G0(θ) = R(0, θ), then one has

R0(z, θ) =
N∑
j=0

zjG0(θ)
j + zN+1G0(θ)

NR0(z, θ)

for z ∈ Γ′ and z near 0, and Theorem 2.4 with r = 2 and Proposition 5.3 show that

∥χ(x)G0(θ)
NR(z, θ)χ(x)∥ (5.27)

≤ Cχ∥⟨xN,0⟩−2(N+1)µG0(θ)
NR0(z, θ)⟨xN,0⟩−2µ∥ ≤ Cχ,Im θC

NNγ

with some constant C independent of χ and θ. By choosing appropriately N in terms
of t as in the proof of Theorem 3.4, one obtain some c > 0 independent of χ such that
(5.25) holds. �

6. Compactly supported perturbations of H0

Consider operator H of the form

H = H0 +W (x). (6.1)

where H0 = −∆ + V (x) is a non-selfadjoint Schrödinger operator with V ∈ V and
W ∈ L∞

comp(Rn). Then the essential spectrum of H is equal to [0,+∞[ and the
accumulation points of the complex eigenvalues of H are contained in R+. Denote
R(z) = (H − z)−1, z ̸∈ σ(H).

6.1. Proof of Theorem 1.2.

Proposition 6.1. Let H0 = −∆ + V (x) with V ∈ V. Let W ∈ L∞(Rn) with compact
support and H = H0 +W (x). Assume that 0 is not an eigenvalue of H. Then one has:

(a). There exist some constants c1, µ
′ > 0 such that outside the set

Ω1 = {z ∈ C; Re z ≥ 0 and |Im z| ≤ c1|Re z|µ
′},

there are at most a finite number of discrete eigenvalues of H. There exist some δ > 0
such that

∥R(z)∥ ≤ C

|z|
1
µ′

for z ̸∈ Ω1 and |z| < δ. (6.2)

(b). The limit
R(0) = lim

z→0,z ̸∈Ω1

R(z) (6.3)

exists in L(L2,s;L2,s−2µ for any s ∈ R and one has the Gevrey estimates

∥e−a⟨x⟩1−µ

R(z)N∥ ≤ CN+1
a NγN , (6.4)

∥χR(z)N∥ ≤ CχC
NNγN (6.5)

for all N ∈ N∗ and z ∈ Ω0 = {z ∈ C; Re z < 0, |Im z| < −MRe z} ∪ {0}, M > 0. Here
a > 0 and χ ∈ C∞

0 (Rn), Ca, ca, Cχ are some positive constants and C > 0 is independent
of χ.
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Proof. Note that G0W is a compact operator and that 0 is not an eigenvalue of H if
and only if −1 is not an eigenvalue of G0W . So if 0 is not an eigenvalue of H, operator
1 + G0W is invertible on L2. From Proposition 3.1, one deduces that 1 + R0(z)W is
invertible for |z| small and z ̸∈ Ω1 This shows that 0 is not an accumulation pint of
σ(H) \ Ω1. In addition, z → 1 + R0(z)W is holomorphic in C \ Ω1. The analytic
Fredholm Theorem shows that (1+R0(z)W )−1 is a meromorphic function with at most
a discrete set of poles in C \ Ω1. These poles are eigenvalues of H. Since we have seen
that 0 is not an accumulation point of eigenvalues of H in C \ Ω1, one concludes that
the number of eigenvalues of H in C \ Ω1 is finite. (6.2) follows from Proposition 3.1
and the equation

R(z) = (1 +R0(z)W )−1R0(z).

To prove that Gevrey estimates of the resolvent R(z), we remark that if F (z) and
G(z) are two bounded operator valued functions on Ω0 satisfies the Gevrey estimates
with some β > 1

∥F (n)(z)∥ ≤ ACn
1 (n!)

β (6.6)

∥G(n)(z)∥ ≤ BCn
2 (n!)

β (6.7)

for all n ∈ N and z ∈ Ω0 and for some γ > 1 and A,B,C1, C2 > 0, then F (z)G(z)
satisfies the Gevrey estimates

∥(FG)(n)(z)∥ ≤ ABCn
3 (n!)

β (6.8)

for all n ∈ N and z ∈ Ω0 where

C3 = Dβ max{C1, C2} with Dβ = sup
n∈N

n∑
j=0

(j!(n− j)!

n!

)β−1
<∞; (6.9)

and if F (z) is invertible for z ∈ Ω0 with uniformly bounded inverse:

∥F (z)−1∥ ≤M (6.10)

for all z ∈ Ω0, then the inverse H(z) = F (z)−1 satisfies the Gevrey estimates

∥H(n)(z)∥ ≤MCn
4 (n!)

β (6.11)

for all n ∈ N and z ∈ Ω0, where C4 = MC1Dγ. Denote Gβ(Ω0) the set of bounded

operator-valued functions on Ω0 verifying Gevrey estimes of order β > 1. Since e−a⟨x⟩1−µ
R0(z)

and χR0(z) belong to Gβ with β = 1 + γ = 1+µ
1−µ

, Estimates (6.4) and (6.5) follow re-

spectively from equations

e−a⟨x⟩1−µ

R(z) = (1 + e−a⟨x⟩1−µ

R0(z)Wea⟨x⟩
1−µ

)−1e−a⟨x⟩1−µ

R0(z) (6.12)

χR(z) = (1 + χR0(z)W )−1χR0(z) (6.13)

where χ ∈ C∞
0 (Rn) is taken such that χ(x) = 1 on suppW . �

Proof of Theorem 1.2 (a). Theorem 1.2 (a) can be proved in the same way as
Theorem 3.4 for the model operator H0. By Proposition 6.1, one can find a contour Γ
in the right half complex plane of the form

Γ = {z; Re z ≥ 0, |Im z| = C(Re z)µ
′}
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for some C, µ′ > 0 such that σ(H) ∩ Γ = {0} and there are only a finite number of
complex eigenvalues of H located at the left of Γ. Let

Λ = σ(H) ∩ {z; Re z < 0 or Re z ≥ 0 and |Im z| > C(Re z)µ
′}.

