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A new extension of the natural element method for non-convex
and discontinuous problems: the constrained natural element

method (C-NEM)

J. Yvonnet, D. Ryckelynck, P. Lorong and F. Chinesta
Laboratoire de Mécanique des Systèmes et des Procédés, UMR 8106 CNRS ENSAM-ESEM, 

151 boulevard de l’Hôpital, Paris F-75013, France

In this paper a new extension of the mesh-free natural element method (NEM) is presented. In this 
approach, coined as constrained natural element method (C-NEM), a visibility criterion is introduced 
to select natural neighbours in the computation of the shape functions. The computation of these shape 
functions is based on a modified, constrained Voronoi diagram. With this technique, some difficulties 
inherent to this method in non-convex domains are avoided and the analysis of problems involving 
cracks or discontinuities are now easily performed. As the NEM satisfies the Kronecker delta property, 
the imposition of essential boundary conditions is trivial, unlike other mesh-free methods. The C-NEM 
technique provides a description of integration cells that allows the use of the stabilized conforming 
nodal integration (SCNI) scheme instead of Gauss integration to enhance computational efficiency 
and accuracy. Two numerical examples in elastostatics are reported to evaluate the potential of the 
proposed technique in highly non-convex geometries, like a crack, through which the solution becomes 
discontinuous. 

KEY WORDS: C-NEM; non-convex domains; visibility criterion; constrained Voronoi diagram

1. INTRODUCTION

In recent years, a new family of computational methods have emerged. The so-called mesh-
less or mesh-free methods have been investigated and used by many researchers for treating
a large variety of engineering problems, involving usually large displacements as encountered
for example in forming process simulations (free surface or moving boundary problems, mov-
ing interfaces, cracks propagation, etc.). In these problems, accurate finite element solutions
require significant computational efforts in remeshing steps. In contrast, meshless methods re-
quire only nodal data without explicit connectivity between nodes. The first generation of
meshless methods, the smooth particle hydrodynamics (SPH) method, originally proposed by
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Lucy [1], introduces kernel approximations and imposes the conservation laws using a collo-
cation technique. Recently, other meshfree methods have been proposed, such as the diffuse
element method (DEM) [2], the element free Galerkin (EFG) [3], the partition of unity method
(PUM) [4], the reproducing kernel particle method (RKPM) [5] or the HP-clouds method [6]
and they have been successfully used to discretize the Galerkin weak form associated with
several problems. Galerkin meshfree methods differ from SPH in two ways: (i) consistency is
introduced from kernel corrections, and (ii) discretization is applied to the weak formulation.

Nevertheless, a troublesome task in meshless methods is the imposition of essential boundary
conditions because the shape functions related to these methods do not satisfy the Kronecker
delta property and they do not vanish on the boundary where the essential conditions are
imposed. Special strategies are hence required to enforce the essential boundary conditions,
involving additional and costly computational efforts. Among them are the Lagrange multiplier
method [3], the transformation method [7], the approach based on the D’Alembert’s principle
[8], the introduction of a singular weight function [9], the penalty method [10], the mixed
transformation method [11] and the boundary singular kernel method [11]. In order to avoid
this additional treatment, a new meshless method has recently been investigated: the natural
element method (NEM) [12–14]. In the NEM, the test and trial functions are constructed using
natural neighbour (Sibson) co-ordinates [15]. Thus, shape functions satisfy the Kronecker delta
property, allowing the imposition of the essential boundary conditions like in the finite element
method (FEM). Another important property of the natural neighbour interpolation is that it
satisfies linear consistency [15]. The natural neighbour co-ordinates are based on well-known
geometric concepts: the Voronoi diagram and the Delaunay tesselation. As the Voronoi diagram
and its dual Delaunay tesselation are only defined for convex domains, issues occur when non-
convex domains are considered. Thus, mutual influences between nodes on the boundary of
non-convex domains appear, which introduces difficulties in the imposition of essential boundary
conditions.

An extension of the NEM to facilitate its application for any domain (convex or not) and
retaining its attractive properties, the constrained natural element method (C-NEM) was proposed
in our former work [16]. The main originality of this approach is the introduction of a visibility
criterion [17] in the NEM to select natural neighbours for constructing the interpolation. A
modified, so-called constrained Voronoi diagram is introduced for the computation of the shape
functions. In addition, the stabilized conforming nodal integration (SCNI) scheme [18, 19] is
used instead of Gauss integration to improve both the accuracy and the efficiency of the method.

