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In this paper thefeaturesof the naturalneighbor(Sibson)interpolantareusedwithin the contextof a constrained/oronoi diagram,dualto
the constrainedelaunaytriangulation for treatingmoving interface(Stefan)problems.The constrainechaturalelementmethod(C-NEM)
usesthe Voronoi cells insteadof the Delaunaytrianglesfor both interpolationandintegration,and thus permitsthe useof very distorted

trianglesin the Delaunaytriangulationwithout loss of accuracy.The resultinginterpolationis €1 (C* in the most part of the domain)

everywhereexceptat the nodesand acrossthe interface,whereit is €9, which allows an accuratetreatmentof modelsinvolving moving
interfacesNumericalexperiments are performédr provingthe accuracyf the method, asvell asits promise.

Keywords:Natural neighbor interpolation; C-NEM; Constrained Voronoi diagram; Moving interface; Stefan problem

1. Introduction successive meshes. Moreover, remeshing is, even today, a
delicatetask in three dimensions. Hileviate remeshing ef-
Phase boundaries represent material interfaces acrosorts a number of Eulerian—Lagrangian methods have been
which several fields may exhibit sharp gradients, and even developed recently that track the interface while solving the
discontinuities. A wide range of numerical methods have equations on a fixed grid [28]. Many of these methods effec-
been developed for treating these problems according to thetively smear the discontinuity over a few grid cells, and are
pertinent physics and assumptions about the interface [12].therefore not capable of representing the true discontinuity
When a sharp interface is considered, its motion is governedacross the interface.
by the jump in the temperature gradient normal to the phase A new approach for representing localized behaviours has
boundary and is accompanied by latent heat effects (Ste-recently emerged in the field of the finite element method,
fan condition). In order to satisfy these conditions the most known as the partition of unity method [16]. The main idea is
common approach lies in explicitly tracking the interface to extend the classical approximation considering the prod-
motion. Within the interface tracking approach two main al- yct of the standard shape functions and local enrichment
ternatives exist: the moving mesh methods and the mixedfynctions. The extended finite element method (X-FEM) is

Eulerian—Lagrangian methods. Moving finite element mesh g yariation on this technique. Recently, the X-FEM has been
methods conform element boundaries to the interface as itcoupled to the Level Set Method [27] to represent inter-

evolves. Although these methods are very accurate, they argyce [25]. In this way, the discontinuity evolution can be

limited by severe mesh distortion. Thus, frequent remesh- properly represented on a fixed background mesh, just by

ing is needed, with the associated field projections between(,mlding an appropriate enrichment in the functional approx-
imation in the elements that are intersected by the moving
discontinuity [8]. However, when the material in which the
interface is moving, is subjected to large displacements, an



Nomenclature
T temperature B thermal diffusivity
¢ volumetric heat capacity n ratio of thermal diffusivities
I\C/ ;[Qteerrrpaaclec\cl)gglé%'/v'ty 0 heat sink intensity
I[¢g]]  thermal flux jump across the interface erf error function ]
L volumetric latent heat of fusion erfc  complementary error function
T melting temperature Ei exponential integral

updated Lagrangian description could be a better choice.properties of the NEM in any geometry (convex or not) and
When the background mesh evolves, remeshing will also beallows the introduction of material discontinuities.

required to avoid large mesh distortions. In the context of ~ Furthermore, the C-NEM is strongly related to the fi-
moving phase boundary problems, it has been shown in [8] hite element method through the following points: (a) an
that due to the? finite element shape functions, errors are underlying structure is needed (the constrained Delaunay

introduced when the moving interface crosses the edge oftriangulation/constrained Voronoi diagram); (b) the exter-
the elements. nal boundary conditions can be imposed directly, due to

the interpolant character and the strict linearity of the shape
unctions along any kind of boundary or interface. Neverthe-

tess, in the C-NEM, both interpolation and integration are

not constructed on the basis of the Delaunay triangles, but
on its dual, the Voronoi diagram (which can be extended to

constrained Delaunay triangulation [21] for non-convex do-

mains or when they involve fixed or moving discontinuity),

To alleviate dependence on the mesh and to provide
smoother shape functions, the use of meshfree or meshles
methods has been investigated. Meshless methods discretiz
a continuum body by a finite number of particles (or nodes)
and the field of interest is interpolated under these nodes
without the aid of an explicit mesh. Many meshless methods