Then one has

e−tH −
∑
λ∈Λ

e−tHΠλ =
i

2π

∫
Γ

e−tzR(z)dz. (6.14)

where Πλ is the Riesz projection of H associated the eigenvalue λ. Making use of
Proposition 6.1, one can prove as in Theorem 3.4 that

∥e−a⟨x⟩1−µ

(e−tH −
∑
λ∈Λ

e−tHΠλ)∥ ≤ Cae
−catβ , t > 0. (6.15)

(1.28) follows since if λ ∈ σd(H) with Reλ > 0, ∥e−tHΠλ∥ decreases exponentially.
(1.29) is deduced in a similar way. �

Proposition 6.2. Let H0 = −∆ + V (x) with V ∈ A and H = H0 +W (x) for some
W ∈ L∞

comp. Assume that 0 is not an eigenvalue of H. Then one has

(a). There exists δ > 0 such that H has at most a finite number of eigenvalues in

Ωδ = {z ∈ C \ {0};−δ ≤ arg z ≤ π + δ}
and for any χ ∈ C∞

0 (Rn), χR(z)χ defined for Im z > 0 extends meromorphically into
Ωd and there exists some constant Cχ, c > 0 such that

∥χR(z)χ∥ ≤ Cχ (6.16)

for z ∈ Ωδ and |z| < c.

(b). The limit R(0) = limz∈Ωδ,z→0R(z) in L(L2,s+2µ;L2,s−2µ) for any s ∈ R and one
has

∥χR(z)Nχ∥ ≤ CχC
NNγN (6.17)

for any N ∈ N∗ and z ∈ Ωδ ∪ {0} with |z| < c.

Proof. Since V2 ≥ 0, one has for Im z > 0

χR(z)χ = (1 + χR0(z)W )−1χR0(z)χ (6.18)

if χ ∈ C∞
0 (Rn) is taken such that χ(x) = 1 on suppW . Let Uθ be defined by (5.17)

with R0 >> 1 such that supp χ ⊂ {x; |x| < R0}. Let H0(θ) = UθH0U
−1
θ and R0(z, θ) =

(H0(θ)− z)−1. Then one has for θ ∈ C, Im θ > 0 and |θ| small,

χR0(z)W = χR0(z, θ)W, χR0(z)χ = χR0(z, θ)χ.

For a fixed θ ∈ C with Im θ > 0, Proposition 5.3 shows that χR0(z)W and χR0(z)χ
are holomorphic in Ωδ for some δ > 0. The analytic Fredholm Theorem implies that
χR(z)χ extends to a meromorphic in Ωδ given by

χR(z)χ = (1 + χR0(z, θ)W )−1χR0(z, θ)χ. (6.19)

0 is the only possible accumulation point of these poles. To show that 0 is in fact not
an accumulation point, we firstly prove that for each χ, −1 is not an eigenvalue of the
compact operator χG0W . In fact if −1 is an eigenvalue of χG0W , then −1 is also an
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eigenvalue ofWG0χ = J(χG0W )∗J where J is the complex conjugaison: Jf(x) = f(x).
Let ψ ∈ L2 with ψ ̸= 0 such that

ψ = −WG0χψ.

Then χψ = ψ and HG0ψ = (1 + WG0χ)ψ = 0 which gives ψ = 0, since 0 is not
an eigenvalue of H and G0 is injective. This contradiction shows that 1 + χG0W is
invertible with bounded inverse. Secondly by an argument of compactness, one deduces
that if χR, R > 0, is a family of cut-offs such that χR(x) = χ( e

R
) for some function

χ ∈ C∞
0 (Rn) with χ(x) = 1 for |x− ≤ 1, then there exists some constant C > 0 such

that

∥(1 + χRG0W )−1 ≤ C (6.20)

uniformly in R > 1. According to Proposition 5.3, one has

1 + χRR0(z, θ)W = 1 + χRG0(θ)W +O(|z|)
in L(L2,−2µ;L2,−2µ) for z ∈ Ωδ, where O(|z|) is uniform in R > 1. Consequently there
exists some constant c > 0 independent of R such that the inverse (1+χRR0(z, θ)W )−1

exists and is holomorphic for z ∈ Ωδ with |z| < c and there exists some contant C > 0
such that

∥(1 + χRR0(z, θ)W )−1∥L(L2,−2µ;L2,−2µ) ≤ C (6.21)

uniformly R > 1 and z ∈ Ωδ with |z| < c. Finally since discret eigenvalues of H are
poles of the resolvent (H(θ)− z)−1 and each pole of the resolvent is a pole of χRR(z)χR

if R > 1 is large enough, (6.21) implies that there are no poles of (H(θ)− z)−1 (hence
no eigenvalues of H) in z ∈ Ωδ with |z| < c for some c > 0 independent of R > 0.
This proves the finiteness of eigenvalues of H in Ωδ, because zero is the only possible
accumulation point of eigenvalues of H in Ωδ. Estimate (6.16) follows from (5.22).

Part (b) can be derived from (6.19), Proposition 5.3 and Theorem 1.1 applied to
G0(θ). �

Proof of Theorem 1.2 (b). According to Proposition 6.2, there exists some 0 < ηδ
such that Ωη contains no eigenvalues of H with negative imaginary part. Under the
assumptions Theorem 1.3, positive eigenvalues of H is absent. If λ ∈ σd(H) with
Imλ > 0, then e−itHΠλ = O(e−tImλ) decreases exponentially as t → +∞. Theorem 1.2
(b) follows from the representation formula:

χ(e−itH −
∑

λ∈σd(H)∩R−

e−itHΠλ)χ =
i

2π

∫
Γη

e−itzχR(z)χdz +O(e−ct), t > 0, (6.22)

where c > 0, Γη = {z = re−iη; r ≥ 0} ∪ {z = −reiη; r ≥ 0} where 0 < η ≤ δ is chosen
such that there are no eigenvalues with negative imaginary part between the real axis
and Γη. The details are the same as in Theorem 5.4 and are omitted here. �

6.2. Proof of Theorem 1.3. Assume now that 0 is an eigenvalue of H = H0 +W .
Then −1 is an eigenvalue of G0W and ker(1+G0W ) in L2 coincides with the eigenspace
of H with eigenvalue zero.
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Lemma 6.3. Assume that H satisfied the condition (1.15). Then there exits some

constant α0 > 0 such that if u ∈ H2(Rn) such that Hu = 0, then eα0⟨x⟩1−µ
u ∈ L2(Rn).

