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A method of a floating frame of reference that performs splitting of a deformable solid into rigid and deforming parts is pre
within the context of non-smooth contact dynamics. The decomposition is made in such a way that the deforming part
velocity field does not contribute either to the motion of the center of mass or the rotational motion. The corresponding num

method that computes both rigid and deforming motions is presented and extended to multi-body dynamics simulation allowing 

non-smooth contact interactions, such as impacts and friction. Numerical experiments, where the method is compared with a 
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1. Introduction

This paper presents and studies the application of the method of
a floating frame of reference to a simulation of solids, participating
in non-smooth dynamics.

The method of a floating frame of reference (for simplicity, it
shall be referred to as FFR) is a special type of a general family of so
called corotational methods. The key idea behind a corotational
method is a kinematical splitting into two of the reference
configuration of an element of a structure primarily discretized
with the Finite Element method (FEM). These are the base config-
uration and the corotated, or dynamic one. The base configuration
is kept fixed for the entire structural analysis, while the corotated
configuration is a result of the rigid body motion, i.e. superposition
of translation and rotation, of the base configuration. In general, the
dynamic configuration is element dependent and is defined for each
element separately. A far from complete list of the works on the
topic includes (Crisfield,1990; Bergan and Horrigmoe,1976; Rankin
and Brognan, 1986; Rankin and Nour-Omid, 1988; Belytschko and
Hsieh, 1973; Simo, 1985; Devloo et al., 2000; Areias et al., 2011;
Alsafadie et al., 2010; Felippa and Haugen, 2005).
tics, Texas A&M University, 
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The FFR method differs significantly from general corotational
methods by the fact that it requires only one dynamic configuration
for each element. Even more, this single moving frame of reference
is introduced without any connection to the elements or any other
type of structural discretization of the described solid, and there-
fore can be defined before even considering discretization in gen-
eral. The FFR method is intuitively more attractive and has been
known for over a century. It has been mostly used for computations
in flexible multi-body dynamics, where separate solids are con-
nected via bilateral constraints, typically smooth, (Cardona and
Geradin, 2001), (Veubeke, 1976). A brief overview of the method
in this area was given in (Shabana et al., 2007).

Variants of the FFR method are distinguished by the type of
attachment between the moving frame and the deformable body
itself. This is governed by the reference conditions (Schwertassek
et al., 1999). Depending on the selected reference conditions, the
translational and rotational coordinates associated with the body
frame vary differently during the motion. The motion of the
selected frame is referred to as reference motion. For example,
reference conditions result in the tangent frame, the chord frame or
the free frame, among others (Escalona et al., 2003). Reference
conditions are related to the boundary conditions that the selected
deformation shape functions must fulfil.

Our area of interest is a simulation of assemblies of bodies un-
dergoing non-smooth contact interactions such as shocks and
friction, with typically natural external forces such as gravity. Awell
known method to simulate dynamics of large assemblies of objects
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with such interactions is the Discrete Element method (DEM)
(Cundall and Hart, 1992). In DEM, typically only a minimal resolu-
tion of the internal deformations are performed as to allow more
computational resources for the overall system dynamics. The areas
of application of DEM include rocking avalanches (Banton et al.,
2009), (Manzella and Labiouse, 2009), masonry structures, gran-
ular systems (Ghaboussi and Barbosa, 1990). Even the most so-
phisticated continuous flow models usually fail to replace DEM in
representing accurate physical phenomena. As opposed to DEM, in
which the number of bodies ranges from thousands to hundreds of
thousands or even more (Mishra and Rajamani, 1992), we are
assuming a significantly smaller number of the participating solids,
though with the growing computer performance this number may
naturally grow as well. The bodies are assumed to fall under an
important restriction to eliminate a possibility of nonlinear defor-
mational behavior, such as bending. Hereafter bodies are seen as
massive blocks, which means no extremely thin bodies are
considered. This restriction also imposes large stiffness on the
participating bodies, for which the Young modulus is typically
positioned around values of order 109e1010 or larger. Unlike DEM,
we consider more internal degrees of freedom for the solids, which
explains our limitation in the number of the solids in the multi-
body dynamics but allows a more accurate simulation of these
solids.