In this paper, after a brief review of the natural neighbour interpolation and its drawbacks
in non-convex domains, the C-NEM is presented. A discussion on its main properties, focusing
on its applicability in non-convex domains, is reported. Finally, two numerical examples in
elastostatics are presented to illustrate the accuracy of the C-NEM performance in non-convex
and highly non-convex domains.

2. THE NATURAL ELEMENT METHOD

2.1. Voronoi diagram and natural neighbours

The notion of natural neighbours and natural neighbours interpolation were introduced by Sibson
[15] for data fitting and smoothing of highly irregular set of nodes. This interpolant is based
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Figure 1. Voronoi diagram of a set of nodes in the plane.

on geometric constructs known as Voronoi diagram and Delaunay tesselations. The concept of
Voronoi diagram was originally introduced by mathematicians (Dirichlet, 1850; Voronoi, 1908)
[20] and later applied in many fields of engineering sciences. In 2D, the Voronoi diagram of
an irregular set of nodes divides the plane into a set of regions Ti , one for each node ni , such
that all points in a particular region are closer to its defining node than to any other node (see
Figure 1). The Voronoi diagram is unique, it fills the convex hull of the set of nodes, and can
be extended to any dimension. In mathematical terms, the Voronoi diagram is defined as

Ti = {x∈ Rn: d(x, xi )<d(x, xj ), ∀j �= i}, ∀i (1)

The other closely related geometric construct which is of interest here is the Delaunay
tesselation (or triangulation in 2D), which was introduced by Voronoi [20] and extended by
Delaunay [21]. The Delaunay triangles are constructed connecting the nodes whose Voronoi
cells have common boundaries. From now on, we use 2D terminology although the discussion
is also valid in 3D. The natural neighbours of any node are those defining its neighbouring
Voronoi cells, that is, those connected with the node under consideration by the side of a
Delaunay triangle.

If the distance between nodes is relatively large in some parts, or its distribution is highly
anisotropic, then the set of natural neighbours will reflect these features, but they nevertheless
still represents the best set of nearby surrounding nodes. They are natural candidates to define
the basis of a local interpolation scheme.

2.2. Natural neighbour shape functions

In order to quantify the neighbour relation for any point x introduced into the tesselletion,
Sibson [15] used the concept of second-order Voronoi cells Tij . Tij is defined as the locus of
the points x such that its closest node is ni and the second closest node is nj , i.e.

Tij = {x∈ Rn: d(x, xi )<d(x, xj )<d(x, xk) ∀k �= i, ∀k �= j, i �= j} (2)

Let � be a Lebesgue measure (length, area or volume in 1D, 2D or 3D, respectively).
Let �x be the Lebesgue measure of Tx and �xi the Lebesgue measure of Txi . The natural
neighbour co-ordinates of x with respect to a natural neighbour node ni is defined as the
ratio of the Lebesgue measure of second-order cell Txi to the Lebesgue measure of first-order
cell Tx :

�i (x) = �xi

�x

(3)
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Figure 2. Construction of natural neighbour shape functions.

Figure 3. Support of the natural shape function related to node ni .

If we consider the two-dimensional case shown in Figure 2, the natural neighbour co-ordinate
or natural neighbour shape function is given by

�i (x) = Area(afghe)

Area(abcde)
(4)

Braun and Sambridge [12] have extended the Sibson theory [15] to deduce expressions for
the derivatives of the interpolation functions, which can be applied in a Galerkin framework
for solving partial differential equations, where trial and test functions are interpolated using
natural neighbour shape functions. These authors refer to this method as the NEM.

Thus, the interpolation of a vector-valued function uh(x) results

uh(x) =
n∑

i=1
�i (x)ui (5)

where ui (i ∈ [1, , n]) represents u(xi ) (xi are the co-ordinates of node ni), n the number of
natural neighbour nodes of the point x, and �i (x) is the shape function related to node ni and
given by Equation (4).

It turns out that the support of �i (x) is the union of the n circles (spheres in 3D) passing
through the vertices of the n Delaunay triangles (tetrahedra) containing the node ni (in this case
n is the number of natural neighbours of node ni). The support of a node ni in a particular
nodal distribution is depicted in Figure 3.
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2.3. Natural element interpolation properties

In this section, the main properties of the natural neighbour shape functions are briefly reviewed.
See Reference [13] for more details.

• The Kronecker delta property: The NEM and finite element shape functions share the
following property:

�i (xj ) = �ij (6)

which implies that uh(xi ) = ui . Thus, the imposition of the essential boundary conditions
is direct for the concerned nodes, in contrast to most of the other meshless approximations
where uh(xi ) �= ui . This property and the linear variation of the NEM approximation on
convex boundaries allows to easily impose essential boundary conditions.