Proof. Let φ(x) = α⟨x⟩1−µ, α > 0. Then

|∇φ(x)| = α(1− µ)
|x|

⟨x⟩1+µ
≤ α⟨x⟩−µ.

For u ∈ H2(Rn) with compact support, one has

|⟨e2φHu, u⟩| = |⟨H(eφu), eφu⟩ − ⟨[∆, eφ]u, eφu⟩| (6.23)

= |⟨H(eφu), eφu⟩+ 2⟨(|∇φ|2eφu−∇φ · ∇(eφu), eφu⟩|
≥ |⟨(H0 +W )(eφu), eφu⟩| − (2α2 + α)∥⟨x⟩−µeφu∥2 − α∥∇(eφu)∥2

Since W is compactly supported, making use of the condition (1.15), one obtains for
some c0, C > 0,

|⟨(H0 +W )(eφu), eφu⟩| ≥ c0(∥∇(eφu)∥2 + ∥⟨x⟩−µeφu∥2)− C∥u∥2 (6.24)

For α > 0 such that
2α2 + α < c0, (6.25)

there exists some constant C1 > 0 such that

∥⟨x⟩−µeφu∥2 + ∥∇(eφu)∥2 ≤ C1(|⟨e2φHu, u⟩|+ ∥u∥2) (6.26)

for any u ∈ H2 compactly supported. If u ∈ H2 such that Hu = 0, one can apply the
above estimate to uR = χRu where χR(x) = χ( x

R
), R > 1 and χ is a smooth cut-off such

that χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. Then one can check that

|⟨e2φHuR, uR⟩| ≤ C ′R−(1−µ)(∥⟨x⟩−µeφu∥2 + ∥∇(eφu)∥2).
It follows that

∥⟨x⟩−µeφuR∥2 + ∥∇(eφuR)∥2 ≤ C2∥u∥2 (6.27)

uniformly in R >> 1 which implies that ⟨x⟩−µeφu ∈ L2(Rn) and ∇(eφu) ∈ L2. Lemma
6.3 is proved with 0 < α0 < α. �

Theorem 6.4. Let H0 = −∆+V (x) and H = H0+W (x) with V ∈ V and W ∈ L∞
comp.

Assume that 0 is an eigenvalue of H and that both H0 and H are selfadjoint. Let Π0

denote the eigenprojection of H associated with eigenvalue zero. Then there exist some
constants C, µ′, δ > 0 such that

R(z) = −Π0

z
+R1(z) (6.28)

for z ∈ Ω1(δ) where

Ω1(δ) = {z ∈ C; |z| < δ, either Re z < 0 or Re z ≥ 0 and |Im z| > C|Re z|µ′}. (6.29)

The remainder R1(z) satisfies the estimates

∥⟨x⟩−sR1(z)∥+ ∥R1(z)⟨x⟩−s∥ ≤ Cs (6.30)

for s > 2µ + 1
µ′ and z ∈ Ω1(δ); and for any a,M > 0 there exist some constants

Ca, ca > 0 such that

∥e−a⟨x⟩1−µ

R
(N)
1 (z)∥+ ∥R(N)

1 (z)e−a⟨x⟩1−µ∥ ≤ Cac
N
a N

βN , (6.31)
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for any N ∈ N and z ∈ Ω− where Ω− = {z; Re z < 0 and |Im z| ≤ −MRe z} ∪ {0},
M > 0. Here and in the following, R

(n)
1 (z) denotes the derivative of order n of R1(z)

and β = 1 + γ = 1+µ
1−µ

.

Proof. We use the Grushin method to study the low-energy asymptotics for the
resolvent of H by using the equation

R(z) = (1 +R0(z)W )−1R0(z). (6.32)

Since the method is well-known in selfadjoint case, we shall skip over some details and
emphasize on the Gevrey estimates of the remainder. Note that kerL2,s(1 + G0W ) is
independent of s ∈ R and coincides with the eigenspace of H associated withe the
eigenvalue 0. We need only to work in L2(Rn).

Let ψ1, · · · , ψm be a basis of ker(1 +G0W ) such that

⟨ψj,−Wψk⟩ = δjk, j, k = 1, · · · ,m. (6.33)

(6.33) can be realized because the quadratic form ϕ→ ⟨ϕ,−Wϕ⟩ = ⟨ϕ,H0ϕ⟩ is positive
definite on ker(1 +G0W ). Define Q : L2 → L2 by

Qf =
m∑
j=1

⟨−Wψj, f⟩ψj, f ∈ L2. (6.34)

Set Q′ = 1 − Q. Then Q commutes with 1 + G0W . −1 is not eigenvalue of compact
operatorQ′(G0W )Q′, henceQ′(1+G0W )Q′ is invertible on the range ofQ′ with bounded
inverse. From Theorem 2.4 with N = 1 and Proposition 3.1, one deduces that

(R0(z)−G0)W = O(|z|) (6.35)

for z ∈ Ω1(δ). It follows that if δ > 0 is small enough,

E(z) = (Q′(1 +R0(z)W )Q′)−1Q′ (6.36)

is well-defined and continuous in z ∈ Ω1(δ) and is uniformly bounded:

∥E(z)∥ ≤ C (6.37)

uniformly in z ∈ Ω1(δ). By Corollary 2.5 and (6.8), E(z) satisfies Gevrey estimates

∥E(N)(z)∥ ≤ CC ′NNγN (6.38)

for some C ′ > 0 and for all z ∈ Ω−.
Define S : Cm → D(H) and T : L2 → Cm by

Sc =
m∑
j=1

cjψj, c = (c1, · · · , cm) ∈ Cm,

T f = (⟨−Wψ1, f⟩, · · · , ⟨−Wψm, f⟩) ∈ Cm, f ∈ L2.