havg been proposed, includipg the §mooth particle hydrOdy'which provides smoother approximation and allows to pro-
namics (SPH) [14], the Radial Basis Function methods [9, ceeq on the basis of very distorted Delaunay triangles. In a
10] the diffuse element method (DEM) [18], the element free ocant paper [31] the C-NEM has been successfully applied
Galerkin (EFG) [2], the reproducing kernel particle method i some problems involving non-convex domains and cracks
(RKPM) [13], the HP clouds [6] and the partition of unity  discontinuities [31].
method (PUM) [16]. The layout of this paper is as follow: in Section 2, we
The introduction of moving discontinuities in these mesh- introduce a simple mathematical model of a thermal prob-
less methods can present difficulties for the following rea- lem involving a moving interface (Stefan problem [29]). In
sons: Section 3, the C-NEM is summarized, and it will be applied
in Section 4 to discretize the weak formulation of the non-
(i) The quality of the approximation as well as the condi- linear Stefan problem. A numerical benchmark is presented
tioning of the global system is pathologically dependent in Section 5, which allows us to test the accuracy of the pro-
on the size of the support of the shape functions; posed technique by comparing the numerical results with the
(i) Imposition of essential boundary conditions needs spe- €xact solution of the problem.
cial treatment;
(iii) Integration is not accurate enough; and
(iv) The physical discontinuity across the interfaces must be
introduced accurately.

2. Problem formulation

Let £2 € %2 be a bounded domain arifl the tempera-
In order to overcome these different problems, we pro- ture field. On the domain boundary =952 the temper-
P ’ PO~ ature or the thermal flux is prescribed. We will denote by

pose the use of the constralned natural elem_ent m‘ethodF1 the domain boundary where the temperature is known
(C-NEM) [30,31] for treating thermal models involving T(x € I',1) = T(x,7) and by I'> the domain boundary

moving interfaces. This ap_proach is an exFension of the nat-\; here the heat flug is imposed. The thermal model is de-
ural element method [26] in which both trial and test func-  fineq in the time interval0, imaxl. The initial temperature

tions are constructed on the basis of the Voronoi based in'T(X,t — 0) = Tp, whereTp is assumed to be higher than
terpolants [7,24]. These interpolants satisfy the Kronecker the material melting temperatuf@,. At time, r = 0, a part
delta property and their support is defined by the union of of the domain boundary? is suddenly exposed to a tem-
the Delaunay spheres passing through the visible nodes. Inperature; < 7,,. A moving solidification frontl’; is then
the C-NEM, the introduction of a visibility criterion and its generated, whose position evolves in time, ilg(y), divid-
related constrained Voronoi diagram preserves the appealingng the domairn2 in two regions21(¢) (containing the solid
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Fig. 1. Two phases problem.

phase at time) and$2,(¢) (which contains the liquid phase)
as shown in Fig. 1. For the sake of simplicity we will con-

sider, from now on, a homogeneous and isotropic thermal

model in both phases.

The heat transfer model is defined in each phase, neglect-

ing volumetric source terms as well as the motion in the
liquid phase induced by thermal gradients, by:

1
c2

wherec1 andc;, are the volumetric heat capacities of both
phases, ané; andk; are the respective thermal conductivi-
ties. The associated initial and boundary conditions are:

{T(X,t:O):To VX e 2

AT (X,1)
Jt

aT (X,1)
Jat

=V (aVT)
=V (kaVT)

in £21(¢)

in £2-(1) @

T, t)=T(X, 1) VX e I't, Vt €0, tmax]
—kVT (X, t)-N=g(X,t) Vxe v, Vte][O0,max

@)

The evolution of the interfacg] (¢) is described by a Ste-
fan condition:

|[q]]

V(x e Iy() Tnl(x)

= (3)
whereV is the interface velocityl is the volumetric latent
heat of fusionn;(X) is the normal vector to the interface at
pointx which is assumed to point into the liquid phase, and
I[¢]] the thermal flux jump across the interfafg(?), i.e.,

(4)

The additional constraint prescribed on the interface
I'y(p)is:

gl = (leT’r;(t)_kZVT’F,*(t))n’

TX, t)=Ty; VYXely(t) (5)

whereT,, is the melting temperature.

