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In this paper, the features of the natural neighbor (Sibson) interpolant are used within the context of a constrained Voronoi diagram, dual to 
the constrained Delaunay triangulation, for treating moving interface (Stefan) problems. The constrained natural element method (C-NEM) 
uses the Voronoi cells instead of the Delaunay triangles for both interpolation and integration, and thus permits the use of very distorted
triangles in the Delaunay triangulation without loss of accuracy. The resulting interpolation is C1 (C∞ in the most part of the domain)
everywhere except at the nodes and across the interface, where it is C0, which allows an accurate treatment of models involving moving 
interfaces. Numerical experiments are performed for proving the accuracy of the method, as well as its promise.

Keywords:Natural neighbor interpolation; C-NEM; Constrained Voronoi diagram; Moving interface; Stefan problem
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1. Introduction

Phase boundaries represent material interfaces a
which several fields may exhibit sharp gradients, and e
discontinuities. A wide range of numerical methods h
been developed for treating these problems according to
pertinent physics and assumptions about the interface
When a sharp interface is considered, its motion is gove
by the jump in the temperature gradient normal to the ph
boundary and is accompanied by latent heat effects (
fan condition). In order to satisfy these conditions the m
common approach lies in explicitly tracking the interfa
motion. Within the interface tracking approach two main
ternatives exist: the moving mesh methods and the m
Eulerian–Lagrangian methods. Moving finite element m
methods conform element boundaries to the interface
evolves. Although these methods are very accurate, the
limited by severe mesh distortion. Thus, frequent reme
ing is needed, with the associated field projections betw
1

s

successive meshes. Moreover, remeshing is, even tod
delicatetask in three dimensions. Toalleviate remeshing ef
forts a number of Eulerian–Lagrangian methods have b
developed recently that track the interface while solving
equations on a fixed grid [28]. Many of these methods ef
tively smear the discontinuity over a few grid cells, and
therefore not capable of representing the true discontin
across the interface.

A new approach for representing localized behaviours
recently emerged in the field of the finite element meth
known as the partition of unity method [16]. The main idea
to extend the classical approximation considering the p
uct of the standard shape functions and local enrichm
functions. The extended finite element method (X-FEM
a variation on this technique. Recently, the X-FEM has b
coupled to the Level Set Method [27] to represent in
face [25]. In this way, the discontinuity evolution can
properly represented on a fixed background mesh, jus
adding an appropriate enrichment in the functional app
imation in the elements that are intersected by the mo
discontinuity [8]. However, when the material in which t

interface is moving, is subjected to large displacements, an



Nomenclature

T temperature
c volumetric heat capacity
k thermal conductivity
V interface velocity
|[q]| thermal flux jump across the interface
L volumetric latent heat of fusion
Tm melting temperature

β thermal diffusivity

η ratio of thermal diffusivities

Q heat sink intensity

erf error function

erfc complementary error function

Ei exponential integral
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updated Lagrangian description could be a better cho
When the background mesh evolves, remeshing will als
required to avoid large mesh distortions. In the contex
moving phase boundary problems, it has been shown in
that due to theC0 finite element shape functions, errors a
introduced when the moving interface crosses the edg
the elements.

To alleviate dependence on the mesh and to pro
smoother shape functions, the use of meshfree or mes
methods has been investigated. Meshless methods disc
a continuum body by a finite number of particles (or nod
and the field of interest is interpolated under these no
without the aid of an explicit mesh. Many meshless meth
have been proposed, including the smooth particle hydro
namics (SPH) [14], the Radial Basis Function methods
10] the diffuse element method (DEM) [18], the element f
Galerkin (EFG) [2], the reproducing kernel particle meth
(RKPM) [13], the HP clouds [6] and the partition of uni
method (PUM) [16].

The introduction of moving discontinuities in these me
less methods can present difficulties for the following r
sons:

(i) The quality of the approximation as well as the con
tioning of the global system is pathologically depend
on the size of the support of the shape functions;

(ii) Imposition of essential boundary conditions needs s
cial treatment;

(iii) Integration is not accurate enough; and
(iv) The physical discontinuity across the interfaces mus

introduced accurately.