Set W (z) = (1 +R0(z)W ) and

E+(z) = S − E(z)W (z)S, (6.39)

E−(z) = T − TW (z)E(z), (6.40)

E−+(z) = −TW (z)S + TW (z)E(z)W (z)S. (6.41)
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Then one has the formula

(1 +R0(z)W )−1 = E(z)− E+(z)E−+(z)
−1E−(z) on H

1,−s. (6.42)

Since E(z), W (z) satisfy Gevrey estimates of the form (6.38) on Ω−, E±(z) and E−+(z)
satisfy similar Gevrey estimates on Ω−. The leading term of E−+(z) can be explicitly
calculated:

E−+(z) = −zΨ+ z2r1(z) (6.43)

where the matrix Ψ = (⟨ψj, ψk⟩)1≤j,k≤m is positive definite and r1(z) satisfies the Gevrey
estimates in Ω−. Consequently,

E−+(z)
−1 = −Ψ−1

z
+ r̃1(z) (6.44)

with r̃1(z) uniformly bounded on Ω1(δ) and r̃1(z) satisfying the Gevrey estimates of the
form (6.38) in Ω−. Consequently (1 +R0(z)W )−1 is of the form

(1 +R0(z)W )−1 =
A0

z
+B(z) (6.45)

where
A0 = SΨ−1T (6.46)

is an operator of rank m and B(z) is uniformly bounded Ω1(δ) and satisfies the Gevrey
estimates

∥B(N)(z)∥ ≤ CC ′NNβN , ∀N ∈ N, (6.47)

for z in Ω−. From the equation R(z) = (1 + R0(z)W )−1R0(z) and Corollary 2.5, we
deduce that

R(z) = −Π0

z
+R1(z) (6.48)

where R1(z) satisfies

∥R1(z)⟨x⟩−2kµ∥ ≤ C

for z ∈ Ω1(δ) if k ∈ N and k ≥ 1
µ′ and

∥R(N)
1 (z)e−a⟨x⟩1−µ∥ ≤ Cac

N
a N

βN

for z in Ω−. This proves (6.30) and (6.31). �

Theorem 6.5. Let H0 = −∆+V (x) and H = H0+W (x) with V ∈ A and W ∈ L∞
comp.

Assume that 0 is an eigenvalue of H and that both H0 and H are selfadjoint. Let
Π0 denote the eigenprojection of H associated with eigenvalue zero. Let Ωδ be defined
as in Proposition 6.2 and Ωδ(c) = Ωδ ∩ {|z| < c}. Then there exist some constants
C, c, µ′, δ > 0 such that for any χ ∈ C∞

0 (Rn) the cut-off resolvent χR(z)χ defined for
Im z > 0 extends to a holomorphic function in Ωδ(c) and one has

χR(z)χ = −χΠ0χ

z
+R2(z) (6.49)

for z ∈ Ωδ(c) where the remainder R2(z) is continuous up to z = 0 and satisfies the
Gevrey estimates

∥χR(N)
2 (z)χ∥ ≤ CχC

NNβN (6.50)

for z ∈ Ωδ(c) ∪ {0}.
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Proof. It suffices to prove (6.49) for χ ∈ C@∞(Rn) with sufficiently large support.
Let χ0 ∈ C∞

0 (Rn) such that 0 ≤ χ1(x) ≤ 1, χ1(x) = 1 for |x| ≤ 1 and 0 for |x| ≥ 2. Set

χj(x) = χ0(
x

jR
), j = 1, 2, (6.51)

where R > R0 is to be adjusted and R0 is such that supp W ⊂ {x; |x| ≤ R0}. Then
χjW =W and χ1χ2 = χ1. Then one has

χ1R(z)χ1 = (1 + χ2R0(z, θ)W )−1χ2R0(z, θ)χ1, (6.52)

where the analytical distortion is carried out outside the support of χ2. (6.52) ini-
tially valid for θ real and Im z > 0 allows to extend z → χR(z)χ into a sector below
the positive real axis when Im θ > 0. In the following θ ∈ C is fixed with Im θ > 0.
1 + χ2R0(z, θ)W and χ2R0(z, θ)χ1 belong to Gevrey class Gβ(Ωδ) where Ωδ is defined
in Proposition 6.2.

Let {ψj, j = 1, · · · ,m}, Q,Q′ be defined as in the proof of Theorem 6.4. Then −1
is not an eigenvalue of compact operator Q′(G0W )Q′. Since Q′(χ2G0W )Q′ converges
to Q′G0WQ′ in operator norm as R → ∞, −1 is not an eigenvalue of Q′χ1G0WQ′ if
R ≥ R1 for some R1 ≥ R0, R1 sufficiently large. Then Q′(1 + χ2G0W )Q′ is invertible
on Range Q′, so is Q′(1 + χ2R0(z, θ)W )Q′ for z ∈ Ωδ(c) = Ωδ ∩ {z; |z| < c} for some
c > 0. The inverse

E0(z, θ) = (Q′(1 + χ2R0(z, θ)W )Q′)−1Q′ (6.53)

is uniformly bounded in z (see Proposition 5.3) and by (6.8) it belongs to Gevrey class
Gβ(Ωδ(c)).