This article focuses on the implementation of the FFR method in
the dynamics of several bodies and its integration into the non-
smooth contact framework pioneered by J. J. Moreau (1988),
(2004) and M. Jean (1999). This is a vastly growing field, and the
number of methods has been developed for that framework. Un-
fortunately, the absolute rigidity model for interacting bodies in a
studied collection as a simplification of the large stiffness model
may create indeterminacy (plurality of solutions) (Alart, 2014),
partly because of the specific nature of the employed interaction
laws. One of the ways to treat this problem is by incorporating a
finite yet large stiffness for the bodies, and therefore applying the
FEM analysis. This bears themost general solver relying on the Total
or Updated Lagrangian approach, also known in the engineering
community as the method of a large transformation and employing
the absolute nodal coordinate formulation (ANCF). The method
without any regard to contact is thoroughly described in
(Belytschko et al., 2000) and its implementation into contact
problemsmay be found in (Acary and Brogliato, 2008), (Koziara and
Bicanic, 2008). With an assumption of a small rotation, the
nonlinearity of the method is neglected, and it is renamed into the
method of small deformation.

Within the FFR framework, we shall be using the so-called
deformable body mean axis frame (Agrawal, 1984). When using
this frame, the degree of coupling between the reference co-
ordinates and the elastic coordinates is minimum, though not zero.
Neither the corotational method, nor the large transformation
approach seem as attractive for the non-smooth dynamics of stiff
massive solids as the FFR method with this frame. Assume the
solid's position field satisfies x ¼ x(X), where X and x reside in the
base and current configuration respectively. Then the trans-
formation gradient F may be polarly decomposed as

F ¼ vx
vX

¼ UO;

whereU is responsible for the deformation, andO is an orientation
as of a rigid body. The assumption for our case impliesOzconst for
the entire structure, therefore the general corotational method,
operating with arbitrarily changing O from element to element, is
overused. On the other hand, the large transformation approach is
not efficient computationally, due to the presence of the high
nonlinearity in the equations even in the absence of contact in-
teractions. The floating frame is intended for tracking the rotational
part of the solid, and the nonlinear deformations in this case are
completely eliminated from the point of view of that frame, which
allows for constant stiffness matrix in the computations
throughout the whole simulation. The remaining nonlinearity is
only due to rotations, which relaxes an iterative solution process.

Another attractive property of the FFR method is that the
floating frame, described above, may provide such characteristics of
the moving solid as its center of mass, orientation and angular
velocity (without operating with rigid body modes, coming from
the FEM discretization), which are the parameters of a purely rigid
body and are desirable for intuitive description of deformable, but
very stiff solids. For this reason, from now on we shall be referring
to the motion of such frame as “rigid motion” of the deformable
solid as opposed to more general term “reference motion”.

The paper has 4 sections following. As a theoretical base, Section
2 provides a formal kinematical theory for the most general body
structure. It is shown that the decomposition into the rigid and the
deforming motions for a single solid is always possible in the
kinematical sense regardless of the dynamical reasoning for the
motion. Although theoretically this splitting is possible for any kind
of deforming solids, computationally it is only meaningful in the
application area mentioned above, as too much deformationwould
create nonlinearity and the FFR method would not retain its ad-
vantageous status over the method of a large transformation. Note
this section is not operating with any sorts of spatial discretizations
of a solid and is based purely on the fundamental laws of me-
chanics. This section may present interest especially for theoretical
mechanicians. Section 3 introduces FEM method in the local frame
to resolve the deformational behavior and derives a stable second-
order accurate Newmark time-stepping scheme and then adapts
these results to the non-smooth contact dynamics of a general
multi-body system. Finally, Section 4 contains numerical experi-
ments that test the performance and accuracy of the method
compared to the large transformation method. Section 5 provides
the conclusion and further prospects.
2. The formalism

Everywhere below any bold symbol, for example a, describes a
vector with at least two components or a set of vectors. Blackboard
bold symbols, except for the real number set ℝ, denote operators,
tensors (wider than vectors) and their corresponding matrices.
Symbol � denotes vector product and5 denotes tensor product of
two vectors, i.e. a 5 b ¼ abT. Operation A : B returns the sum of all
products of the respective elements of the both matrices, i.e.P
i;j
AijBij.