3. Theconstrained natural element method (C-NEM)

In this section, the utility of the C-NEM to describe mov-

(b)

Fig. 2. Construction of the Sibson shape functions.

3.1. Natural neighbor interpolation

We briefly touch upon the foundation of Sibson’s natural
neighbor coordinates (shape functions) that are used in the
natural element method. For a more in-depth discussion on
the Sibson interpolant and its application for solving second-
order partial differential equations, the interested reader can
refer to Sambridge et al. [19], and Sukumar et al. [26]. The
NEM interpolant is constructed on the basis of the Voronoi
diagram. The Delaunay tessellation is the topological dual
of the Voronoi diagram.

Consider a set of nodes= {n1,no, ..., ny} in R2. The
Voronoi diagram is the subdivision ok into regionsT;
(Voronaoi cells) defined by:

= {XeN% dx, x;) <d(X, X)), Yj #i}, Vi (6)

The Sibson coordinates of with respect to a natural
neighborn; (see Fig. 2) is defined as the ratio of the over-
lap area (volume in 3D) of their Voronoi cells to the total
area (volume in 3D) of the Voronoi cell related to paint

Aredafghe)
Area(abcde)

If the point x coincides with the node;, i.e., X = Xx;,
¢;(x;) = 1, and all other shape functions are zero, i.e.,
¢;(X;) = 8;; (8;; being the Kronecker delta). The proper-

i (X) = (7

ing interfaces and discontinuities in a fixed cloud of nodes ties of positivity, interpolation, and partition of unity are then

is discussed. After a brief review of the Voronoi-based in-

verified [26]:

terpolants, we introduce the constrained Voronoi diagram (0< ¢;(x) <1

which is used for computing the shape functions in any do-

main.

@i (X;) =4;j
Yradix=1

8



The natural neighbor shape functions also satisfy the local
coordinate property [24], namely:

X=X, ©
i=1

which combined with Eq. (8) implies that the natural neigh-
bor interpolant spans the space of linear polynomials (linear
completeness).

Natural neighbor shape functions af€° at any point
except at the nodes, where they are oaly, and on the
boundary of the Delaunay circles (spheres in 3D) where they
are onlyC1, because of the discontinuity in the neighbors
nodes across these boundaries. Hiyoshi and Sugihara [7] (@)
have shown that the Sibson interpolant belongs to a more
general class of Voronoi-based interpolants, cattixbrder
standard coordinategproving that the interpolant generated
by thekth order standard coordinates have continuity on
the Delaunay circles (spheres) boundaries. In this context,
the Sibsonian and non-Sibsonian (Laplace) coordinates [1]
results to be the standard coordinates of order 1 and O, re-
spectively.

Another important property of this interpolant is the abil-
ity to reproduce linear functions over the boundary of convex (B)
domains. The proof can be found in Sukumar et al. [26]. An
illustration is depicted in Fig. 2(b): as the areas associated toFig. 3. Interpretation of the constrained Voronoi diagram. (a) Schematic
points on the boundary become infinite, the contribution of view of the CV_D. (b) Cpnstrained Delaunay triangulation with r_espect to
internal points vanish in the limit when the point approaches segment; and intersection between the dual CVD and the domain closure.
the convex boundary, and the shape functions associated

with nodesny andn; become linear on the segme(nt, - introduced in order to restrict influent nodes among nat-

n2). This is not m.Je in the case of non-convex bogndarles, ural neighbors. The computation of the shape functions is
and the next section focuses on an approach to circumvent . .
o done on the basis of the so-called constrained (or extended)
this difficulty. - . o
; . . . Voronoi diagram (CVD), introduced by Seidel in [21]. Imag-
Consider an interpolation scheme for a scalar function . — =5~ : ;
T(x): 2 92— 9, in the form: ine N< is a sheet of papeky, with the points of the set of
' ‘ o ' nodesS and the line segments defining the boundary in a set
" " L, drawn on it. For each € L, we cutXg open alond; and
T"(x) = Z¢i 00T (10) glue another sheet;, which also cut open alorig The glu-
i=1 ing is done around such that every traveler who crossgs
whereT; are the nodal temperatures at theatural neigh-  switches fromXy to X; and vice versa. A schematic view
bor nodes, angh; (x) are the shape functions associated with of the particular gluing necessary to achieve that effect is il-
each neighbor node. It is noted that Eq. (10) defines a local|ustrated in Fig. 3(a). We know what it means for two points
interpolation scheme. Thus, the trial and test functions usedon the primary sheet to be visible from each other. For other
in the discretization of the variational formulation describ- pairs we need a more general definition. Fat 0, points