In order to overcome these different problems, we p
pose the use of the constrained natural element me
(C-NEM) [30,31] for treating thermal models involvin
moving interfaces. This approach is an extension of the
ural element method [26] in which both trial and test fun
tions are constructed on the basis of the Voronoi based
terpolants [7,24]. These interpolants satisfy the Kronec
delta property and their support is defined by the union
the Delaunay spheres passing through the visible node
the C-NEM, the introduction of a visibility criterion and i

related constrained Voronoi diagram preserves the appealing

2

s
e

properties of the NEM in any geometry (convex or not) a
allows the introduction of material discontinuities.

Furthermore, the C-NEM is strongly related to the
nite element method through the following points: (a)
underlying structure is needed (the constrained Delau
triangulation/constrained Voronoi diagram); (b) the ext
nal boundary conditions can be imposed directly, due
the interpolant character and the strict linearity of the sh
functions along any kind of boundary or interface. Nevert
less, in the C-NEM, both interpolation and integration
not constructed on the basis of the Delaunay triangles
on its dual, the Voronoi diagram (which can be extende
constrained Delaunay triangulation [21] for non-convex
mains or when they involve fixed or moving discontinuit
which provides smoother approximation and allows to p
ceed on the basis of very distorted Delaunay triangles.
recent paper [31] the C-NEM has been successfully app
in some problems involving non-convex domains and cra
discontinuities [31].

The layout of this paper is as follow: in Section 2, w
introduce a simple mathematical model of a thermal pr
lem involving a moving interface (Stefan problem [29]).
Section 3, the C-NEM is summarized, and it will be appl
in Section 4 to discretize the weak formulation of the n
linear Stefan problem. A numerical benchmark is presen
in Section 5, which allows us to test the accuracy of the p
posed technique by comparing the numerical results with
exact solution of the problem.

2. Problem formulation

Let Ω ∈ �2 be a bounded domain andT the tempera-
ture field. On the domain boundaryΓ ≡ ∂Ω the temper-
ature or the thermal flux is prescribed. We will denote
Γ1 the domain boundary where the temperature is kno
T (x ∈ Γ1, t) = T (x, t) and by Γ2 the domain boundar
where the heat fluxq is imposed. The thermal model is d
fined in the time interval[0, tmax]. The initial temperature
T (x, t = 0) = T0, whereT0 is assumed to be higher tha
the material melting temperatureTm. At time, t = 0, a part
of the domain boundaryΓ1 is suddenly exposed to a tem
peratureT1 < Tm. A moving solidification frontΓI is then
generated, whose position evolves in time, i.e.,ΓI (t), divid-

ing the domainΩ in two regionsΩ1(t) (containing the solid
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Fig. 1. Two phases problem.

phase at timet ) andΩ2(t) (which contains the liquid phase
as shown in Fig. 1. For the sake of simplicity we will co
sider, from now on, a homogeneous and isotropic ther
model in both phases.

The heat transfer model is defined in each phase, neg
ing volumetric source terms as well as the motion in
liquid phase induced by thermal gradients, by:{

c1
∂T (x,t)

∂t
= ∇ · (k1∇T ) in Ω1(t)

c2
∂T (x,t)

∂t
= ∇ · (k2∇T ) in Ω2(t)

(1)

wherec1 andc2 are the volumetric heat capacities of bo
phases, andk1 andk2 are the respective thermal conducti
ties. The associated initial and boundary conditions are:{

T (x, t = 0)= T0 ∀x ∈ Ω

T (x, t) = T (x, t) ∀x ∈ Γ1, ∀t ∈ [0, tmax]
−k∇T (x, t) · n = q̄(x, t) ∀x ∈ Γ2, ∀t ∈ [0, tmax]

(2)

The evolution of the interfaceΓI (t) is described by a Ste
fan condition:

V
(
x ∈ ΓI (t)

) = |[q]|
L

nI (x) (3)

whereV is the interface velocity,L is the volumetric laten
heat of fusion,nI (x) is the normal vector to the interface
point x which is assumed to point into the liquid phase, a
|[q]| the thermal flux jump across the interfaceΓI (t), i.e.,

|[q]| = (
k1∇T

∣∣
Γ −

I (t)
−k2∇T

∣∣
Γ +

I (t)

)
nI (4)

The additional constraint prescribed on the interf
ΓI (t) is:

T (x, t) = Tm; ∀x ∈ ΓI (t) (5)

whereTm is the melting temperature.

