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Simulating dynamic thermo-elasto-plasticity
in large transformations with adaptive refine-
ment in the natural element method : appli-
cation to shear banding

J. Yvonnet, Ph. Lorong, D. Ryckelynck, F. Chinesta

LMSP, UMR 8106 CNRS ENSAM-ESEM,
151 boulevard de l’Hôpital,
F-75013 Paris, France

ABSTRACT. Simulation of forming processes usually involves large transformations and/or stain
localization. In the context of the finite element method (FEM), a common approach to deal
with such phenomena is the use of continuous adaptive remeshing. Nevertheless, constructing
a quality mesh is a delicate task, especially for complex 3D problems. The natural element
meshfree method is a recent numerical technique which uses the features of the Delaunay trian-
gulation of the set of nodes, providing an accuracy equivalent to the quadrilateral/hexahedral
finite elements, even if the Delaunay triangles are very distorted. In this context, inserting or
removing nodes is an easy task, as no special geometrical criterion is imposed on the relative
position of the nodes. Furthermore, the use of a stabilized conforming nodal integration allows
to define nodal internal variables, which simplifies transfer of these data through successive
updates of the reference configuration in a Lagrangian procedure. In this paper, a framework
for practical implementation of the NEM in the context of explicit thermo-elastoplasticity at
finite strains is provided. An adaptive strategy, based on the attractive features of the NEM
is developped, including simple error indicators for history-dependent nonlinear problems, a
refinement procedure for unstructured scattered of nodes based on the underlying Voronoi dia-
gram, and the use of a nodal integration to alleviate issues associated with internal variables
transfer. This promising technique for forming processes simulation is illustrated in the context
of dynamic shear bands propagation after impact.

KEYWORDS: Natural element method, dynamic thermo-elastoplasticity, large transformations,
adaptive refinement, shear bands
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1. Introduction

Simulation of forming processes usually involves large transformations and/or
strain localization. In the context of the finite element method (FEM), it is necessary
to construct a mesh satisfying some quality criteria for a given deformed geometry and
which also conforms the size of its elements to the localized phenomena, i.e. strain
localization or cracks. Triangular and tetrahedral meshes can be automatically gener-
ated based on the Delaunay criterion in the FEMwhatever the complexity of geometry
shapes of the analyzed domain. Nevertheless, there are no guarantee that no flat ele-
ments can be generated, and the triangular and tetrahedral elements are rarely adopted
due to their poor accuracy. Quadrilateral/hexahedral elements are usually preferred
for its better accuracy, resulting in the great difficulty of mesh generation, especially
for complex geometries and in the context of adaptive refinement. In recent years,
meshless approximations have become interesting and promising methods in solving
partial differential equations due to their flexibility in practical applications. Several
meshless methods, such as, the smooth particle hydrodynamics (SPH) [24], the diffuse
element method (DEM) [27], the element-free Galerkin method (EFG) [6], the repro-
ducing kernel particle method (RKPM) [22], the partition of unity (PUM) [2], and
the natural element method (NEM) [39] have been proposed. The NEM offers out-
standing properties for the simulation of problems involving large transformations and
adaptive refinements due to the following properties : (a) essential boundary can be
enforced directly as the NEM shape functions satisfies the Kronecker delta property,
and are also strictly linear over the boundaries of the convex hull (it has been extended
to non convex geometries in [46]); (b) the support of the shape functions, constructed
on the basis of the underlying Voronoi diagram (dual of the Delaunay triangulation),
automatically adapts its size and shape to the local neighborhood, whatever the com-
plexity and density of of the surrounding nodal distribution; (c) the accuracy does
not depend significantly on the relative position of the nodes (shape of the Delaunay
triangles), and it reslults equivalent to quadrangular/hexahedral finite elements [42]
even when Delaunay triangles become very distorted. Is noteworthy that this prop-
erty greatly simplifies the treatment of complex three-dimensional domains, as the
Delaunay triangulation is unique for a given set of nodes.

In this paper, we analyze the application of the C-NEM to the simulation of dy-
namic thermo-elastoplastic behaviors, involving large transformations combined with
an adaptive strategy based on the attractive features of the NEM. In section 2, the
natural element method is briefly reviewed, as well as its extension for arbitrary (non
convex) geometries that results in the constrained natural element method (C-NEM)
[46]. In section 3, a Lagrangian formulation of the coupled thermo-mechanical prob-
lem in large transformations is established. In section 4, a strategy for refinement and
adaptivity in the NEM (or C-NEM) context is proposed, based on the attractive fea-
tures of the NEM. A simple error indicator using the Zienkiewicz-Zhu [47] paradigm
in tandem with the stabilized conforming nodal integration is proposed. A refinement
strategy based on the underlying Voronoi diagram is proposed, which allows refine-
ment through arbitrary unstructured clouds of nodes. A nodal-NEM formulation [43]
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Figure 1. Construction of the Sibson shape functions.

is also used to define the internal variables, usually defined at the integration points in
the context of FEM, at the nodes, which greatly simplifies the transfer of these vari-
ables through successive updates of the reference configuration. Finally, the technique
is applied in section 5 in the context of dynamic shear bands propagation in metals.