ing the thermal problem treated in this paper take the form y, ¢ x, andy; € X; are visible ifxy crosses;, and/; is the

li

of Eq. (10). first constraining line segment crossed if we traversen
the direction fromx to y.
3.2. The constrained natural element method In Fig. 3(b), the intersection between the CVD and the
domain closure is depicted. The resulting diagram is com-
3.2.1. Constrained Voronoi diagram posed of cell;¢, one for each node;, such that any point

It was proved in [26,31] and [5] that spurious influences inside 7.C is closer ton; than to any other node; visible
between “non-visible” nodes and loss of linearity in the in- ¢4 y We call this the constrained Voronoi cells, which are
terpolation along boundaries of non-convex domains appearyqfined formally by:
in the framework of the NEM. In order to avoid this draw-
back and to recover all properties of the method for any ,.¢ n. .
geometry (including non-convex domains containing cracks I = {X €N d(X X)) <d (X X)), Vi F i Sy N =0,
or involving field discontinuities), a visibility criterion is Sx—on; NI =(ZJ} (112)
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Fig. 4. Reproducing discontinuous derivatives using the constrained Voronoi diagram.

whereI" is the domain boundary, composed with segments the interpolated field is strictly linear because it only depends
l; € L andS,_,, denotes the segment between the paints on the two neighbor nodes located oh. Finally, whenx
andb. is in £27, the interpolated field is defined using the visible
The constrained Delaunay triangulation does not always neighbor and visible nodes from poix{(I; being opaque).
exist in 3D without adding new nodes, as shown in [20]. The continuity of the interpolated field is then guaranteed,
Nevertheless, some techniques for constructing 3D con-but a discontinuity appears in the field derivatives, because
strained Delaunay tessellations are available and providedof a sudden change in the neighbor nodes across the inter-
in [22,23] by addition of Steiner points. face. We can then reproduce the temperature field continuity,
as well as the expected flux discontinuity on the interface.
3.2.2. The constrained natural element approximation
In order to solve partial differential equations defined on
non convex domains, or to reproduce functional discontinu- 4, C-NEM discretization
ities, we consider the following approximation for both the

trial and the test functions: The weak formulation associated with Eq. (1) results:

4 Find T € H(£2) with T = T on I'y such that
") =) ¢f OT; (12) -
i=1 /CE(STd.Qz—/kVT-V(STd.Q—i— / \lgl| 8T dI"

where V is the number of natural neighbors visible from
point x and ¢>I.C is the constrained natural neighbor shape 1
function related to théth node at poink. The computation V8T € Hy($2) (13)

of the C-n-n (constrained natural neighbor) shape funCtlonswhereHl(Q) andHol(.Q) are the usual Sobolev functional

is similar to the natural neighbor shape function, when one L . )

. ) s : spaces. Substituting the trial and test functions (both approx-
proceed using the constrained Voronoi diagram introduced: : : .

. . imated in the C-NEM framework) in the above equation and

previously. It was shown in [30] and [31] that the use of . N . :

. A using the arbitrariness of the fiedd”, the following system
the constrained Voronoi diagram does not affect the prop- of equations is obtained:
erties of the NEM interpolation, allowing the extension of q '
the Iinea_rity of the shape functions on the convex domains c7 + KT =F (14)
boundaries, to any geometry, convex or not.