3. The constrained natural element method (C-NEM)

In this section, the utility of the C-NEM to describe mo
ing interfaces and discontinuities in a fixed cloud of no
is discussed. After a brief review of the Voronoi-based
terpolants, we introduce the constrained Voronoi diag
which is used for computing the shape functions in any

main.

3
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(a)

(b)

Fig. 2. Construction of the Sibson shape functions.

3.1. Natural neighbor interpolation

We briefly touch upon the foundation of Sibson’s natu
neighbor coordinates (shape functions) that are used in
natural element method. For a more in-depth discussio
the Sibson interpolant and its application for solving seco
order partial differential equations, the interested reader
refer to Sambridge et al. [19], and Sukumar et al. [26]. T
NEM interpolant is constructed on the basis of the Voro
diagram. The Delaunay tessellation is the topological d
of the Voronoi diagram.

Consider a set of nodesS = {n1, n2, . . . , nN } in �2. The
Voronoi diagram is the subdivision of�2 into regionsTi

(Voronoi cells) defined by:

Ti = {
x ∈ �2: d(x,xi ) < d(x,xj ), ∀j �= i

}
, ∀i (6)

The Sibson coordinates ofx with respect to a natura
neighborni (see Fig. 2) is defined as the ratio of the ov
lap area (volume in 3D) of their Voronoi cells to the to
area (volume in 3D) of the Voronoi cell related to pointx:

φi(x) = Area(afghe)

Area(abcde)
(7)

If the point x coincides with the nodeni , i.e., x = xi ,
φi(xi ) = 1, and all other shape functions are zero, i
φj (xi ) = δij (δij being the Kronecker delta). The prope
ties of positivity, interpolation, and partition of unity are th
verified [26]:0� φi(x) � 1

φi(xj ) = δij∑ (8)
 n
i=1 φi(x) = 1
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The natural neighbor shape functions also satisfy the l
coordinate property [24], namely:

x =
n∑

i=1

φi(x)xi (9)

which combined with Eq. (8) implies that the natural neig
bor interpolant spans the space of linear polynomials (lin
completeness).

Natural neighbor shape functions areC∞ at any point
except at the nodes, where they are onlyC0, and on the
boundary of the Delaunay circles (spheres in 3D) where
are onlyC1, because of the discontinuity in the neighbo
nodes across these boundaries. Hiyoshi and Sugihar
have shown that the Sibson interpolant belongs to a m
general class of Voronoi-based interpolants, calledkth order
standard coordinates, proving that the interpolant generat
by thekth order standard coordinates haveCk continuity on
the Delaunay circles (spheres) boundaries. In this con
the Sibsonian and non-Sibsonian (Laplace) coordinate
results to be the standard coordinates of order 1 and 0
spectively.

Another important property of this interpolant is the ab
ity to reproduce linear functions over the boundary of con
domains. The proof can be found in Sukumar et al. [26].
illustration is depicted in Fig. 2(b): as the areas associate
points on the boundary become infinite, the contribution
internal points vanish in the limit when the point approac
the convex boundary, and the shape functions assoc
with nodesn1 andn2 become linear on the segment(n1–
n2). This is not true in the case of non-convex boundar
and the next section focuses on an approach to circum
this difficulty.

Consider an interpolation scheme for a scalar func
T (x) :Ω ⊂ �2 → �, in the form:

T h(x) =
n∑

i=1

φi(x)Ti (10)

whereTi are the nodal temperatures at then natural neigh-
bor nodes, andφi(x) are the shape functions associated w
each neighbor node. It is noted that Eq. (10) defines a l
interpolation scheme. Thus, the trial and test functions u
in the discretization of the variational formulation descr
ing the thermal problem treated in this paper take the f
of Eq. (10).