• The partition of unity: By construction we have the following relation:

n∑
i=1

�i (x) = 1, ∀x∈ � (7)

This property is equivalent to a zeroth-order consistency, which means that the interpolant
can exactly reproduce constant functions.

• Linear consistency: The natural neighbour shape functions also satisfy the local co-ordinate
property [15], namely,

x=
n∑

i=1
�i (x)xi (8)

which combined with Equation (7), implies that the natural neighbour interpolant spans
the space of linear polynomials (linear completeness).

• Linear variation on convex boundaries: The trial function is strictly linear on a Delaunay
triangle edge located on the boundary of the convex hull. The proof of this property can
be found in Reference [13].

• Smoothness: Natural neighbour shape functions are C∞ at any point except at the nodes,
where they are only C0, and on the boundary of the Delaunay circles (Figure 3)
(spheres in 3D) where they are only C1, because of the discontinuity on the number
of natural neighbours nodes across these boundaries. Hiyoshi and Sughara [22] have
shown that the Sibson interpolant belong to a more general class of Voronoi-based inter-
polants, called kth-order standard co-ordinates, proving that the interpolant generated by
the kth-order standard co-ordinates have Ck continuity on the Delaunay circles (spheres)
boundaries. In this context, the Sibsonian and non-Sibsonian (Laplace) co-ordinates [23]
results to be the standard co-ordinates of order 1 and 0, respectively.

2.4. Issues on non-convex domains

Since the natural neighbour interpolant is constructed on the basis of the Voronoi diagram
and Delaunay tessellation, issues occur when non-convex domains are considered. The Voronoi
diagram is constructed filling the convex hull of the cloud of nodes, without taking into account
the actual domain boundary.

Unfortunately, on non-convex domains, some nodes lying on non-convex boundaries can share
a Voronoi cell facet and thus they become natural neighbours. In this situation, the properties
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Figure 4. Influences from nodes lying on non-convex boundaries.

cited above are not satisfied anymore. The lack of linear precision on non-convex boundaries is
also a consequence of this problem. To illustrate this fact, we consider the non-convex domains
depicted in Figure 4, where a point x is introduced. In order to compute the interpolation at
that point a new Voronoi cell is created, whereas the Voronoi cells related to the neighbour
nodes of point x are modified (see Figure 4). We can see in Figure 4 (left) that the Voronoi
cell just created shares edges with the Voronoi cells associated to nodes n1, n2, n3 and n4 that
then result natural neighbours of point x. However, in order to impose the essential boundary
condition at point x we require both, the shape function associated with node n3 must vanish
at point x and the influence of node n4 on the solution at point x must be removed, i.e. n4
cannot be a natural neighbour of point x.

Several techniques have been proposed to overcome this problem lying to the non-convex
domains. A coupling between the finite element and natural element method [23] or the use
of the �-shape concept [24] can be cited among many other possibilities.

However, some difficulties persist in the case of highly non-convex domains, as encountered
in the crack analysis for example. In the context of the �-NEM, Cueto et al. [14] propose to
describe the geometry of the domain in �-shape sense, which requires a control of the nodal
density. Furthermore, the same authors have shown that it is not possible to describe by this
way sharp corner or cracks. On the other hand, Sukumar [13] propose the introduction of an
explicit description of the domain boundary by means of a planar straight graph (PSG). We
propose in the next section a simple extension of the NEM to circumvent the just referred
difficulties.

3. THE CONSTRAINED NATURAL ELEMENT METHOD (C-NEM)

In this section, a new extension of the NEM is proposed, which makes use of a visibility
criterion, introduced to restrict natural neighbours. A constrained Voronoi diagram results from
the application of that criterion, which will be used to define the interpolation functions,
keeping, as later discussed, the main properties of the NEM interpolation.
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3.1. The visibility criterion

In our opinion, the simplest way to solve the difficulties discussed in the previous section lies
in the introduction of a criterion to remove parasite influences between nodes on non-convex
boundaries. The criterion must interact with a description of the boundary in a CAD sense.

Organ et al. have introduced in Reference [25] a visibility criterion to define the domain of
influence of a node near a crack tip and other non-convex domains. In their approach, the point
x is in the domain of influence of a node ni if x is within the region where the shape function
associated with ni is non-zero (�i>0) and it is visible from node ni when the boundaries are
assumed opaque. Thus, we can define

�i = {x | x∈ �, �i (x)>0}
�V IS

i = {x | Sx→ xi
∩ � = ∅} (9)

where Sx→xi
represents the straight line connecting x and ni , i.e.