The ability of the C-NEM for treating problems involv- whereT is the vector containing the unknown nodal tem-
ing cracks has been illustrated in [31]. In the present paper, peratures. We consider the solution on the time interval
we focus on its application in the context of a moving inter- [0, fmaxl, partitioned into steps &gs”, "] and the gener-
face defining two domains with different thermal properties. alized trapezoidal time stepping algorithm characterized by
Thus, defining at time two CVD (constrained Voronoi dia-  the parametew:
grams) of$21(¢) and$22(¢), both with respect to the interface ) il . a7
I7(2), itcan be proved that the interpolated temperature field oT" _ e =T" =1 -aAr -
is C1 everywhere, except at the nodes and on the interface 9t aAt
;@) wherc_e it is on_IyCO. Thus, this interpolation seems to _ which leads to:
be appropriate to simulate the Stefan problem considered in
this paper. (€ p g ArKH T = FY(TR[g1m (16)

To illustrate this behavior, we consider the situation de-
picted in Fig. 4, where the poimtmoves froms2; to £2;. If with:

2 ()

(15)

Xisin £21, the interpolated field is constructed from Eq. (12) _ ., ;
using the neighbor visible nodes from poxnt/; is assumed c= / N'eNds2 (17)
opaque). Ifx is on I'y, according to the previous discussion, ontl



where2"+t = @ity @5t

K'tl= | BkBdg (18)
Qn+l
and
aT™
Frrl = "7 + (1— a)Ar / N'c o a2
on+l
+ aAt / N'|[q)"*td T (19)

F[n+l
whereN is the vector containing the nodal shape functions:

N={¢1 ¢2 én '}
andB is the matrix containing the shape functions deriva-

tives:
B= { ¢l,x ¢2,x ¢N,x }
‘Pl,y ¢2.y ¢N,y

The stabilized conforming nodal integration proposed by
Chen et al. in [4] is employed for the numerical integration
of K (see our former work [31] for more details). A lumped
mass matrixC is computed making use of the constrained
Voronoi cells areas as nodal weights.

The iteration procedure is defined as:

KnowingT” and|[¢]|" at timet", the non-linear problem
associated with Eq16) results in findingr 1 and|[¢]/*+1
such that Eqs(5) and (16) are satisfiedFor this purpose we
proceed as follows:

(1) Compute the interface velocivy” (x) using Eq. (3) and
update the interface position at time"! using the for-
ward Euler formula:

" =X+ AV (XD)

X (20)

wherex; are the nodes defining the interface.

(2) Update locally the constrained Voronoi diagram and the
shape functions associated with integration points in the
interface neighborhood. Then, we comp@é&t! and
Kn+1_

(3) Solve Eq. (16) using a Newton—Raphson procedure
where the tangent matrix is computed numerically.

(4) Repeat while"t1 < fyax.

An alternative scheme using the Latin method [11] in the
extended finite element framework can be found in Merle
and Dolbow [17].

5. Numerical examples

5.1. Unidirectional solidification of a semi-infinite solid

In this section, we illustrate the potential of the proposed
technique in simulating a two-phase Stefan problem. The

problem is essentially one-dimensional, but we solve it here
in two dimensions to underscore the appealing features of
the method.

The Stefan problem models the one-dimensional freezing
of a semi-infinite domainy( > 0). The initial temperaturéy
is assumed constant in the whole domain, being higher than
the melting temperaturg,,. At time ¢ = 0 the temperature
at the left boundary = 0 is suddenly prescribed to a value
T: lower than the melting point, originating a solidification
front that progresses from the boundary 0 in thex direc-
tion. The exact flow front position(¢) is given by:

xp(t) =21/ Bst (21)
where 8; = ks /cs is the thermal diffusivity of the solid
phase, and the constansatisfies the following relationship:

ek Ji(To— Ty)e ™ AL
erff(\)  ky(T,, — Toerfc(h/m) — cs (T — T1)
with n = Bs/8; being the ratio of the thermal diffusivities
and wherek; represents the liquid phase conductivity. The

temperature field in the solid phaseOr < x¢(2) is then:

(22)

_ T —T1 X
Tx,t)=T1+ erf (o erf(2m> (23)
and in the liquid phase > x ¢ (¢):
To— Ty X
T =To— f 24
D =10 sty C(NW ) 9

whereerf anderfcare the error function and complementary
error function, respectively.

In the present investigation, we use the water-saturated
sand thermal properties provided in [15] that are listed in
Table 1.7 and Ty were set to 263.15 K and 277.15 K, re-
spectively £ = 0.3073). We simulate the evolution of the
temperature field in2 = [0,0.01] x [0,0.005]m. In order
to use the infinite domain solution as reference solution, the
temperature at = 0.01 m is prescribed to its expected value
according to Eq. (24).