3.2. The constrained natural element method

3.2.1. Constrained Voronoi diagram
It was proved in [26,31] and [5] that spurious influenc

between “non-visible” nodes and loss of linearity in the
terpolation along boundaries of non-convex domains ap
in the framework of the NEM. In order to avoid this draw
back and to recover all properties of the method for
geometry (including non-convex domains containing cra

or involving field discontinuities), a visibility criterion is

4

]

-

t

(a)

(b)

Fig. 3. Interpretation of the constrained Voronoi diagram. (a) Schem
view of the CVD. (b) Constrained Delaunay triangulation with respec
segmentli and intersection between the dual CVD and the domain clos

introduced in order to restrict influent nodes among n
ural neighbors. The computation of the shape function
done on the basis of the so-called constrained (or exten
Voronoi diagram (CVD), introduced by Seidel in [21]. Ima
ine �2 is a sheet of paperΣ0, with the points of the set o
nodesS and the line segments defining the boundary in a
L, drawn on it. For eachli ∈ L, we cutΣ0 open alongli and
glue another sheetΣi , which also cut open alongli . The glu-
ing is done aroundli such that every traveler who crossesli
switches fromΣ0 to Σi and vice versa. A schematic vie
of the particular gluing necessary to achieve that effect i
lustrated in Fig. 3(a). We know what it means for two poi
on the primary sheet to be visible from each other. For o
pairs we need a more general definition. Fori �= 0, points
x0 ∈ Σ0 andyi ∈ Σi are visible ifxy crossesli , andli is the
first constraining line segment crossed if we traversexy in
the direction fromx to y.

In Fig. 3(b), the intersection between the CVD and
domain closure is depicted. The resulting diagram is c
posed of cellsT C

i , one for each nodeni , such that any poin
x insideT C

i is closer toni than to any other nodenj visible
from x. We call this the constrained Voronoi cells, which a
defined formally by:

T C
i = {

x ∈ �n: d(x,xi ) < d(x,xj ), ∀j �= i, Sx→ni
∩ Γ = ∅,}
Sx→nj
∩ Γ = ∅ (11)



(a) (b) (c)
Fig. 4. Reproducing discontinuous derivatives using the constrained Voronoi diagram.

nts
ts

ays
0].
on-
ided

on
inu-
he

m
pe

ions
one
ced
of

rop-
of
ins

-
per,
er-
es.
-
e
eld
face
to
d in

de-

2)

nds

le
.
ed,
use

inter-
uity,
e.

al
rox-
nd

m-
rval
-

by
whereΓ is the domain boundary, composed with segme
li ∈ L andSa→b denotes the segment between the poina
andb.

The constrained Delaunay triangulation does not alw
exist in 3D without adding new nodes, as shown in [2
Nevertheless, some techniques for constructing 3D c
strained Delaunay tessellations are available and prov
in [22,23] by addition of Steiner points.

3.2.2. The constrained natural element approximation
In order to solve partial differential equations defined

non convex domains, or to reproduce functional discont
ities, we consider the following approximation for both t
trial and the test functions:

T h(x) =
V∑

i=1

φC
i (x)Ti (12)

whereV is the number of natural neighbors visible fro
point x and φC

i is the constrained natural neighbor sha
function related to theith node at pointx. The computation
of the C-n-n (constrained natural neighbor) shape funct
is similar to the natural neighbor shape function, when
proceed using the constrained Voronoi diagram introdu
previously. It was shown in [30] and [31] that the use
the constrained Voronoi diagram does not affect the p
erties of the NEM interpolation, allowing the extension
the linearity of the shape functions on the convex doma
boundaries, to any geometry, convex or not.

The ability of the C-NEM for treating problems involv
ing cracks has been illustrated in [31]. In the present pa
we focus on its application in the context of a moving int
face defining two domains with different thermal properti
Thus, defining at timet two CVD (constrained Voronoi dia
grams) ofΩ1(t) andΩ2(t), both with respect to the interfac
ΓI (t), it can be proved that the interpolated temperature fi
is C1 everywhere, except at the nodes and on the inter
ΓI (t) where it is onlyC0. Thus, this interpolation seems
be appropriate to simulate the Stefan problem considere
this paper.

To illustrate this behavior, we consider the situation
picted in Fig. 4, where the pointx moves fromΩ1 to Ω2. If
x is in Ω1, the interpolated field is constructed from Eq. (1
using the neighbor visible nodes from pointx (ΓI is assumed

opaque). Ifx is onΓI , according to the previous discussion,

5

the interpolated field is strictly linear because it only depe
on the two neighbor nodes located onΓI . Finally, whenx
is in Ω2, the interpolated field is defined using the visib
neighbor and visible nodes from pointx (ΓI being opaque)
The continuity of the interpolated field is then guarante
but a discontinuity appears in the field derivatives, beca
of a sudden change in the neighbor nodes across the
face. We can then reproduce the temperature field contin
as well as the expected flux discontinuity on the interfac