2.1. Kinematics

Let the Euclidean system of coordinates Oxyz be an inertial
frame of reference (Landau and Lifshitz, 1976) called a global frame.
For a solid with density r and mass m, let x(X,t) denote a position
vector in the global frame of a material point with Lagrange co-
ordinatesX at time t. v(X,t) denotes the velocity vector of that point.
The set of all X is denoted V and they refer to the initial undeformed
(rigid) configuration of the solid.

The main idea behind a floating frame is that any motion of a
deformable body V may be described as the superposition of the
motions of the imaginary rigid and deforming parts (Shabana and
Schwertassek, 1998). For a currently used floating orthonormal
frame CXYZ and an imaginary rigid body frozen in it, with its center
of mass placed at the origin C, the velocity vR of that rigid body is



completely defined by the motion of the floating frame. With the
deforming velocity denoted as vD, the actual velocity satisfies

v ¼ vR þ vD: (1)

So once a rigid part xR(X,t) and its corresponding floating frame,
also called local, or rigid frame, are specified in any desired way, the
equality (1) uniquely defines vD for a provided motion of the actual
solid with velocity v.

The orientation of CXYZ is given by an orthogonal matrix OðtÞ.
r(X,t) denotes a vector, expressed in the global frame, from the
center of mass of the rigid part to the point of the same with ma-
terial coordinates X. By definition of OðtÞ,

rðX; tÞ ¼ OðtÞX: (2)

Let rR denote the density of the rigid part, i.e. the density of the
actual solid once it fully coincides with its rigid part (density in its
initial configuration). For every rigid body moving continuously in
space, there exists a two-way correspondence between vR and the
velocity of the center of mass vR,C and its angular velocity u

(Goldstein et al., 2014). This correspondence is based on linear
operators L and G, acting from a vector field to a single vector and
in the opposite direction respectively:

L : vR/
�
vR;C
u

�
; G :

�
vR;C
u

�
/vR:

With J ¼ R
V
rRððrTrÞI� r5rÞdv denoting the inertia tensor of the

rigid part in the global axes at the center of mass (so called Koenig's
frame of reference) and being diagonal in the local frame, the
operator L has a form

L ¼

0BBBB@
m�1

Z
V

rR$ð$Þdv

J�1
Z
V

rRr� ð$Þdv

1CCCCA:

Note the Koenig's frame implies time-dependence of J. G is
simply another way of writing Euler's formula

vR ¼ vR;C þu� r: (3)

It is obvious that GLvR ¼ vR.
We are interested in a condition

LvD ¼ 0; (4)

which physically implies that the total momentum and the angular
momentum of the deformation field of interest are zero.

Theorem 1. For every continuously moving body, there always exists
such a decomposition into the rigid and the deforming parts that
LvD ¼ 0 throughout the entire motion of the body. The decomposition
is unique, up to the initial configuration of the rigid part.

Proof.
Indeed, specify the rigid part in any desired way at the initial

instant t¼ 0 (only preserving the isomorphism between x and xR).
Its velocity is defined via vR¼ vR,C þ u � r. Since the field r is fixed
(it defines the rigid part that we constructed), we only need to
adjust two vectors vR,C andu in the waywe see appropriate. Setting

vR;C ¼ m�1
Z
V

rRvdv; (5)
u ¼ J�1
Z
V

r� rRvdv: (6)

immediately satisfies (4). Once we set the rigid velocity in the way
described above at t¼ 0, this decompositionwill preserve condition
(4) for the whole motion if we simply force conditions (5) and (6)
for the rigid part to fulfil. -

Remark 1. The theorem may also be proven with use of the fact
that the set V of all fields v for a fixed instant of time is a Hilbert

space with the inner product h$; $i ¼ R
V
rRð$ÞT ð$Þdv. The set

VR ¼ {vRjvR¼ vR,C þ u� r}, parametrized by vR,C and u, is a closed
linear subspace of V andGL is a projection operator from V onto VR.
By properties of a Hilbert space (Debnath and Mikusinski, 2005),
there exists a unique element vR 2 VR such thatGLðv � vRÞ ¼ 0, i.e.
LvD ¼ 0, since KerG ¼ 0.