Sx→xi
= x + �(xi − x), � ∈ [0, . . . , 1] (10)

where xi is the vector defining the position of node ni and � is the domain boundary (including
interior parts). Thus, the domain of influence of a node ni , �∗, is defined by

�∗
i = �VIS

i ∩ �i (11)

3.2. C-NEM interpolation

If the visibility criterion is introduced in the NEM, the natural neighours become constrained
natural neighbours (C-n-n). The set of natural neighbours will be restricted by applying the
visibility criterion introduced in the previous section. Thus, the new functional approximation
can be written as

uh(x) =
V∑

i=1
�C

i (x)ui (12)

where V is the number of natural neighbours visible from point x and �C
i is the constrained

natural neighbour shape function. The computation of the C-n-n shape function is similar
to natural neighbour shape function, when one proceed on the constrained Voronoi diagram
introduced later.

3.3. Support of constrained natural neighbour shape functions

In the C-NEM, the support of �C
i consists of the union of the n circles (spheres in 3D), passing

through the vertices of the Delaunay triangles (tetrahedra in 3D) defined by the node under
consideration ni , and the V natural neighbours visible from node ni . Furthermore, as stated
by Edelsbrunner [26], these circles can extend across the boundaries, but cannot contain non-
visible neighbours. In Figure 5, the intersection between the support of a constrained natural
neighbour shape function �C

i and the boundary is depicted.
The discontinuity is explicitly described by nodes. Owing to the salient shape of the sup-

port, which passes through the visible neighbour nodes, the shape functions are strictly con-
tinuous near a crack tip, without requiring the use of particular techniques to ensure the
continuity [25].
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Figure 5. Supports of the natural neighbour and constrained natural neighbour shape functions.

Sibson [15] proved that the partition of unity and the linear consistency are satisfied in the
context of natural neighbour interpolants, if, and only if, the point where the interpolation is
computed lies inside the convex hull of their natural neighbours. It can be noted that in the
context of the constrained natural neighbours interpolation, any point in the domain lies inside
the convex hull of their constrained (visible) natural neighbours. In consequence, the partition
of unity and the linear consistency are conserved in the C-NEM.

3.4. Constrained Voronoi diagram

In this section, the constrained Voronoi diagram (CVD) is introduced to provide a suitable
background for the computation of natural neighbour shape function over any kind of geometry
(convex or not). The constrained Voronoi diagram (or extended) Voronoi diagram, is introduced
by Seidel in Reference [27]. In our work, we prefer the term constrained instead of extended to
avoid confusions with the extended finite element terminology [4]. We consider the definition
of the CVD provided in Reference [26]: Imagine R2 is a sheet of paper �0, with the points
of the set of nodes S and the line segments defining the boundary in a set L, drawn on it. For
each li ∈ L, we cut �0 open along li and glue another sheet �i , which also cut open along li .
The gluing is done around li such every traveller who cross li switches from �0 to �i and vice
versa. A schematic view of the particular gluing necessary to achieve that effect is illustrated
in Figure 6(a). We know what it means for two points on the primary sheet to be visible from
each other. For other pairs we need a more general definition. For i �= 0, points x0 ∈ �0 and
yi ∈ �i are visible if xy crosses li , and li is the first constraining line segment crossed if we
traverse xy in the direction from x to y.

In Figure 6(b), the intersection between the CVD and the domain closure is depicted. The
resulting diagram is composed with cells T C

i , one for each node ni , such as any point x inside
T C

i is closer to ni than to any other node nj visible from x. We call it the constrained Voronoi
cells, which are defined formally by

T C
i = {x∈ Rn: d(x, xi )<d(x, xj ), ∀j �= i, Sx→ni

∩ � = ∅, Sx→nj
∩ � = ∅} (13)

where � is the domain boundary, composed with segments li ∈ L.
A generalization of the constrained Delaunay triangulation to 3D does not exist without

adding new nodes, as shown in Reference [28]. Nevertheless, some techniques to construct 3D
constrained Delaunay tesselations are provided in References [29, 30] by addition of Steiner
points.
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Figure 6. Interpretation of the constrained Voronoi diagram: (a) schematic view of the CVD;
and (b) intersection between CVD and the domain closure.