Define S1 : Cm → L2 and T1 : L
2 → Cm by

S1 = χ1S, T1 = Tχ1 (6.54)

where S, T are defined in Theorem 6.4. By Lemma ??,

S1T1 = Q′ +O(e−cR1−µ

), T1S1 = 1 +O(e−cR1−µ

) (6.55)

for some c > 0. Let W (z, θ) = 1 + χ2R0(z, θ)W . Consider the Grushin problem(
W (z, θ) S1

T1 0

)
: L2 ⊗ Cm → L2 ⊗ Cm. (6.56)

One has (
W (z, θ) S1

T1 0

)(
E0(z, θ) S1

T1 −T1W (z, θ)S1

)
= 1 +R(z, θ) (6.57)

where

R(z, θ) =

(
QW (z, θ)E0(z, θ) + S1T1 −Q (1− T1)W (z, θ)S1

T1E0(z, θ) T1S1 − 1

)
. (6.58)

R(z, θ) is sum of a nilpotent matrix and a matrix of order O(e−cR1−µ
). Hence 1 +R(z)

is invertible z ∈ Ωδ(c) if R > R1 is sufficiently large. This proves the Grushin problem is
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invertible from the right. Similarly one can show it is invertible from the left, therefore
it is invertible with inverse given by(

E0(z, θ) S1

T1 −T1W (z, θ)S1

)
(1 +R(z))−1 :=

(
E(z) E+(z)
E−(z) E−+(z)

)
(6.59)

As usual, one has the formula

(1 + χ2R0(z, θ)W )−1 = E(z)− E+(z)E−+(z)
−1E−(z). (6.60)

E−+(z) is of the form

E−+(z) = −T1W (z, θ)S1(1 +O(e−cR1−µ

)) +O(|z|2)
By the choice of χ1, χ2, one has

T1W (z, θ)S1 = T1(1 +R0(z, θ)W )S1 (6.61)

= zT1G1(θ)W )S1 +O(|z|2) = zT1G1WS1 +O(|z|2). (6.62)

By the calculation made in the proof of Theorem 6.4, one sees Ψ1 = T1G1S1 is an
invertible matrix (if R is large enough). Consequently E−+[z) is invertible for z ∈ Ωδ(c)
with inverse of the form.

E−+(z)
−1 = −1

z
Ψ1(1 +O(e−cR1−µ

)) +B(z) (6.63)

where B(z) belongs to Gβ(Ωδ(c)). This proves th existence of an expansion for χ1R(z)χ1

for z ∈ Ωδ(c) of the form

χ1R(z)χ1 = −U
z
+R2(z) (6.64)

with R2(z) satisfying Gevrey estimates of order β on Ωδ(c). Since A ⊂ V , Theorem 6.4
applied to R(z) with z ∈ Ωδ(c) ∩ {Re z ≤ 0} gives U = χ1Π0χ. �

Proof of Theorem 1.3. Theorem 1.3 (a) and (b) are respectively deduced from
Theorems 6.4 and 6.5 and the formulas for t > 0

e−tH −
∑

λ∈σd(H),Reλ≤0

e−tHΠλ =
i

2π
lim
ϵ→0+

∫
Γ(ϵ)

e−tzR(z)dz +O(e−ct) (6.65)

χ(e−itH −
∑

λ∈σd(H)∩R−

e−itHΠλ)χ =
i

2π
lim
ϵ→0+

∫
Γη(ϵ)

e−itzχR(z)χdz +O(e−ct)(6.66)

where c > 0 and

Γ(ϵ) = {z; |z| ≥ ϵ,Re z ≥ 0, |Im z| = C(Re z)µ
′} ∪ {z; |z| = ϵ, | arg z| ≥ ω0}

Γη(ϵ) = {z = re−iη, r ≥ ϵ} ∪ {z = −reiθ, r ≥ ϵ} ∪ {z; |z| = ϵ,−η ≤ arg z ≤ π + η}
for some appropriate constants C, µ′ > 0, η > 0. In particular, η > 0 is chosen such
that H has no eigenvalues with negative imaginary part above Γη(ϵ). Here ω0 is the
argument of the point z0 with |z0| = ϵ, Re z0 > 0 and Im z0 = C(Re z0)

µ′
. Remark that

the subexponential time-decay estimates are derived from Gevrey estimates of R1(z)
and R2(z) at zero and their Taylor expansion of order N with N chosen appropriately
in terms of t > 0. See the proof of Theorem 3.4 for e−tH0 . �
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Remark 6.1. As an example of applications of Theorem 1.3, consider the Witten-
Laplacian

−∆U =t ∇U · ∇U (6.67)

where ∇U = e−U∇eU and U ∈ C2(Rn). Then

−∆U = −∆+ (∇U)(x) · (∇U)(x)−∆U(x)

If U ∈ C2(Rn;R) satisfies for some σ ∈]0, 1[ and c1, C1 > 0,

U(x) ≥ c1⟨x⟩σ, |∇U(x)| ≥ c1⟨x⟩σ−1, |∂αxU(x)| ≤ C1⟨x⟩σ−|α| (6.68)

for x outside some compact and for α ∈ Nn with |α| ≤ 2. Then −∆U can be decomposed
as −∆U = H0 +W (x) where H0 satisfies the conditions of Theorem 1.1 with µ = 1− σ
and W (x) is of compact support. Zero is a simple eigenvalue of −∆U embedded in its
continuous spectrum [0,+∞[. As consequence of Theorem 1.3, one obtains the following
result. Let φ0(x) be a normalized eigenfunction of −∆U with eigenvalue zero:

φ0(x) = Ce−U(x), ∥φ0∥ = 1. (6.69)

Then for any a > 0, there exist some constants Ca, ca > 0

∥et∆Uf − ⟨φ0, f⟩φ0∥ ≤ Cae
−cat

σ
2−σ ∥ea⟨x⟩σf∥ (6.70)

for t > 0 and f such that ea⟨x⟩
σ
f ∈ L2. Note that the subexponential convergence

estimate (6.70) without the explicit remainder estimate on f is proved in [4] by method
of Markov processes. If U(x) = c1⟨x⟩σ + U1(x) where c1 > 0, σ ∈]0, 1[ and U1 ∈ C2(Rn)
with compact support and n ≥ 3 and σ ∈]0, 1[, then all conditions of Theorem 1.3 (b)
are satisfied for H = −∆U . It follows that there exists some constant c > 0 such that
for any χ ∈ C∞

0 (Rn) and R > 0, one has

∥χ(eit∆Uf − ⟨φ0, f⟩φ0)∥ ≤ Cχ,Re
−ct

σ
2−σ ∥f∥, (6.71)

for t > 0 and f ∈ L2(Rn) with suppf ⊂ {x; |x| < R}.