In a first test, we consider in the domaih a 20x 10
uniform grid andAt = 2 s. In the following, a compari-
son between C-NEM and FEM has been performed. For
this purpose, the FE shape functions have been computed on
the basis of the constrained Delaunay triangulation, that can
be obtained by connecting the natural neighbors in the con-
strained Voronoi diagram. Fig. 5 compares the computed in-
terface position and the exact one. Excellent accuracy can be

Table 1
Thermal properties of the water saturated sand
Properties Solid Liquid

Volumetric heat capacity 2.051x 108 2595x 10°
(kgm~Lls 2K-1
Thermal conductivity

(kgm—Ll.s3.K 1

4.019 2.888

Melting temperature (K) 273.15
\Volumetric latent heat of fusion
(kgm~1.s72) 8.038x 107
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Fig. 5. Computed FEM and C-NEM front position versus the exact solution
using a 20x 10 regular grid.
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Fig. 6. Error in the front position.

noticed for the C-NEM solution, as depicted in Fig. 6, where
the error in the front position is represented. Fig. 7 shows the
temperature profile at different times. The C-NEM accuracy
is found greater than the FEM solution related to the same
Delaunay triangles. In order to assess the thermal flux jump
across the interface, the computed solutiafi (r)]] is com-
pared to the analytical solutidfy“* (t)]| given by:

LAB,
VBst

Fig. 8 shows a comparison between the FEM and C-NEM
solution for £2 = [0,0.01] x [0,0.005] m containing 200
nodes, uniformly or randomly distributed. we can notice
from Fig. 8 that C-NEM solution provides a higher accu-
racy compared to the FEM solution. Fig. 9 depicts the error
between the C-NEM computed flux jump and the exact so-
lution (25) for different refined meshes, proving the conver-
gence of the approach. We point out that the discontinuity

[¢”®]|= (25)

277145
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-0.002
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Fig. 7. Temperature profiles along the lipe= 0.0025 m using a regular

grid.
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t=100s

. Exact front position
....... C-NEM front position
__ FEMfront position

Fig. 10. Computed interface position using an irregular cloud of nodes: (a) Cloud of nodes and interface position; (b) Constrained Voronoi cells.

in the temperature gradient is accurately obtained, being inregular nodal distribution and density, we can notice that the
excellent agreement with the exact solution. interface computed in the C-NEM simulation is not distorted
In a second test, we consider the dom&incontaining as it moves through the domain, unlike the FEM solution,

200 nodes distributed at random. The purpose of the presenfrom which we can conclude that the accuracy in the C-NEM
test is to investigate the meshless feature of the technique, in's not significantly affected by the regularity of the nodal dis-

which due to its meshless character no geometrical restric-tribution. In Fig. 7 some temperature profiles along the line
tions concerning the relative nodal positions are involved. ¥ = 0-0025 m are depicted, from which excellent accuracy
Thus, neither the background nodal distribution nor the rel- ¢&n be inferred for the C-NEM solution.

ative position of the nodes defining the moving interface !N order to examine the convergence behaviour of the
with respect to the background nodes, induce a lack of ac.Present approach, we conduct a series of calculations on in-

curacy when high distortions in the Delaunay mesh, used to preasmgly refined meshes. The results for the relative error

compute the Voronoi diagram, takes place. This is the main :? th(lalavehrggr;]e front posmon far= 50 s are provided in
difference between the proposed strategy and the standard '9. 11, which proves its convergence.
finite element method whose accuracy depends significantlys 5 - gq)igification from a line heat sink

on the geometrical quality of the mesh. Moreover, this test

approaches the situations encountered when the material is |n this problem, a domai® = [—0.01,0.01] x [-0.01,

also moving, inducing highly irregular nodal densities and 0.01]m initially entirely in a liquid state(Tp > 7;,) is ex-

high background mesh distortions. Fig. 10 depicts the cloud posed to a continuous line heat sink located at the point
of nodes and the interface position as well as the associated0, 0), originating the nucleation of an axisymmetric phase
constrained Voronoi cells. Remarkably, despite the very ir- boundary separating the liquid and the solid phases whose



radius increases in time. This problem was investigated by The temperature in the solid regienc R is given by:
Ji et al. in [8] in the context of the X-FEM method. The an-