2. The constrained natural element method

2.1. Natural neighbor interpolation

We briefly touch upon the foundation of Sibson’s natural neighbor coordinates
(shape functions) that are used in the natural element method. For a more in-depth dis-
cussion on the Sibson interpolant and its application for solving second-order partial
differential equations, the interested reader can refer to Braun and Sambridge [31], and
Sukumar et al. [39]. The NEM interpolant is constructed on the basis of the Voronoi
diagram. The Delaunay tessellation is the topological dual of the Voronoi diagram.

Consider a set of nodes S = {n1, n2, . . . , nN} in �dim. The Voronoi diagram is
the subdivision of �dim into regions Ti (Voronoi cells) defined by:

Ti = {x ∈ �dim : d(x,xi) < d(x,xj),∀j �= i}, ∀ i (1)

The Sibson coordinates of x with respect to a natural neighbor ni (see Fig. 1) is
defined as the ratio of the overlap area (volume in 3D) of their Voronoi cells to the
total area (volume in 3D) of the Voronoi cell related to point x:

φi(x) =
Area(afghe)

Area(abcde)
(2)
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If the point x coincides with the node ni, i.e. (x = xi), φi(xi) = 1, and all
other shape functions are zero, i.e. φi(xj) = δij (δij being the Kronecker delta). The
properties of positivity, interpolation, and partition of unity are then verified [39]:

⎧⎨
⎩

0 ≤ φi(x) ≤ 1
φi(xj) = δij∑n

i=1 φi(x) = 1
(3)

The natural neighbor shape functions also satisfy the local coordinate property
[40], namely:

x =
n∑

i=1

φi(x)xi (4)

which combined with Eq. (3) implies that the natural neighbor interpolant spans the
space of linear polynomials (linear completeness).

It turns out that the support of φi(x) is the union of the n circles (spheres in 3D)
passing through the vertices of the n Delaunay triangles (tetrahedra) containing the
node ni (in this case n is the number of natural neighbors of node ni). The support of
a node ni in a particular nodal distribution is depicted in figure 2.

Natural neighbor shape functions are C∞ at any point except at the nodes, where
they are only C0, and on the boundary of the Delaunay circles (spheres in 3D) where
they are only C1, because of the discontinuity in the neighbors nodes across these
boundaries. Hiyoshi and Sugihara [14] have shown that the Sibson interpolant be-
longs to a more general class of Voronoi-based interpolants, called k-th order stan-
dard coordinates, proving that the interpolant generated by the k-th order standard
coordinates have Ck continuity on the Delaunay circles (spheres) boundaries. In this
context, the Sibsonian and non-Sibsonian (Laplace) coordinates [4] results to be the
standard coordinates of order 1 and 0, respectively.

Another important property of this interpolant is the ability to reproduce linear
functions over the boundary of convex domains. The proof can be found in Sukumar
et al. [39]. An illustration is depicted in Fig. 1 (b): as the areas associated to points
on the boundary become infinite, the contribution of internal points vanish in the limit
when the point approaches the convex boundary, and the shape functions associated
with nodes n1 and n2 become linear on the segment (n1 − n2). This is not true in
the case of non convex boundaries, and the next section focuses on an approach to
circumvent this difficulty.

Consider an interpolation scheme for a function (vectorial, scalar or tensorial)
u(x), in the form:

uh(x) =

n∑
i=1

φi(x) ui (5)
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Figure 2. Support of the natural shape function related to node ni.

where ui are the nodal values at the n natural neighbor nodes, and φi(x) are the shape
functions associated with each neighbor node. It is noted that Eq. (5) defines a local
interpolation scheme. Thus, the trial and test functions used in the discretization of the
variational formulation describing both the mechanical and thermal problems treated
in this paper take the form of Eq. (5).

2.2. The Constrained natural element method

2.2.1. Constrained Voronoi diagram

In its original form [39], the NEM can only be applied to strictly convex domains.
For non-convex domains, two main issues occur : (a) It was proved in [39, 46] and [9]
that a loss of linearity in the interpolation along boundaries of non convex domains
appear. Thus essential boundary conditions can only be imposed directly over convex
boundaries; (b) For strongly non-convex domains (cracks, auto-contact...) some spuri-
ous influences between nodes of the boundaries appear [46]. An additional treatment
is thus required to maintain all the properties of the NEM for any geometry.

In order to avoid these drawbacks, we have proposed in a previous paper [46] an
extension of the NEM in which a visibility criterion is introduced in order to restrict
influent nodes among natural neighbors. The computation of the shape functions is
done on the basis of the so-called constrained (or extended) Voronoi diagram (CVD),
which is the strict dual to the constrained Delaunay triangulation, introduced by Sei-
del in [35], instead of the Voronoi diagram (see [46] for further details). The intersec-
tion between the CVD and the domain results into new cells TC

i , called constrained
Voronoi cells, defined formally by:

TC
i = {x ∈ �n : d(x,xi) < d(x,xj), ∀j �= i, Sx→ni

∩ Γ = ∅, Sx→nj
∩ Γ = ∅}

(6)
where Γ is the domain boundary, composed by a set of segments li ∈ L and Sa→b

denotes the segment between the points a and b. In this framework, a point located
inside a cell TC

i is closer to the node ni than to any other visible node nj .
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The constrained Delaunay triangulation does not always exist in 3Dwithout adding
new nodes, as shown in [32]. Nevertheless, some techniques for constructing 3D
constrained Delaunay tessellations are available and provided in [33, 34] by adding
Steiner points.