7. Threshold eigenvalue of non-selfadjoint operators

Finally we study the case zero is an embedded eigenvalue of the non-selfadjoint
Schrödinger operator H which is compactly supported perturbation of a model op-
erator H0 = −∆ + V (x). Let V ∈ V . Then 0 is an eigenvalue of H if and only if
−1 is an eigenvalue of compact operator K = G0W . The algebraic multiplicity m of
eigenvalue −1 of K is finite. Let π1 : L2 → L2 be the associated Riesz projection of
Kdefined by :

π1 =
1

2πi

∫
|z+1|=ϵ

(z −K)−1dz

for ϵ > 0 small enough. Then
m = rank π1. (7.1)

π1 is continuous on L2,s for any s ∈ R and π∗
1 : L2 → L2 is the Riesz projection of K∗

associated with the eigenvalue −1.
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Theorem 7.1. Let H0 = −∆ + V (x) and H = H0 + W (x) with V ∈ V and W ∈
L∞

comp. Assume that 0 is a geometrically simple eigenvalue of H and that the associated
eigenfunction φ0 verifies ∫

(φ0(x))
2dx = 1. (7.2)

(a). One has

R(z) = −Π0

z
+R3(z) (7.3)

for z ∈ Ω1(δ) where
Π0 = ⟨·, Jφ0⟩φ0 (7.4)

and J is complex conjugaison: J : f → f .

(b). There exist some constants C, µ′, δ > 0 such that

∥⟨x⟩−sR3(z)∥+ ∥R3(z)⟨x⟩−s∥ ≤ Cs (7.5)

for s > 2µ+ 1
µ′ and z ∈ Ω1(δ); and for any a > 0 there exist some constants Ca, ca > 0

such that
∥e−a⟨x⟩1−µ

R
(N)
3 (z)∥+ ∥R(N)

3 (z)e−a⟨x⟩1−µ∥ ≤ Cac
N
a N

βN , (7.6)

for any N ∈ N and z ∈ Ω− where Ω1(δ) and Ω− are the same as in Theorem 6.4.

Under the conditions of Theorem 7.1, −1 is a geometrically simple eigenvalue of
K = G0W . One has

dimker(1 +K) = 1 and rank π1 = m. (7.7)

Since 1 +K is nilpotent on Range π1, there exists some function ϕm ∈ range π1 such
that

ϕj = (1 +K)m−jϕm ̸= 0, j = 1, · · · ,m. (7.8)

Then one has
(1 +K)ϕ1 = 0, (1 +K)ϕj = ϕj−1, 2 ≤ j ≤ m. (7.9)

ϕ1, · · · , ϕm are linearly independent. Denote J the operation of complex conjugaison
J : f → f . Remark that H∗

0 = JH0J , H
∗ = JHJ . One has

JWK = K∗WJ. (7.10)

It follows that
JWπ1 = π∗

1JW. (7.11)

Denote
ϕ∗
j =Wϕj. (7.12)

Then
(1 +K∗)ϕ∗

1 = 0, (1 +K∗)ϕ∗
j = ϕ∗

j−1, 2 ≤ j ≤ m. (7.13)

Since ϕ∗
1 ̸= 0, it follows that ϕ∗

j ̸= 0 for all 1 ≤ j ≤ m. From this, we deduce that
{ϕ∗

j , j = 1, · · · ,m} is linearly independent and that rank π1 ≤ rank π∗
1. Similarly, using

the relation
JG0π

∗
1 = π1JG0 (7.14)

one can prove that rank π1 ≥ rank π∗
1, which gives
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Lemma 7.2. One has

rank π1 = rank π∗
1 = m (7.15)

and JW is a bijection from Range π1 onto Range π∗
1.

Lemma 7.3. The bilinear form B(·, ·) defined on Range π1 by

B(φ, ψ) = ⟨φ, JWψ⟩ =
∫
Rn

W (x)φ(x)ψ(x) dx (7.16)

is non-degenerate.

Proof. Let ϕ ∈ Range π1 such that∫
W (x)ϕ(x)φ(x) dx = 0

for all φ ∈ Range π1. This means that ϕ ∈ (Range π∗
1)

⊥ = kerπ1, which implies that
ϕ = π1ϕ = 0. So B(·, ·) is non-degenerate. �

As a consequence of Lemma 7.2, if m = 1, then eigenfunction φ of H associated with
zero eigenvalue satisfies ∫

W (x)(φ(x))2 dx ̸= 0. (7.17)

Lemma 7.4. There exist χj ∈ ker(1 +K)m−j+1, j = 1, · · · ,m, such that

⟨ϕi, χ
∗
j⟩ = B(ϕi, χj) = δij, 1 ≤ i, j ≤ m, (7.18)

where χ∗
j = JWχj, δij = 1 if i = j, and δij = 0 if i ̸= j.