4. C-NEM discretization

The weak formulation associated with Eq. (1) results:
Find T ∈ H 1(Ω) with T = T onΓ1 such that:∫

Ω

c
∂T

∂t
δT dΩ = −

∫
Ω

k∇T · ∇ δT dΩ +
∫

ΓI (t)

|[q]| δT dΓ

∀δT ∈ H 1
0 (Ω) (13)

whereH 1(Ω) andH 1
0 (Ω) are the usual Sobolev function

spaces. Substituting the trial and test functions (both app
imated in the C-NEM framework) in the above equation a
using the arbitrariness of the fieldδT , the following system
of equations is obtained:

CṪ + KT = F (14)

whereT is the vector containing the unknown nodal te
peratures. We consider the solution on the time inte
[0, tmax], partitioned into steps as[tn, tn+1] and the gener
alized trapezoidal time stepping algorithm characterized
the parameterα:

∂T n+1

∂t
= T n+1 − T n − (1− α)
t ∂T n

∂t

α
t
(15)

which leads to:

(Cn+1 + α
tKn+1)Tn+1 = Fn+1(Tn, |[q]|n+1) (16)

with:

Cn+1 =
∫

Nt cNdΩ (17)
Ωn+1
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whereΩn+1 = Ωn+1
1 ∪ Ωn+1

2 ;

Kn+1 =
∫

Ωn+1

Bt kBdΩ (18)

and

Fn+1 = Cn+1Tn + (1− α)
t

∫
Ωn+1

Nt c
∂T n

∂t
dΩ

+ α
t

∫
Γ n+1

I

Nt |[q]|n+1 dΓ (19)

whereN is the vector containing the nodal shape function

N = {φ1 φ2 . . . φN }
and B is the matrix containing the shape functions deri
tives:

B =
{

φ1,x φ2,x . . . φN,x

φ1,y φ2,y . . . φN,y

}
The stabilized conforming nodal integration proposed
Chen et al. in [4] is employed for the numerical integrat
of K (see our former work [31] for more details). A lumpe
mass matrix̃C is computed making use of the constrain
Voronoi cells areas as nodal weights.

The iteration procedure is defined as:
KnowingTn and|[q]|n at timetn, the non-linear problem

associated with Eq.(16) results in findingTn+1 and|[q]|n+1

such that Eqs.(5) and(16)are satisfied.For this purpose we
proceed as follows:

(1) Compute the interface velocityVn(x) using Eq. (3) and
update the interface position at timetn+1 using the for-
ward Euler formula:

xn+1
J = xn

J + 
tVn
(
xn
J

)
(20)

wherexJ are the nodes defining the interface.
(2) Update locally the constrained Voronoi diagram and

shape functions associated with integration points in
interface neighborhood. Then, we computeC̃n+1 and
Kn+1.

(3) Solve Eq. (16) using a Newton–Raphson proced
where the tangent matrix is computed numerically.

(4) Repeat whiletn+1 < tmax.

An alternative scheme using the Latin method [11] in
extended finite element framework can be found in Me
and Dolbow [17].

5. Numerical examples

5.1. Unidirectional solidification of a semi-infinite solid

In this section, we illustrate the potential of the propos

technique in simulating a two-phase Stefan problem. The

6

problem is essentially one-dimensional, but we solve it h
in two dimensions to underscore the appealing feature
the method.

The Stefan problem models the one-dimensional free
of a semi-infinite domain (x � 0). The initial temperatureT0
is assumed constant in the whole domain, being higher
the melting temperatureTm. At time t = 0 the temperature
at the left boundaryx = 0 is suddenly prescribed to a valu
T1 lower than the melting point, originating a solidificatio
front that progresses from the boundaryx = 0 in thex direc-
tion. The exact flow front positionxf (t) is given by:

xf (t) = 2λ
√

βst (21)

where βs = ks/cs is the thermal diffusivity of the solid
phase, and the constantλ satisfies the following relationship

e−λ2

erf(λ)
= kl

√
η(T0 − Tm)e−ηλ2

ks(Tm − T1)erfc(λ
√

η )
+ λL

√
π

cs(Tm − T1)
(22)

with η = βs/βl being the ratio of the thermal diffusivitie
and wherekl represents the liquid phase conductivity. T
temperature field in the solid phase 0� x � xf (t) is then:

T (x, t) = T1 + Tm − T1

erf(λ)
erf

(
x

2
√

βst

)
(23)

and in the liquid phasex � xf (t):

T (x, t) = T0 − T0 − Tm

erfc(λ
√

η)
erfc

(
x

2
√

βlt

)
(24)

whereerf anderfcare the error function and complementa
error function, respectively.