2.2.2. The constrained natural element approximation

In order to solve partial differential equations defined on non convex domains, or
to reproduce functional discontinuities, we consider the following approximation for
both the trial and the test functions:

uh(x) =
V∑

i=1

φC
i (x)ui (7)

where V is the number of natural neighbors visible from point x and φC
i is the con-

strained natural neighbor shape function related to the i-th node at point x. The com-
putation of the C-n-n (constrained natural neighbor) shape functions is similar to the
natural neighbor shape function, when one proceed using the constrained Voronoi
diagram introduced previously. It was shown in [46] and [45] that the use of the
constrained Voronoi diagram does not affect the properties of the NEM interpolation,
allowing the extension of the linearity of the shape functions to any geometry, convex
or not.

The ability of the C-NEM for treating problems involving cracks has been illus-
trated in [46] and in the context of moving interfaces in [45], where we have shown
how the C-NEM simplifies the treatment of material discontinuities in meshfree meth-
ods, due to the continuity of the approximation across interfaces (consequence from
the interpolant character and linearity of the C-NEM shape functions over any external
boundary or internal interface). It is noteworthy that no size parameter is involved in
the definition of the influent nodes (neighbors), which is essential for the robustness of
refinement procedures, in which the nodal density varies in some parts of the domain.

3. Formulation of the coupled thermo-mechanical problem

3.1. Preliminaries

In this section, we summarize briefly some fundamental kinematic relations and
introduce the appropriate notations. We consider two configurations of a body B : the
first one, the reference configuration Ω0 ⊂ �dim with external boundary ∂Ω0 (not
necessarily the initial configuration), where X denotes the coordinates of a point in
this configuration. The second, called current configuration, is denoted byΩx ⊂ �dim

with external boundary ∂Ωx at time t, with x the coordinates of a point in the current
configuration. x is related to X by :

x = X + u(X, t) (8)
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the deformation gradient is defined by:

F =
∂x

∂X
= 1 + ∇Xu, J = det(F) > 0 (9)

From now on, we use a hyperelastic formulation based on the multiplicative de-
composition of the deformation gradient, with elastic response described by a hyper-
elastic stored energy function. In this context, elastic predictor becomes exact and the
need for incrementally objective algorithms is entirely avoided.

The basic hypothesis underlying this approach to finite strain elastoplasticity is the
multiplicative split of the deformation gradient, F, into elastic and plastic parts:

F = FeFp (10)

This assumption, firstly proposed by Lee [18], admits the existence of a local un-
stressed intermediate configuration. Following the multiplicative split of F, the veloc-
ity gradient, L = ḞF−1 can be decomposed additively as

L = Le + Lp (11)

where Le and Lp are, respectively, the elastic and plastic contributions defined by:

Le = Ḟe[Fe]−1, Lp = FeḞp [Fp]
−1

[Fe]
−1 (12)

Similarly, the stretching tensor, D := sym[L], can be decomposed as:

D = De + Dp (13)

with the elastic and plastic stretching tensors given by

De = sym[Le], Dp = sym[Lp] (14)

3.2. Hyperelastic constitutive law

From polar decomposition, Fe is given by

Fe = ReUe (15)

where Ue and Re are, respectively, the elastic right stretch tensor and the elastic
rotation.

Let εe denote the Eulerian (or spatial) logarithmic strain tensor [3]

εe = ln[Ue] (16)
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where ln[.] above denotes the tensor logarithm of (.) which involves spectral de-
composition ofUe. Following Peric̀ et al. [30], we assume the existence of a quadratic
strain energy functionψe(εe) in the form of a scalar symmetric function of its stretches
λi (i = 1, 2, 3) given by:

ψe(λe
1, λ

e
2, λ

e
3) = μ

[
ln(λe

1)
2 + ln(λe

2)
2 + ln(λe

3)
2
]
+

1

2
λ(Je)2 (17)

where μ and λ are Lamé’s parameters and (Je) = λe
1λ

e
2λ

e
3 is the Jacobian. After

applying standard procedure, the following hyperelastic constitutive equation is ob-
tained:

T =
∂ψe

∂εe
= Ce : εe (18)

whereT is the rotated stress tensor. Assuming incompressibility of the plastic flow, it
is expressed as:

T = [Re]
T
τRe (19)

where τ = Jσ is the Kirchhoff stress tensor, Ce is the fourth-order isotropic elastic
tensor. Further details about the thermo mechanical foundations can be found in [12].