Proof. We use an induction to prove that for any 1 ≤ l ≤ m, there exist φj ∈
ker(1 +K)j, 1 ≤ j ≤ l such that

B(φi, ϕm−j+1) = δij, 1 ≤ j ≤ i ≤ l. (7.19)

Since ϕ1 ∈ ker(1+K) and ϕ∗
j ∈ Range (1+K∗) for 1 ≤ j ≤ m− 1, one has ⟨ϕ1, ϕ

∗
j⟩ = 0

for j = 1, · · · ,m− 1. By lemma 7.3, one has necessarily c1 = ⟨ϕ1, ϕ
∗
m⟩ ̸= 0. Set

φ1 =
1

c1
ϕ1. (7.20)

Then φ1 ∈ ker(1 +K) and B(φ1, ϕm) = 1. (7.19) is true for l = 1. Assume now that
(7.19) is true for some l = k − 1, 2 ≤ k ≤ m. Set

ϕ′
k = ϕk −

k−1∑
j=1

B(ϕk, ϕm−j+1)φj (7.21)

Then ϕ′
k ̸= 0, ϕ′

k ∈ ker(1 +K)k and

B(ϕ′
k, ϕm−j+1) = 0, j = 1, · · · , k − 1.

Since ϕ′
k ∈ ker(1 +K)k, one has also

⟨ϕ′
k, ϕ

∗
j⟩ = B(ϕ′

k, ϕj) = 0 (7.22)
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for j = 1, · · · ,m− k, because ϕ∗
j = (1 +K∗)m−jϕ∗

m belongs to the range of (1 +K∗)k if
1 ≤ j ≤ m− k. By Lemma 7.3, the constant ck = B(ϕ′

k, ϕm−k+1) must be nonzero. Set

φk =
1

ck
ϕ′
k. (7.23)

Then (7.19) is proved for l = k. By an induction, one can construct φj, 1 ≤ j ≤ m,
such that (7.19) holds with l = m. By (7.22), one has also B(φi, ϕm−j+1) = 0 if i > j.
Lemma 7.4 is proved by taking χk = φm−k+1, 1 ≤ k ≤ m. �

One has the following representation of the Riesz projection π1.

Corollary 7.5. One has

π1u =
m∑
j=1

⟨u, χ∗
j⟩ϕj, u ∈ H1,−s, s > 1. (7.24)

Proof. Denote π the operator π : u→
∑m

j=1⟨u, χ∗
j⟩ϕj. Then it is clear that π2 = π and

Range π = Range π1. It is trivial that kerπ1 ⊂ kerπ. If u ∈ kerπ, then ⟨u, χ∗
j⟩ = 0 for

j = 1, · · · ,m. Therefore u ∈ (Range π∗
1)

⊥ = kerπ1 which implies that ker π ⊂ kerπ1.
This shows that ker π1 = kerπ. This proves π = π1. �

From the proof of Lemma 7.4, one sees that if −1 is a simple eigenvalue of K (m = 1),
then the associated Riesz projection is given by

π1 = ⟨·, φ∗⟩φ (7.25)

where φ is an eigenfunction of K with eigenvalue −1 normalized by∫
W (x)(φ(x))2 dx = 1.

Proof of Theorem 7.1. Note that R(z) = (1 +R0(z)V )−1R0(z) for z ̸∈ σ(H). Study
the Grushin problem in L2 × Cm(

1 +R0(z)W S
T 0

)
: L2 × Cm → L2 × Cm (7.26)

where

S : Cm → L2, c = (c1, · · · , cm) → Sc =
m∑
j=1

cjϕj, (7.27)

T : L2 → Cm, f → Tf = (⟨f, χ∗
1⟩, · · · , ⟨f, χ∗

m⟩). (7.28)

(7.29)

Then ST = π1 and TS = In. Since K commutes with its Riesz projection π1 and 1+K
is injection on Range π1 where π

′
1 = 1−π1, 1+K is invertible on the range of π′

1. By an
argument of perturbation, π′

1(1+R0(z)W )π′
1 is invertible on range of π′

1 for z ∈ Ω1(δ) if
δ > 0 is appropriately small and its inverse E(z) is uniformly bounded on Ω1(δ) where

E(z) = (π′
1(1 +R0(z)W )π′

1)
−1π′

1 (7.30)
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By the arguments used in Section 6.1, E(z) belongs to the Gevrey class Gβ(Ω1(δ)) with
β = 1 + γ. One can check that for z ∈ Ω1(δ),(

1 +R0(z)W S
T 0

)−1

=

(
E(z) E+(z)
E−(z) E−+(z)

)
(7.31)

where

E+(z) = (1− E(z)R0(z)W )S (7.32)

E−(z) = T (1−R0(z)WE(z)) (7.33)

E−+(z) = −T (1 +R0(z)W )S + TR0(z)WE(z)R0(z)WS. (7.34)

It follows that z ̸∈ σ(P ) if and only if detE−+(z) ̸= 0 and one has

(1 +R0(z)W )−1 = E(z)− E+(z)E−+(z)
−1E−(z). (7.35)

Since TR0(z)WE(z)R0(z)WS = O(|z|2), E−+(z) is an m×m matrix verifying

E−+(z) =
(
−⟨(1 +R0(z)W )ϕk, χ

∗
j⟩
)
1≤j,k≤m

+O(|z|2) (7.36)

= −


0 1 · · · 0

0 0
. . .

...
...

...
. . . 1

0 0 · · · 0

− z


b11 · · · · · · b1m
...

. . .
...

...
. . .

...
bm1 · · · · · · bmm

+O(|z|2)

where

bjk = ⟨G1Wϕk, χ
∗
j⟩. (7.37)

Note that ϕ1 and χm belong to ker(1 + G0W ) and χ∗
m = JWχm, they are rapidly

decreasing, by Lemma 6.3. One can calculate

bm1 = lim
λ→0−

⟨1
λ
(1 +R0(λ)W )ϕ1, JWχm⟩

= − lim
λ→0−

⟨R0(λ)ϕ1, JWχm⟩

= − lim
λ→0−

⟨ϕ1, JR0(λ)Wχm⟩

= ⟨ϕ1, Jχm⟩.
Similarly one can calculate for 2 ≤ j ≤ m

bmj = −⟨Wϕj, JG0χm⟩ = ⟨ϕj − ϕj−1, Jχm⟩.
By the condition (7.2), one has bm1 ̸= 0.

detE−+(z) = (−1)mzbm1 +O(|z|2) ̸= 0 (7.38)

for z ∈ Ω1(δ) which shows the invertibility of E−+(z). A direct computation gives that
0 1 · · · 0

0 0
. . .