The constrained Voronoi diagram has been introduced for two reasons:

(i) Once such diagram is constructed, classical algorithms for the computation of the shape
functions, Watson-Bowyer [12] or Lasserre [31] can be applied directly because connec-
tions between non-visible natural neighbours in non-convex domains have been removed.

(ii) Recently a new integration method, the SCNI [18] has been introduced in the meshless
methods framework for improving both the accuracy and the efficiency of the numer-
ical integration of the weak formulation. This technique, as proved later, is specially
appropriate in the context of NEM, because the integration cells match the constrained
Voronoi cells.

3.5. Computation of the C-n-n shape functions

Once the constrained Voronoi diagram is computed, selection of constrained natural neighbours
is a direct task because this diagram only contains connections between mutually visible nodes.

In Figure 7(a), an example of the computation of a natural shape function making use of the
standard Voronoi diagram is presented. We can notice that the n1, n2 n3 and n4 nodal values
will contribute to the interpolation in x (located on the non-convex domain boundary). We can
observe that the computed solution in x is not good because its value does not result from a
linear interpolation between the nodal values n1 and n3. Thus, the imposition of a essential
boundary condition is disturbed by the influence of internal (n2) and external and consequently
non-visible (n4) nodes.

In Figure 7(b), the same computation is done making use of the constrained Voronoi diagram.
In such a diagram, as previously described, any Voronoi cell facet related to two nodes which
are not mutually visible are removed. In this case, the interpolated value in x will depend only
on nodal values in n1, n2 and n3. Moreover, taking into account the fact that the second-order
Voronoi cells T1x and T3x have infinite areas, the contribution of the internal node n2 vanishes
(the area of T2x is finite).

We can summarize these facts in the following manner: the second-order Voronoi cells
related to nodes located on the domain boundary (convex or not), have an infinite area because
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Figure 7. Computation of natural neighbour shape functions over a non-convex domain: (a) over
standard Voronoi diagram; and (b) over constrained Voronoi diagram.

Figure 8. View showing the linearity of the C-NEM shape function associated with node ni along
a discontinuity or a non-convex boundary.

the influence between non-visible nodes has been removed during the construction of the
constrained Voronoi diagram. In that case, influences of interior nodes also vanish. Thus,
essential boundary conditions can be easily enforced on any domain boundary (convex or not),
where the approximation is in fact linear (Figure 8).
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Remark 1
To compute a general constrained Voronoi diagram only a description of the boundary � in a
CAD sense is required. We can also introduce inclusions or discontinuities from a list of edges
(facets in 3D) defining their boundaries. Crack analysis with eventual auto-contact can be then
also treated as well as moving boundaries, interfaces or discontinuities when its kinematics is
known.

Remark 2
New nodes can be added (or removed) in the domain or/and on the domain boundary in order
to improve the solution accuracy or to achieve an accurate representation of moving boundaries.
In the nodes just introduced a C-NEM interpolation of internal variables must be carried out.
In the context of the �-NEM, it is required that the nodal cloud of points must reproduce the
geometry of the domain in an �-shape sense, to remove spurious influences between nodes and
to ensure strict linear interpolation along the boundaries. This is not always possible, as shown
in Reference [14].

4. NUMERICAL EXAMPLES

4.1. Elastostatic formulation

We consider the 2D small displacement elastostatics problem, which is described by the equi-
librium equation:

∇ · � + b= 0 in � (14)

where � ∈ R2 is the material domain, ∇ is the gradient operator, � is the Cauchy stress tensor
and b is a body force term.

The constitutive relation is given by

� =Cε (15)

where � and ε are the vector form of the stress and linearized strain tensor (symmetric part
of the gradient of displacements tensor), respectively, which are written using the conventional
notations:

� =



�11

�22

�12


 , ε =




ε11

ε22

2ε12


 (16)

and C is the elastic tensor matrix form.
The essential and natural boundary conditions are

u = ū on �u

�n = t̄ on �t

(17)

where � = �u ∪ �t is the boundary of �, n is the unit outward vector defined on �, and ū
and t̄ the prescribed displacements and tractions, respectively.
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The variational formulation (principle of virtual work) associated with the elastostatic problem
results:

Find u∈ H 1(�) kinematically admissible (u= ū on �u) such that

∫
�

ε∗ · � d� =
∫

�
v∗ · b d� +

∫
�t

v∗ · t̄ d�, ∀v∗ ∈ H 0
1 (�) (18)

where H1(�) and H 0
1 (�) are the usual Sobolev functional spaces.