3.3. Numerical integration of the constitutive equations

Typically, within an incremental numerical procedure for solving history depen-
dent problems, a numerical approximation to the material constitutive law is needed
to update stresses τ as well as the internal variables α ≡ ε̄p (equivalent plastic strain)
within each time (load) increment. In the present context, given the values of the vari-
ables {τn, Fp

n, αn} at the beginning of a generic increment [tn, tn+1], an algorithm
is required to update

{
τn+1, F

p
n+1, αn+1

}
at the end of the increment.

Under the assumption of elastic isotropy, the elastic Eulerian logarithmic strains
tensor is updated according to:

εe
n+1 = εe trial

n+1 − ΔγNn+1 (20)

which has the same format that the standard return mapping used in the infinitesimal
theory [12, 36, 11, 38].

Nn+1 =
3

2

dev(Tn+1)

J2(Tn+1)
(21)

where J2(.) is the second invariant of (.). The trial elastic logarithmic strain
εe trial

n+1 is given by:

εe trial
n+1 = ln[Ue trial

n+1 ] (22)
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where Ue trial
n+1 results from polar decomposition of Fe trial

n+1 defined by:

Fe trial
n+1 = Fn+1(F

p
n)

−1 (23)

From Eq. (18) we have:

dev(Tn+1) = 2μdev(εe
n+1) (24)

Using Eq. (20), Eq. (21) and Eq. (24) we obtain:

dev(Tn+1) = dev(Ttrial
n+1 ) − 3μΔγ

dev(Tn+1)

J2(Tn+1)
(25)

with:
Ttrial

n+1 = Ce : εe trial
n+1 (26)

which leads to :

J2(Tn+1) = J2(T
trial
n+1 ) − 3μΔγ (27)

We assume that fy
trial
n+1 = J2(T

trial
n+1 )− σy(Δγ) is a non-linear scalar function. In

the case of a plastic increment (fy
trial
n+1 > 0), we must solve for Δγ :

J2(T
trial
n+1 ) − 3μΔγ − σy(Δγ) = 0 ↔ J2(Tn+1) − σy(Δγ) = 0 (28)

A classical Newton-Raphson procedure has been used in this work to solve the
above equation.

Using Eq. (25) we obtain :

dev(Tn+1) =
dev(Ttrial

n+1 )

1 + 3μΔγ
J2(Tn+1)

(29)

with J2(Tn+1) defined accorind to Eq. (27) and:

Tn+1 = dev(Tn+1) +
1

3
Tr(Ttrial

n+1 ) (30)

The Cauchy stress tensor may thus be obtained as:

σn+1 =
1

det(Fn+1)

[
Retrial

n+1

]
−T

Tn+1

[
Retrial

n+1

]
−1

(31)

Finally using Eq. (20) and Eq. (22), and assuming that :

Re
n+1 = Re trial

n+1 (32)
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Box 1. Algorithm for integration of constitutive equations.
(i) For given displacement un+1, evaluate total deformation gradient

Fn+1 = 1 + ∇Xun+1 = 1 + B(X)un+1

with B(X) a matrix containing the shape functions derivatives
in the reference configuration.

(ii) Evaluate elastic trial deformation gradient
(Fe)

trial
n+1 = (Fn+1)(F

p
n)

−1

(iii) Perform polar decomposition of (Fe)
trial
n+1

(Fe)
trial
n+1 = Re

n+1U
e trial
n+1

(iv) Evaluate elastic trial logarithmic strain tensor
(εe)

trial
n+1 = ln[Ue trial

n+1 ]
(v) Evaluate trial stress tensor :

Ttrial
n+1 := Ce : (εe

n+1)
trial

(vi) Check plastic consistency condition
IF J2(T

trial
n+1 ) − σn

y ≤ 0 THEN :
(.)n+1 = (.)trial

n+1 and RETURN

ELSE go to (vii)
(vii) Plastic corrector (solve for Δγ)

J2(Tn+1) − σn+1
y (Δγ) = 0, with J2(Tn+1) = J2(T

trial
n+1 ) − 3μΔγ

(viii) Update Cauchy stress tensor
σn+1 = J−1

n+1[R
e
n+1]

−T Tn+1R
e−1
n+1, with Tn+1 = dev(Tn+1) + 1

3Tr(Ttrial
n+1 )1

dev[Tn+1] =
dev[Ttrial

n+1 ]

1+Ξ , Ξ = 3μΔγ
J2(Tn+1)

(ix) Update plastic part of deformation gradient
F

p
n+1 = exp[ΔγNn+1 ]Fp

n , Nn+1 = 3
2

dev(Tn+1)
J2(Tn+1)

we obtain, after some calculations, the following incremental law for Fp (see [12,
36, 11]) :

F
p
n+1 = exp[ΔγNn+1 ]Fp

n (33)

As noticed in [30], as a consequence of the exponential mapping in the implicit
integration of the plastic flow rule, the incompressibility of the plastic flow for pres-
sure insensitive yield criteria is carried over exactly to the incremental rule (33). The
algorithm, therefore, generalizes the standard return mapping algorithms [37] of the
infinitesimal theory. The overall algorithm for the incremental stress update is outlined
in Box 1.
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3.4. Explicit Lagrangian procedure

With the principle of virtual work as a basis of kinematically based C-NEM so-
lution scheme, the corresponding continuum incremental boundary value problem is
formulated in the spatial configuration as follows.