In the present investigation, we use the water-satur
sand thermal properties provided in [15] that are listed
Table 1.T1 andT0 were set to 263.15 K and 277.15 K, r
spectively (λ = 0.3073). We simulate the evolution of th
temperature field inΩ = [0,0.01] × [0,0.005]m. In order
to use the infinite domain solution as reference solution,
temperature atx = 0.01 m is prescribed to its expected val
according to Eq. (24).

In a first test, we consider in the domainΩ a 20× 10
uniform grid and
t = 2 s. In the following, a compari
son between C-NEM and FEM has been performed.
this purpose, the FE shape functions have been compute
the basis of the constrained Delaunay triangulation, that
be obtained by connecting the natural neighbors in the
strained Voronoi diagram. Fig. 5 compares the computed
terface position and the exact one. Excellent accuracy ca

Table 1
Thermal properties of the water saturated sand

Properties Solid Liquid

Volumetric heat capacity
(kg·m−1·s−2·K−1)

2.051× 106 2.595× 106

Thermal conductivity
(kg·m−1·s−3·K−1)

4.019 2.888

Melting temperature (K) 273.15
Volumetric latent heat of fusion

(kg·m−1·s−2) 8.038× 107
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Fig. 5. Computed FEM and C-NEM front position versus the exact solu
using a 20× 10 regular grid.

Fig. 6. Error in the front position.

noticed for the C-NEM solution, as depicted in Fig. 6, wh
the error in the front position is represented. Fig. 7 shows
temperature profile at different times. The C-NEM accur
is found greater than the FEM solution related to the sa
Delaunay triangles. In order to assess the thermal flux ju
across the interface, the computed solution|[qh(t)]| is com-
pared to the analytical solution|[qex(t)]| given by:∣∣[qex(t)

]∣∣ = Lλβs√
βst

(25)

Fig. 8 shows a comparison between the FEM and C-N
solution for Ω = [0,0.01] × [0,0.005] m containing 200
nodes, uniformly or randomly distributed. we can not
from Fig. 8 that C-NEM solution provides a higher acc
racy compared to the FEM solution. Fig. 9 depicts the e
between the C-NEM computed flux jump and the exact
lution (25) for different refined meshes, proving the conv

gence of the approach. We point out that the discontinuity

7

Fig. 7. Temperature profiles along the liney = 0.0025 m using a regular
grid.

Fig. 8. Error in flux: comparison FEM/C-NEM.
Fig. 9. Error in flux (C-NEM).



Fig. 10. Computed interface position using an irregular cloud of nodes: (a) Cloud of nodes and interface position; (b) Constrained Voronoi cells.
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in the temperature gradient is accurately obtained, bein
excellent agreement with the exact solution.

In a second test, we consider the domainΩ containing
200 nodes distributed at random. The purpose of the pre
test is to investigate the meshless feature of the techniqu
which due to its meshless character no geometrical res
tions concerning the relative nodal positions are involv
Thus, neither the background nodal distribution nor the
ative position of the nodes defining the moving interfa
with respect to the background nodes, induce a lack of
curacy when high distortions in the Delaunay mesh, use
compute the Voronoi diagram, takes place. This is the m
difference between the proposed strategy and the stan
finite element method whose accuracy depends significa
on the geometrical quality of the mesh. Moreover, this
approaches the situations encountered when the mater
also moving, inducing highly irregular nodal densities a
high background mesh distortions. Fig. 10 depicts the cl
of nodes and the interface position as well as the assoc

constrained Voronoi cells. Remarkably, despite the very ir-
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t

d

s

regular nodal distribution and density, we can notice that
interface computed in the C-NEM simulation is not distor
as it moves through the domain, unlike the FEM soluti
from which we can conclude that the accuracy in the C-N
is not significantly affected by the regularity of the nodal d
tribution. In Fig. 7 some temperature profiles along the
y = 0.0025 m are depicted, from which excellent accur
can be inferred for the C-NEM solution.