On substituting the trial and test functions (both approximated in the C-NEM framework)
in the above equation and using the arbitrariness of the field v∗, the following linear system
of equations is obtained after numerical integration:

Kd= fext (19)

where d is the vector containing the nodal displacements, and the matrix K is given by

K=
∫

�
BtCB d� (20)

where C is the usual matrix form of the elastic tensor

fext =
∫

�t

Nt t̄ d� +
∫

�
Ntb d� (21)

N is the matrix containing the shape functions:

N=
[

�1 0 �2 0 . . . �N 0

0 �1 0 �2 . . . 0 �N

]
(22)

B is the matrix containing the shape functions derivatives:

B=




�1,x 0 �2,x 0 . . . �N,x 0

0 �1,y 0 �2,y . . . 0 �N,y

�1,y �1,x �2,y �2,x . . . �N,y �N,x


 (23)

The constitutive matrix C in isotropic linear elasticity results for plane strain:

C= E

(1 − 2�)(1 + �)



1 − � � 0

� 1 − � 0

0 0 1−2�
2


 (24)
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and in the case of plane stress:

C= E

(1 − �2)



1 � 0

� 1 0

0 0 1−�
2


 (25)

4.2. Stabilized numerical integration

Recently, new numerical integration procedures have been proposed in the framework of mesh-
less simulations. Domain integration using Gauss quadrature introduces significant numerical
error when integration cells do not match shape function supports. Another source of numerical
errors is the non-polynomial form of the shape functions that makes non-optimal the Gauss
integration [32]. On the other hand, direct nodal integration, using the nodes as integration
points, leads to numerical instabilities.

In this work, we use the integration procedure proposed by Chen et al. [18]: the stabilized
conforming nodal integration (SCNI). In this approach, a strain smoothing stabilization is
performed to stabilize the nodal integration.

The SCNI procedure is based on the assumed strain method, in which a modified gradient
is introduced at the integration point (node) [18]:

∇̃uh
j (xk) = 1

Ak

∫
�k

∇uh
j (xk) d� (26)

where xk are the co-ordinates of node nk .
Thus, the modified strain vector is given by

ε̃h(xk) = 1

Ak

∫
�k

εh(x) d� = 1

Ak

∫
�k




�uh

�x

�vh

�y

�uh

�y
+ �vh

�x


 d� (27)

Now, by applying the divergence theorem, the following equation is deduced:

ε̃h(xk) = 1

Ak

∫
�k




uhnx

vhny

uhny + vhnx


 d� (28)

where �k is a representative domain related to node nk and �k and Ak are its boundary and
area, respectively, as depicted in Figure 9.

Introducing now the natural element approximation, i.e. uh and vh according to Equation
(12) we obtain

ε̃h(xk) = B̃kd (29) 
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Figure 9. Integration domains for the SCNI procedure: (a) intersection between the Voronoi
diagram and the domain closure; and (b) constrained and bounded Voronoi diagram.

which is expressed explicitly by

ε̃h(xk) =




b̃x1(xk) 0 b̃x2(xk) 0 . . . b̃xN (xk) 0

0 b̃y1(xk) 0 b̃y2(xk) . . . 0 b̃yN (xk)

b̃y1(xk) b̃x1(xk) b̃y2(xk) b̃x2(xk) . . . b̃yN (xk) b̃xN (xk)







u1

v1

u2

v2

...

uN

vN




= B̃kd

(30)

where b̃xj (xk) and b̃yj (xk) are defined by

b̃xj (xk) = 1

Ak

∫
�k

�j (x)nx(x) d� (31)

b̃yj (xk) = 1

Ak

∫
�k

�j (x)ny(x) d� (32)

Obviously, a lot of components in the matrix B̃k are zero due to the compact support of
the shape functions. Chen et al. [18] propose to use the intersection between the Voronoi
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Figure 10. (a) Model geometry of bimaterial cylinder; and (b) constrained Voronoi diagram
of bimaterial cylinder with irregular spaced nodes.

diagram and the domain closure to define the integration cells �k . Introducing the C-NEM
approximation, the smoothed strain and the nodal integration, the global stiffness matrix is
obtained by assembling the contribution of each node nk:

K= ∑
k

K̃k = ∑
k

AkB̃t
kCB̃k (33)

The stress in each cell is then deduced from

�̃h
k =CB̃kd (34)

The application of the divergence theorem avoid the computation of the shape functions
derivatives, and only the evaluation of the shape functions on the boundary of the Voronoi
cells is required. The stabilized nodal integration has been successfully applied by Gonzalez
et al. [19] in the context of the �-NEM, where a significant improvement in the accuracy was
noticed.