∫
Ωt

ρ(t)ü·ηdΩt+

∫
Ωt

σt : ∇xηdΩt =

∫
Ωt

ρ(t)b·ηdΩt+

∫
∂Ωt

σ

t·ηdΓt ∀η ∈ ϑ (34)

where ϑ is the space of virtual displacements. The properties dΩt = J tdΩ0 and
ρ0dΩ0 = ρ(t)dΩt are used, which leads to:

∫
Ω0

ρ0ü·ηdΩ0+

∫
Ω0

Pt : ∇XηdΩ0 =

∫
Ω0

ρ0b·ηdΩ0+

∫
∂Ωt

σ

t·ηdΓt ∀η ∈ ϑ (35)

where P denotes the first Piola-Kirschhoff stress tensor related to σ by P = JF−1σ.

The C-NEM discretization (7) of the variational form (35) results in the discrete
set of algebraic time dependent equations which may be expressed, in matrix form,
as:

Mün+1(t) = Fext
n (t) − Fint

n (un, t) (36)

where t is the time, M denotes the mass matrix, Fint
n (u, t) the internal force vector,

while Fext
n (t) is the external force vector, expressed, respectively, by:

M =

∫
Ω0

ρ0φ
T (X)φ(X)dΩ0 (37)

Fint
n (un, t) =

∫
Ω0

JnF−1
n σnB(X)dΩ0 (38)

Fext
n =

∫
∂Ωt

σ

φT (x)tdΓt (39)

with φ(X) a matrix containing the shape functions in the reference configuration and
B(X) a matrix containing the shape functions derivatives also in the reference config-
uration. As shown in the next section, the use of the SCNI quadrature [10] results in a
M matrix diagonal, whose diagonal terms are given by mi = ρ0Ωi, with Ωi the area
(volume in 3D) of the Voronoi cell related to node ni.

The velocity v = u̇ and acceleration ü = v̇ are approximated by using central
differences with variable time steps. Thus, we have:

11



vn+1/2 = vn−1/2 +
Δt1 + Δt2

2
ün (40)

un+1 = un + Δt2vn+1/2 (41)

Finally, the general explicit algorithm is outlined as follows. Being known the
initial conditions or the computed solution at time: tn: un, vn−1/2, ün, Fn, Fp

n:

(i) Update displacements and velocity
vn+1/2 = vn−1/2 + Δt1+Δt2

2 ün

un+1 = un + Δt2vn+1/2

(ii) Evaluate σn+1, Fp
n+1 by using Box 1.

(iii) Update accelerations ün+1

(üi)n+1 = 1
mi

{
(F ext

i )n+1 −
[
F int

i

]
n+1

}

Remark: In case of contact, ün+1 is only used as a predictor phase, which has to
be corrected according to the prescribed displacements or traction.

3.5. Thermo-mechanical coupling

The weak form of the heat balance can be expressed as

∫
Ωt

ρ(t)c(t)Ṫ ηdΩt +

∫
Ωt

k(t)∇xT ·∇xηdΩt =

∫
Ωt

rtηdΩt +

∫
∂2Ω

q̄ηdΓt ∀η ∈ VT

(42)

where c(t) is the specific heat, k(t) is the thermal conductivity for isotropic con-
duction, and rt a heat source related to the inelastic deformations, defined at time t.
In the following, we assume c and k constant in time. VT is the space of virtual tem-
peratures and q̄ represents the heat transfer at the boundary ∂2Ω. Following similar
arguments as in the mechanical problem (34), the weak form of the heat balance can
be expressed in the reference configuration by

∫
Ω0

ρ0cṪ ηdΩ0 +
∫
Ω0

k∇XTF−T F−1∇XηdΩ0 =
∫
Ω0

det(F)rtηdΩ0+

+
∫

∂2Ω
q̄ηdΓt ∀η ∈ VT (43)

The C-NEM discretization of Eq. (43) results in the ODE system:

CṪ + KT = Q (44)

12



which in the context of an explicit scheme can be written as

CTn+1 = [C + ΔtK]Tn + ΔtQn

with

C =

∫
Ω0

ρ0cφ
T (X)φ(X)dΩ0 (45)

K =

∫
Ω0

kBT (X)F−T F−1B(X)dΩ0 (46)

Qn =

∫
∂Ωt

2

φT (x)q̄dΓt (47)

The matrix C becomes diagonal in the context of C-NEM when stabilized con-
forming nodal integration is used, being the diagonal terms ci = ρ0cΩi. The heat
source resultig from the inelastic deformations is given by

rt = χσt : D̂p
t (48)

with

D̂
p
t = sym

[(
Ḟ

p
t

)
(Fp

t )
−1

]
(49)

where σt is the Cauchy stress tensor et time t, and χ is the Taylor-Quinney param-
eter [41] representing the fraction of plastic work converted into heat. In the present
work, we have used χ = 0.9 [26]. The thermo-mechanical coupling is carried out by
the effects of inelastic deformations (48) and by the softening effects due to temper-
ature in the hardening law. The hardening law adopted in the present simulation is
given by the classical Johnson-Cook law [15]

σy(ε̄p) = [A + B(ε̄p)n]
[
1 + Cln

(
˙̄εp

˙̄εp
0

)] [
1 −

(
T−T0

Tf−T0

)m]
(50)

where A, B, C, m, n and ˙̄εp
0 are material parameters, ε̄p represents the equivalent

plastic strain and ˙̄εp represents the rate of plastic strain. T and T0 correspond to the
current and initial temperature respectively.