...
...

...
. . . 1

zbm1 · · · · · · zbmm


−1

=


− bm2

bm1
− bm3

bm1
· · · · · · 1

zbm1

1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0

 .
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It follows that

E−+(z)
−1 = −1

z
C +O(1) (7.39)

where C is the matrix of rank one given by

C =


0 · · · 0 1

bm1
...

. . . 0
...

. . .
...

0 · · · · · · 0

 . (7.40)

From (7.35), one obtains

(1 +R0(z)W )−1 =
1

z
SCT +O(1). (7.41)

Using the definition of S and T , one obtains

SCTf =
1

bm1

⟨f, χ∗
m⟩)ϕ1 (7.42)

Noticing that

⟨G0f, χ
∗
m⟩ = ⟨f,G∗

0JWχm⟩ = ⟨f, JG0Wχm⟩ = −⟨f, Jχjm⟩,
we deduce from (6.32) that

R(z) = −Π0

z
+O(1) (7.43)

for z ∈ Ω1(δ). Here Π0 is given by

Π0 =
1

bm1

⟨f, Jχm⟩)ϕ1 (7.44)

Both χm and ϕ1 belong to ker(1 + K) which is of dimension one. There exists some
constant d1 ̸= 0 such that χm = d1ϕ1. Set

φ1 =

√
d1
bm1

ϕ1. (7.45)

Then Π0 = ⟨·, Jφ1⟩φ1. φ1 is an eigenfunction of H verifying Hφ1 = 0 and∫
(φ1(x))

2 dx = 1.

Since zero eigenvalue of H is geometrically simple, one has φ1 = ±φ0. This proves

Π0 = ⟨·, Jφ0⟩φ0 (7.46)

The estimates on remainder R3(z) can be proved in the same way as in Theorem 6.4.
�

Theorem 7.6. Let H0 = −∆ + V (x) and H = H0 + W (x) with V ∈ A and W ∈
L∞

rmcomp. Assume that 0 is a geometrically simple eigenvalue of H and that the associated
eigenfunction φ0 verifies ∫

(φ0(x))
2dx = 1. (7.47)



GEVREY ESTIMATES OF THE RESOLVENT 39

Let Ωδ(c) be defined as in Theorem 6.5 and Π0 = ⟨·, Jφ0⟩φ0. Then one has for any
χ ∈ C∞

0 (Rn)

χR(z)χ = −χΠ0χ

z
+R4(z) (7.48)

for z ∈ Ωδ(c) where the remainder R4(z) is continuous up to z = 0 and satisfies the
Gevrey estimates

∥χR(N)
4 (z)χ∥ ≤ CχC

NNγN (7.49)

for z ∈ Ωδ(c) ∪ {0}.

Theorem 7.6 is derived by combining methods used in Theorem 6.5 and Theorem 7.1.
The details are omitted. �

Theorem 1.4 (a) (Theorem 1.4 (b), respectively) is derived from Theorem 7.1 and
formula (6.65) (Theorem 7.6 and formula (6.66), respectively). �

Consider the non-selfadjoint Witten Laplacian

−∆U = −∆+ (∇U)(x) · (∇U)(x)−∆U(x)

where U ∈ C2(Rn;C). Set U(x) = U1(x) + iU2(x) with U1, U2 real valued functions.
Assume that U1 satisfies the condition (6.68) with U replaced by U1 and that U2 is of
compact support with ∥∂αxU2∥L∞ sufficiently small for |α| ≤ 2. Considering −∆U as
a perturbation of −∆U1 , one can show that −∆U has only one eigenvalue in a neigh-
bourhood of zero which is in addition simple. Since −∆Ue

−U = 0, one concludes that
0 is a geometrically simple eigenvalue of −∆U and the condition (7.2) is satisfied for
φ0(x) = ce−U(x) with some constant c ̸= 0. Therefore Theorem 1.4 (a) can be applied
to the non-selfadjoint Witten Laplacian −∆U . Theorem 1.4 (b) can be also applied to
−∆U under some additional conditions on U .

Remark 7.1. The methods used in this Section here can be applied to other threshold
spectral problems. In particular for non-selfadjoint Schrödinger operator H = −∆ +
V (x) with a quickly decreasing complex potential V (x) on Rn:

|V (x)| ≤ C⟨x⟩−ρ, ρ > 2. (7.50)

with n = 3, 4, our method allows to calculate the low-energy asymptotics of the resolvent
(H − z)−1 if zero is a resonance but not an eigenvalue. In fact one can show that
for n = 3, 4, zero resonance, if it exists, is geometrically simple. The Grushin method
presented here can reduce that resolvent expansion for (H − z)−1 to that of E−+(z)

−1.
The calculation given in this Section shows that E−+(z) admits an expansion which for
n = 3 takes the form

E−+(z) =
(
−⟨(1 +R0(z)V )ϕk, χ

∗
j⟩
)
1≤j,k≤m

+O(|z|2) (7.51)

= −


0 1 · · · 0

0 0
. . .

...
...

...
. . . 1

0 0 · · · 0

− z
1
2


b11 · · · · · · b1m
...

. . .
...

...
. . .

...
bm1 · · · · · · bmm

+O(|z|
1
2
+ϵ).
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Here R0(z) = (−∆−z)−1. The characterization of resonant states ensures that bm1 ̸= 0
without any assumption of the type (7.2), hence the matrix E−+(z) is invertible for z
small and z ̸= 0. Consequently low-energy resolvent expansion of (H−z)−1 be calculated
as in the proof of Theorem 1.4 without any assumption of the type (7.2).
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