This new integration technique can be naturally applied in the C-NEM where the nodal
integration domains coincide with the intersection between the constrained Voronoi cells and
the domain closure. It can be seen in Figure 9 that the intersection between the standard
Voronoi diagram and the domain closure does not define accurately the integration domain.

4.3. A first example: a two-materials cylinder under internal pressure

We consider firstly the two-layers hollow cylinder under internal pressure whose geometry is
depicted in Figure 10 (symmetry conditions has been taken into account. The main interest
of this elastostatic simulation is the analysis of the C-NEM capabilities to treat non-convex
geometries, handling eventual interface discontinuities. Four clouds of nodes have been used,
containing 147, 315, 687 and 1863 nodes. Both regular and irregular distributed nodes were
tested.
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The exact displacements solution of a hollow cylinder under internal pressure results

ur = ar + b

r
(35)

In our case we can write the displacements in each domain in the form

ur = a1r + b1

r
Rint � r �R1 (36)

and

ur = a2r + b2

r
R1 � r �Rext (37)

from which the strains and stresses can be deduced

ε1rr = a1 − b1

r2
ε2rr = a2 − b2

r2

ε1�� = a1 + b1

r2
ε2�� = a2 + b2

r2

ε1r� = 0 ε2r� = 0

(38)

�1rr = a1(�1 + 2	1) − 2b1	1

r2
�2rr = a2(�2 + 2	2) − 2b2	2

r2

�1�� = a1(�1 + 2	1) + 2b1	1

r2
�2�� = a2(�2 + 2	2) + 2b2	2

r2

�1r� = 0 �2r� = 0

(39)

where �i and 	i , i = 1, 2, denote the Lame’s coefficients of both materials, related to elasticity
modulus and Poisson’s coefficient by

	 = E

2(1 + �)
and � = �E

(1 − 2�)(1 + �)
(40)

The parameters ai and bi , i = 1, 2, can be computed by applying the following boundary
and transmission conditions assuming plane stress:

−�rr (Rint) = P

�rr (Rext) = 0

�1rr (R1) = �2rr (R1)

u1r (R1) = u2r (R1)

(41)

where P represents the internal pressure.
Numerical results of displacements and stress are compared to the analytical solution for a

cloud of 315 regularly distributed nodes in Figures 11 and 12 (Rint = 0.5 mm, R1 = 0.7 mm,
Rext = 0.9 mm, �1 = 0.3, E1 = 210 000 MPa, �2 = 0.2, E2 = 105 000 MPa, P = 1 MPa). The
C-NEM is in good agreement with the analytical solution, and the ��� discontinuity across the
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Figure 11. Displacements across the interface of the bimaterial cylinder.
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Figure 12. Stresses across the interface of the bimaterial cylinder.

interface is accurately reproduced. Figure 13 and Table I group the errors using the energy
norm for the different clouds of nodes and both regular and irregular nodal distributions, where
�̃h is given by Equation (34). In Figure 13, h denotes the radial distance between two nodes.

4.4. A second example: a mode-I crack analysis

A crack analysis using the NEM can be found in Reference [13], where due to the symmetry
of the problem the computation domain is actually convex. It shows that the NEM solution
convergence is faster than the finite element one. In the present example, a mode-I cracked
plate is considered. The geometry of the model is depicted in Figure 14(a).
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Figure 13. Rate of convergence of the C-NEM for the bimaterial cylinder problem
using a regular nodal distribution.

Table I. Error in the energy norm for the bicylinder problem.

‖�̃h − �ex‖E ‖�̃h − �ex‖E
Number of nodes Regular nodal distribution Irregular nodal distribution

147 1.13 × 10−4 1.21 × 10−4

315 7.41 × 10−5 8.10 × 10−5

687 4.95 × 10−5 5.48 × 10−5

1863 3.06 × 10−5 3.46 × 10−5

The analytical solution in the neighbourhood of the crack tip is given by [33]

�11 = KI√
2
r

cos
�

2

(
1 − sin

�

2
sin

3�

2

)
(42)

�22 = KI√
2
r

cos
�

2

(
1 + sin

�

2
sin

3�

2

)
(43)

�12 = KI√
2
r

(
sin

�

2
cos

�

2
cos

3�

2

)
(44)

In order to investigate the convergence of the numerical solution in the whole domain we
enforce the boundary conditions Fd = �exn on the boundary of the problem domain.