When mechanical and thermal problems are coupled, a staggered solution ap-
proach is usually adopted, which solves the mechanical and the thermal problems
in an uncoupled manner with data exchange performed at the end of each time step
or increment. In particular, the nodal temperatures are transferred to the mechanical
procedure, while plastic work is communicated to the thermal solver.
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Figure 3. Representative domain around a node for the evaluation of F̃i.

4. Refinement and adaptivity in the C-NEM

In this section, an adaptive strategy is proposed for non-linear problems with
history-dependent internal variables in the C-NEM context, including : (a) a Zienkiewicz-
Zhu error indicator [47] based on equivalent plastic strain; (b) a transfer technique
based on the stabilized conforming nodal integration [10] and (c) a refinement strat-
egy for domains evolving in time based on the Voronoi cells.

4.1. Transfer of internal variables with nodal integration

In the context of the finite element method, the transfer of internal variables be-
tween successive remeshing operations is an important issue (see i.e. [19, 7, 30]). In
this work, we use the stabilized conforming nodal integration proposed by Chen et
al. [10] to define all variables at the nodes, in order to avoid projection between two
successive actualization of the reference configuration (update of the Voronoi diagram
and shape functions).

We thus consider a deformation gradient at node ni:

F̃i =
1

|Ωi|
∫

Ωi

(∇Xuh(x) + 1
)
dΩ = 1 + ∇̃Xuh(xi) = 1 + B̃iui (51)

whereΩi is a representative domain around the node (typically a Voronoi cell) (see
fig. 3). Introducing C-NEM discretization scheme into (51) we obtain:

∇̃Xuh(xi) =

⎡
⎢⎢⎣

uh
,X(xi)

uh
,Y (xi)

vh
,X(xi)

vh
,Y (xi)

⎤
⎥⎥⎦ = B̃iui (52)
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where B̃i is expressed by:

B̃i =

⎡
⎢⎢⎣

φ̃1,X 0 φ̃2,X 0 . . . φ̃N,X 0

φ̃1,Y 0 φ̃2,Y 0 . . . φ̃N,Y 0

0 φ̃1,X 0 φ̃2,X . . . 0 φ̃N,X

0 φ̃1,Y 0 φ̃2,Y . . . 0 φ̃N,Y

⎤
⎥⎥⎦ (53)

with
φ̃i,X =

∫
Ω

φi,X(X)dΩ (54)

φ̃i,Y =

∫
Ω

φi,Y (X)dΩ (55)

where ui are the nodal displacements. In the context of a Lagrangian procedure,
different options can be considered:

1) A total Lagrangian procedure, where the Voronoi diagram as well as the shape
functions are computed only once at the beginning of the simulation;

2) An updated Lagrangian procedure where the Voronoi diagram and the shape
functions are adapted every time steps.

3) A periodically updated Lagrangian procedure where the Voronoi diagram and
the shape functions are computed after several total Lagrangian steps.

In the context of a total Lagrangian procedure, no internal variable transfer is nec-
essary. Nevertheless, in updated Lagrangian procedures (2) and (3), it is necessary to
update the reference configuration, which implies to reconstruct the new Voronoi di-
agram associated with the new nodal distribution, as well as the new shape functions.
In that case, the use of the assumed gradient defined in (51) allows the definition of
all internal variables at the nodes. In the case of an explicit procedure, all quanti-
ties defined in the former time step are defined at the nodes in the same way. If the
same cloud of nodes is used through the whole simulation, the transfer is thus direct
as integration points coincide with the nodes. If a different cloud of node is used
during the simulation (due to the refinements or nodal repositioning, a direct C-NEM
interpolation (7) can be performed to define the internal variable the new nodes.

4.2. Error indicator based on equivalent plastic strain

In the context of the finite element method, adaptive strategies have been exten-
sively applied and continuously developed for linear [17] [1] [47] and some class
of nonlinear problems and history-dependent nonlinear problems over the last two
decades or so (see i.e. Ladevèze et al. [16], Belytschko et al. [5], Ortiz et Quigley
[28], Gallimard et al. [13], among many others).

The present section aims to propose a simple error indicator for adaptive solutions
of large elasto-plastic transformations in the C-NEM framework. In the context of
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the finite element method, an elementary procedure for the error estimation may be
defined by substituting the exact solution by some post-processed field obtained from
the available FEM solution. When the finite element solution is accurate enough,
the post-processed solution is expected to be more accurate than the original FEM
solution. In particular, the a posteriori error estimation procedure originally proposed
and used by Zienkiewicz and Zhu [47] for linear elliptic problems is based on the
observation that exact stress σ may be represented accurately by smoothed stress σ∗

obtained by a suitable projection of stresses σh.