In order to examine the convergence behaviour of
present approach, we conduct a series of calculations o
creasingly refined meshes. The results for the relative e
in the average front position fort = 50 s are provided in
Fig. 11, which proves its convergence.

5.2. Solidification from a line heat sink

In this problem, a domainΩ = [−0.01,0.01] × [−0.01,

0.01] m initially entirely in a liquid state(T0 > Tm) is ex-
posed to a continuous line heat sink located at the p
(0,0), originating the nucleation of an axisymmetric pha

boundary separating the liquid and the solid phases whose
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the
radius increases in time. This problem was investigated
Ji et al. in [8] in the context of the X-FEM method. The a
alytical solution for this problem defined in the unbound
�2 can be found in [3]. The radius of the front is given by

Rf = 2λ
√

βst (26)
Fig. 11. Relative error in the average front position fort = 50 s.

using an unstructured nodal distribution.

9

The temperature in the solid regionr < Rf is given by:

T (r, t) = Tm + Q

4πks

[
Ei

(
− r2

4βst

)
− Ei

(−λ2)] (27)

and in the liquid regionr > Rf by:

T (r, t) = T0 − T0 − Tm

Ei(λ2η)
Ei

(
− r2

4βlt

)
(28)

In the above,λ is the root of the equation:

Q

4π
eλ2 = λ2βsL − kl(T0 − Tm)

Ei(−λ2η)
(29)

with Q the heat sink intensity,Ei the exponential integra
andη the ratio of thermal diffusivities:

η = βs

βl

(30)

In our problem, only the upper quadrantΩ = [0,0.01] ×
[0,0.01]of the domain is modeled, due to the symmetry.
imposing the exact solution on the external boundaries
may model an axisymmetric problem in a square domai
is noteworthy that the above solution is singular forr = 0.
To overcome this difficulty, we move the node located at

origin to (+h/2,+h/2), h being the nodal distance between
Fig. 12. Evolution of the constrained Delaunay triangulation at timest = 1.15 s,t = 2.65 s andt = 5.5 s, and constrained Voronoi cells at timet = 9.25 s,



Fig. 13. Comparison between computed and exact analytical interface position: (a)t = 1.15 s, (b)t = 2.8 s, (c) t= 4.3 s, (d)t = 5.65 s, (e)t = 7.15 s, (f)

t = 8.65 s.
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Fig. 14. Interface radius position.

two nodes on the boundary. We consider in the numer
applicationsQ = 4.186× 107 kg·m−1·s−1 andλ = 0.3513.
The thermal properties of the first example have been u
here.

Simulations with regular and randomly distributed nod
are performed. In the first simulation, the domain conta
144 nodes on a uniform grid, and 8 additional nodes on
interface, which match the exact solution fort0 = 1 s. Fig. 12
shows the evolution of the Delaunay triangles depicte
timest = 1.15 s,t = 2.65 s andt = 5.5 s. The triangulation
is constrained by the moving interface. The dual constra
Voronoi cells are depicted at timet = 9.25 s.

In Fig. 13, the computed front is compared with the a
lytical solution. Higher accuracy is obtained using C-NE

in comparison with the FEM solution. Thus, an excel-

10
Fig. 15. Error in the interface location prediction.

lent agreement with the analytical solution is obtained (
Figs. 14 and 15).

6. Conclusion

In this paper, the salient features of the C-NEM meth
are used for treating thermal problems involving mov
interfaces. In the C-NEM framework, the Delaunay tria
gulation is used for its convenience in the frequent conn
tivity update during the motion of the interface. The u
of a constrained Delaunay triangulation allows to confo
the boundary with the interface and to accurately reprod
the jump in the heat flux across the interface. The tra
tional C0 finite element shape functions are replaced in
Galerkin scheme by the smoother natural neighbor (Sib

shape functions, which are constructed on the basis of the
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dual to the Constrained Voronoi diagram (dual to the c
strained Delaunay triangulation). A nodal integration is a
performed on the basis of the Voronoi cells by using t
dual structure instead of the triangles structure. This te
nique allows the use of very distorted Delaunay triang
without loss of accuracy, and avoids the numerical proble
associated with the discontinuity across the interface.
enrichment of the natural neighbor interpolation with d
continuous shape functions related to a level-set descrip
in the context of the partition of unity is a work in progres
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