2
alytical solution for this problem defined in the unbounded T(rt) =T, + Q [Ei(_r_) _ Ei(—xz)} (27)
%2 can be found in [3]. The radius of the front is given by: A ks 4Pt
Ry= ZA\/% (26) and in the liquid regiom > R by:
To—Tn [ 12
T(r,t)=To— ———FEi| —— 28
0=10"EiGzy, ’< 4ﬁzt) (29)
In the abovey is the root of the equation:
0 ;2 .o ki(To — Tn)
—e¢" =ABL — — 29
4 = Ta 29)

with Q the heat sink intensityi the exponential integral
andn the ratio of thermal diffusivities:

_b
Bi
In our problem, only the upper quadrast = [0,0.01] x
[0,0.01]of the domain is modeled, due to the symmetry. By
imposing the exact solution on the external boundaries, we
may model an axisymmetric problem in a square domain. It

n (30)

log(relative error)
]
&

Z gty N e is noteworthy that the above solution is singular fog 0.
To overcome this difficulty, we move the node located at the
Fig. 11. Relative error in the average front positionfet 50 s. originto (+h/2,+h/2), h being the nodal distance between
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Fig. 12. Evolution of the constrained Delaunay triangulation at timesl.15 s,r = 2.65 s andr = 5.5 s, and constrained Voronoi cells at time- 9.25 s,
using an unstructured nodal distribution.
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Fig. 13. Comparison between computed and exact analytical interface positior: )5 s, (b)r =2.8 s, (c) t=4.3 s, (d)t =5.65 s, (€)r = 7.15 s, (f)
t=8.65s.
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lent agreement with the analytical solution is obtained (see

Figs. 14 and 15).
two nodes on the boundary. We consider in the numerical

applicationsQ = 4.186x 10’ kg-m~1.s71 andx = 0.3513.
The thermal properties of the first example have been useds. Conclusion
here.

Simulations with regular and randomly distributed nodes  In this paper, the salient features of the C-NEM method
are performed. In the first simulation, the domain contains are used for treating thermal problems involving moving
144 nodes on a uniform grid, and 8 additional nodes on the interfaces. In the C-NEM framework, the Delaunay trian-
interface, which match the exact solutionfge=1s. Fig. 12 gulation is used for its convenience in the frequent connec-
shows the evolution of the Delaunay triangles depicted at tivity update during the motion of the interface. The use
timest =1.15s,t =2.65 s and = 5.5 s. The triangulation  of a constrained Delaunay triangulation allows to conform
is constrained by the moving interface. The dual constrainedthe boundary with the interface and to accurately reproduce
Voronoi cells are depicted at time=9.25 s. the jump in the heat flux across the interface. The tradi-

In Fig. 13, the computed front is compared with the ana- tional C? finite element shape functions are replaced in the
lytical solution. Higher accuracy is obtained using C-NEM Galerkin scheme by the smoother natural neighbor (Sibson)
in comparison with the FEM solution. Thus, an excel- shape functions, which are constructed on the basis of the

10



dual to the Constrained Voronoi diagram (dual to the con- [14] L.B. Lucy, A numerical approach to the testing of fusion process, As-
strained Delaunay triangulation). A nodal integration is also tron. J. 88 (1977) 1013-1024. S
performed on the basis of the Voronoi cells by using this [15] D. Lynch, K. O’Neill, Continuously deforming finite elements for the

. . . solution of parabolic problems, with and without phase change, Inter-
dual structure instead of the triangles structure. This tech- Numir Methozs Engrg. 17 (1981) 8196 P 9
nique allows the use of very distorted Delaunay triangles [16] .M. Melenk, I. Babtka, The partition of unity finite element

without loss of accuracy, and avoids the numerical problems method: Basic theory and applications, Comput. Methods Appl. Mech.
associated with the discontinuity across the interface. The[ : En9r9-|139 (1996)|§89—314|1-_ ermal and oh A -
enrichment of the natural neighbor interpolation with dis- [171R. Merle, J.E. Dolbow, Solving thermal and phase change with the
. . s extended finite element method, Comput. Mech. 28 (5) (2002) 339-
continuous shape functions related to a level-set description P (5) (2002)

350.
in the context of the partition of unity is a work in progress. [18] B. Nayroles, G. Touzot, P. Villon, Generalizing the finite ele-

ment method: Diffuse approximation and diffuse elements, Comput.
Mech. 10 (1992) 307-318.
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