In the context of meshless methods, the field σh is smooth in the general case,
unlike in the FEM. Many options have been considered to construct error indicators in
meshfree methods, mostly using some recovery Zienkiewicz-Zhu fields (see the work
by Liu et al. [23], You et al. [44], Chung et Belytschko [8], Lee et Zhou [21, 20]
and Lu et Chen [25] for an overview of the recent proposed techniques). In most of
the referred papers in which a MLS approximation is used, an important issue is the
influence of the shape function support size on the efficiency of error estimates [8].
Furthermore, it has been shown in [20] that adaptive refinement in MLS meshless
techniques is a delicate task due to the necessity to adapt locally the shape function
support according to the local nodal density. In the following, an error indicator based
on the NEM shape functions is proposed to circumvent the just referred difficulties,
as the NEM shape functions support automatically adapts its shape and size to the
surrounding neighborhood.

We propose a simple error indicator using the Zienckiewicz-Zhu idea in tandem
with the stabilized conforming nodal integration. Let α(X, t) a variable either as-
sociated with the spatial derivatives (i.e. F(X, t)), or with internal variables (i.e.
ε̄p(X, t)). In the C-NEM context, the stabilized conforming nodal integration scheme
proposed by Chen et al. [43] produces constant piece-wise fields associated with the
different derivatives, discontinuous across the Voronoi cells. This is a consequence of
the stabilization scheme used in (51). In addition, the different internal variables can
be considered at the nodes, as we have nodal integration. Constant fields αh(Xi, t)
associated with variables α(X, t) can thus be considered in each Voronoi cell Ωi. A
simple solution for recovery fields α∗(X, t) with assumed better accuracy is to inter-
polate the nodal values of αh(Xi, t) with the C-NEM interpolation scheme:

α(X, t)
∗

=
V∑

i=1

φC
i (X)αh(Xi, t) (56)

Then, the error based on the equivalent plastic strain for any cellΩi may be defined
in the reference configuration, as:

|e|2Ωi
=

∫
Ωi0

([ε̄p(X, t)]
∗ − [ε̄p(Xi, t)]

h
)
2
JidΩ0 (57)

with:
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[ε̄p(X, t)]
∗

=

V∑
j=1

φc
j(X)[ε̄p(Xj , t)]

h
, Ji = det(F̃i) (58)

Where [ε̄p(Xj , t)]
h is the equivalent plastic strain associated with the natural neigh-

bor nj of point x, assumed constant in the constrained Voronoi cell Ωj . In order
to evaluate (57), the constrained Voronoi cells are triangulated and standard Gauss
quadrature is applied on the triangles.

Any kind of error indicators can be constructed on the above framework, i.e. error
indicators based on rate of plastic work or based on damage [30]. For the sake of
simplicity, we only focus in this study on the error indicator described below. The
global error is obtained, in a standard way, by : |e|2Ω =

∑N
i |e|2Ωi

. In addition, the
relative error η is defined as ηi := |e|Ωi

/|e|Ω

4.3. Refinement strategy based on the Voronoi cells

To adapt the nodal density to the evolution of plastic deformation, we must define
a limit global error η̄ and a local (in each cell) limit error η̄i satisfying:

η̄2 =

N∑
i=1

(η̄i)
2 (59)

If we assure a uniform limit error η̄i = η̄∗, ∀i then:

η̄∗ =
η̄√
N

(60)

Following Zienckiewicz et. al [48], we propose to determine the characteristic
length of the new cell compared to its parent cell (which has been divided to generate
new cells). For this purpose, we assume a rate convergence in energy norm of p
(O((hp))). We thus have:

hnew
i

hold
i

=

[
η̄∗
ηi

] 1
p

=

[
η̄|e|Ω√
N |e|Ωi

] 1
p

(61)

As noticed in former studies [46, 39], the convergence rate in the natural element
method is of the same order as that obtained in the FEM using linear finite elements
(due to the linear consistency of the Sibson interpolant), that is p = 1. To deter-
mine when a cell has to be subdivided, we assume that the characteristic length of the
offspring cells are twice lower (see fig. (4)), for sake of simplicity.

hnew

hold
≤ 1

2
(62)
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(a)

(b)

Figure 4. Refinement procedure based on the Voronoi cells. (o): additional nodes.

The criterion for Voronoi cell subdivision is then defined by:

[
η̄|e|Ω√
N |e|Ωi

] 1
p

≤ 1

2
(63)

Figure 4 shows different refinement possibilities based on the Voronoi diagram.
On the left is depicted the Voronoi diagram before insertion of new nodes. On the
right is depicted the updated Voronoi diagram. In the strategy depicted in figure 4
(a), new nodes are added on the vertex of the Voronoi cell when the criterion (63) is
satisfied. This strategy has been used by several authors [44] [25] for refinement in
unstructured scattered of nodes. In the strategy depicted in figure 4 (b), new nodes are
added between the node associated with the cell and the neighbors, when the criterion
(63) is satisfied. We recommend to use the strategy (b), as in the case of strategy (a),
for regular grids, several additional nodes can be inserted at the same position. These
two strategies allow refinement in unstructured set of nodes and are consistent with the
error indicators based on the Voronoi cells described below. In addition, no parameter
is associated with the shape functions support size (see Fig. 2), which simplifies the
adaptive analysis when the nodal density is significantly different in some parts of the
domain.
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4.4. Dynamic refinement strategy