In this example, L = 1 mm, a = L/2 mm and KI = 1. In order to illustrate the ability of the
C-NEM to handle the crack behaviour, no symmetry was considered.
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Figure 14. (a) Geometry for the mode-I crack problem; and (b) exact boundary conditions.
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Figure 15. Convergence of the C-NEM solution for the mode-I crack problem.

The convergence of the C-NEM solution is depicted in Figure 15. The parameter h denotes
the distance between two nodes in a regular set of nodes. We can notice that the convergence rate
is 0.42, which is approximatively the expected convergence rate (0.5) obtained with triangular
linear finite elements.

4.5. A third example: a plate containing an internal crack

In this example, we consider the problem defined in Figure 16 where 2a = 0.2 mm, 2W =
2 mm and �∞

22 = 1 MPa. Plane stress conditions are assumed with an elastic modulus of
E = 1 MPa and a Poisson coefficient of � = 0.3. Firstly, we consider the case of � = 0 whose
exact solution in an infinite plate was obtained by Muskelishvili [34]. For � = 0 and � = 0 in

19



γ
θ

σ22

σ22(a) (b)

Figure 16. Square plate with an inclined crack: (a) geometry and loads;
and (b) distribution of nodes.

Figure 17. Zoom of the constrained Voronoi diagram in the neighbourhood of the crack (detail).

Figure 16, this solution results

�22(� = 0, � = 0, r) = �∞
22

a + r√
r(2a + r)

�11(� = 0, � = 0, r) = �∞
22 − �22

(45)

When the crack size is much smaller than the domain size, Muskelishvili’s solution can be
taken as a reference solution (Figure 17).

A cloud of 760 nodes is considered in the C-NEM simulation (400 nodes are uniformly
distributed, other 20 nodes are located on each crack side and the remaining 320 nodes are
concentrated in the crack tip zones) as depicted in Figure 16 without assuming any symmetry
condition. Numerical results are reported in Figure 18.
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Figure 18. Radial stresses ahead of the crack tip for � = 0.
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Figure 19. Stress intensity factor KI for different values of the crack orientation �.

Now, we consider the case of an inclined crack. The stress intensity factor (SIF) KI has
been computed using the contour form of the interaction integral method [35], the different
values of interest being easily interpolated anywhere in the domain. The size of the square
domain used in the computation is 0.6a × 0.6a (see Figure 6). Numerical results concerning
the intensity factor KI for different values of � are compared in Figure 19 with the exact ones
given in Reference [34]:

KI = �∞
22

√

a cos2 � (46)

Accuracy can be improved by increasing the nodal density in the crack tip neighbourhood.
Another possibility is to extrinsically enhance the trial function by adding terms reproducing the
local

√
r behaviour. As the shape functions �C

i (x) define a partition of unity, the enrichment of
the C-NEM trial function in crack problems can be achieved in the partition of unity framework
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[4]. Let �0 ⊂ � be a sub-domain in a region around the crack tip where the crack tip singularity
dominates. Then the enriched function for two-dimensional crack problems could follow the
form suggested by Sukumar in Reference [13]:

uh(x) =
n∑

i=1
�c

i (x)ui + √
r

m∑
j=1

�c
j (x)aj (47)

where aj are additional nodal coefficients that are associated with the m nodes in �0.

5. CONCLUSION

This paper proposes a new extension of the natural element method, the constrained natu-
ral element method (C-NEM) applicable to any geometry (convex or not) involving eventual
discontinuities (fixed or moving). For this purpose, a visibility criterion has been introduced
to avoid undesirable nodal influences in non-convex domains. The constrained or extended
Voronoi diagram which is known as the strict dual to the constrained Delaunay tesselation,
is introduced as the basis for computing the interpolation functions and it is also applied for
defining the integration domains used in the stabilized nodal integration (SCNI) [18, 19]. The
main properties of the C-NEM can be summarized as follows:

(i) Direct enforcement of essential boundary conditions without any special treatment.
(ii) The ability to reproduce discontinuities across interfaces.
(iii) Continuity inside the domain, which is not perturbed by the introduction of the visibility

criterion.
(iv) Linear precision on any boundary (convex or not), without parameter dependance.
(v) A significant improvement of both efficiency and accuracy in the numerical integration

by using the SCNI procedure, as demonstrated in Reference [19].
(vi) Linear consistency and partition of unity property at point of the domain. The second

property allows functional enrichment.

Topics related to enrichment and the natural extension of the C-NEM for treating 3D models,
constitute some of our current work in progress.
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