We propose the following strategy for dynamic refinement: starting for the refer-
ence configuration (at time t0), several Lagrangian increments are performed until a
chosen time ta. At time ta, errors are evaluated using (57). If maximal accepted error
is reached in some cells, new nodes are added according to the refinement strategy de-
scribed in fig 4 (b) in the reference configuration. The computation then restart from
time t0 with the new nodes until time ta. The procedure continues while the error is
lower than the prescribed limit in all the cells of the domain. Then the configuration
is updated at time ta, which will constitute the new reference configuration.

5. Numerical example

High-speed shearing is a new metal cutting operation which offers significant ad-
vantages compared to traditional shearing. In this process, the high velocity of the
punch induces adiabatic shear bands which combined with the damage phenomena
produces high-quality of the cutting zone, without any burr formation. This process al-
lows to perform shearing in high strength material such as titanium or stainless steels,
or to produce holes in plates with relatively large thickness (up to 20mm) in traditional
metals such as aluminum.

The example shows a first insight into the simulation of a plane-strain, high-speed
shearing operation using the error indicator and the refinement procedure described
previously. The geometry of the problem is depicted in Fig. 5. The following material
data for stainless steel 304L have been used: A = 253 MPa, B = 685 MPa, C = 0.0973
n = 0.312, m = 2.044, ˙̄εp

0 = 1; T0 = 296 K, Tf = 1698 K, E = 210 GPa, ν = 0.33, c
= 500 J/kgK, k =5.86 J/JgmK, ρ = 7850 kg/m3. The initial velocity of the punch is
taken as V = 11 m.s−1.

The main aim was to illustrate the capability of the refinement procedure to capture
the details of the shear bands when different geometries of the tools are used. The
high speed of the punch, combined to the material characteristics, induces high strain
localization. The high rate of energy generation induced by the plastic deformation
and the low thermal diffusivity of the material causes localized heating, which in turn,
causes thermal softening and consequently localized plastic deformation. Two test
have been performed using the following geometrical parameters: Rp = 5 mm, L = 20
mm, H = 10 mm and j = 0.2 mm.

In a first test, zero corner radii R1 and R2 have been used. Figure 6 shows the
refined nodal distribution during the shear band formation. Fig. 7 illustrates the evo-
lution of the underlying Voronoi diagram used for the refinement procedure in half of
the workpiece. Fig. 8 depicts the equivalent plastic strain. In this first example, the
direction of the shear band is observed parallel to the punch speed direction.

In a second test, corner radii R1 = 0.5 mm and R2 = 0.5 mm have been used. We
can notice that the increase in the corner radius induces inclined shear bands, which
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Figure 5. High-speed shearing: geometry of the problem.

causes conical deformation in the workpiece and lower quality of the manufactured
workpiece. The present procedure was able to capture the phenomena, as illustrated
from Fig. 9 and Fig 10.

6. Conclusion

In this paper, a framework for practical implementation of the natural element
method in the context of explicit thermo-elastoplasticity involving a strategy for dy-
namic adaptive refinement in this framework has been presented. The present proce-
dure offers some outstanding advantages in large transformations including localiza-
tion: (a) the C-NEM provides equivalent accuracy than the quadrilateral/hexahedral
finite elements by only using the Delaunay triangulation of the current set of nodes; (b)
the meshfree features of the technique allows frequent updates of the reference con-
figuration without special attention on the relative position of the nodes; (c) the use of
a stabilized conforming nodal integration simplifies the transfer of internal variables
between successive updates as integration points coincide with the nodes; (d) the un-
derlying Voronoi diagram allows refinement through unstructured scattered of nodes;
(e) no size parameter is involved in the definition of the neighbors, which is essen-
tial in refinement procedure, where the nodal density is different in some parts of the
domain. An example involving dynamic shear bands progression in metal has been
presented to illustrate the potentiality of the proposed technique.
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t = 0.6 μ s

t = 1.2 μ s

t = 1.6 μ s

t = 8.6 μ s

Figure 6. High-speed shearing (R1 = 0 mm and R2 = 0 mm): adaptive refinement
during shear band formation .21



Figure 7. High-speed shearing (R1 = 0 mm and R2 = 0 mm): adaptive refinement
during shear band formation and constrained Voronoi cells.

Figure 8. High-speed shearing (R1 = 0 mm and R2 = 0 mm): shear band progression
(equivalent plastic strain).
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t = 0.6 μ s

t = 1.2 μ s

t = 1.6 μ s

t = 8.6 μ s

Figure 9. High-speed shearing (R1 = 0.5 mm and R2 = 0.5 mm): adaptive refinement
during shear band formation.
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Figure 10. High-speed shearing (R1 = 0.5 mm and R2 = 0.5 mm): shear band pro-
gression (equivalent plastic strain).
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