Starting now, for each solid we shall consider such a rigid part
from an infinite set of those satisfying (4), that it fully coincides
with the initial configuration V of the solid at the initial instance.
Physically, condition (4) implies that the bulk behavior preserves
the motion of the center of mass of the whole system and its
rotational momentum. For this reason, vR,C is naturally replaced
with vC, for shorter notation. Due to (1) and (4),

GLv ¼ vR and ðI�GLÞv ¼ vD:

The following holds.

Proposition 1.Z
V

rRv
T
RvDdv ¼ 0: (7)

Proof. The statement of the proposition is obtained immedi-
ately by applying the argument of Remark 1. -

Remark 2. Theorem 1 lets decompose the total kinetic energy of
the system into the kinetic energy of the rigid motion and of the
deforming one:

T ¼ 1
2
uTJuþ 1

2
mv2C þ 1

2

Z
V

rRv
T
DvDdv:

Coordinate function x′(X,t) describes the actual motion of the
points of the body with respect to the frame CXYZ (local, or relative
motion). The set of all outputs x′(X) is denoted as V

0
. With local

velocity v0 ¼ _x0, the Galilean addition of velocities in the global
frame (Landau and Lifshitz, 1976; Goldstein et al., 2014) reads as

v ¼ vC þOv0 þ u�Ox0: (8)

From here, it follows that

vD ¼ O
�
v0 þOTu� d0� (9)

in the global frame with local displacement d′ ¼ x′ � X.

2.2. The orientation of the rigid frame is not intuitive

An interesting fact about the presented decomposition is that
for systems with small stiffness it provides a rigid frame whose
position intuitively does not seem obvious. Consider for instance a
discrete systemmade of 4material points of unit mass placed at the
corners of a square and connected with each other through springs
of equal stiffness k. For the initial conditions, let every mass point



have a unit velocity orthogonal to the diagonal of the square that
the point belongs to in such a way, that the system rotates clock-
wise around the center of the square. The symmetry of the prob-
lem's geometry lets us construct a moving orthonormal frame of
reference that we denote CXY such that the mass points are moving
only along the axes CX and CY , see Fig. 1.

If eX , eY , and eZ denote the standard basis of CXYZ (axis CZ is
orthogonal to the plane CXY), then the position vector of one of the
4 points is r ¼ reX with a scalar function r¼ r(t). This frame rotates
with some time-dependent angular velocity u1 ¼ _f1eZ and accel-
eration _u1 ¼ €f1eZ , where angle f1 describes the orientation of this
frame with respect to the global one. The velocity of the point is
obtained by direct differentiation as v ¼ _reX þ ru1eY . The first term
on the right-hand side is non other than the local velocity of the
point with respect to the frame CXY . Then momentum equation for
this mass point with respect to the same frame is then

r€eX ¼ 4kð1� rÞeX þ u2
1r� _u1 � r� 2u1 � _reX :

The last two vector terms on the right-hand side (Euler and
Coriolis forces) are parallel to the CY-axis. The fact that the material
point never leaves axis CX implies that these forces cancel each
other, so we obtain u1

_r ¼ �2u1 _r. From here, u1¼ r�2. So the final
differential equation for r then will be

r€ ¼ 4kð1� rÞ þ r�3;

whichwe have to solve with initial conditions r(0)¼ 1 and _rð0Þ ¼ 0.
Interestingly, the frame CXY is not a frame of the ridid part that

fulfils LvD ¼ 0. Therefore, there must exist, according to Theorem 1,
another frame CXY rotating with angular velocityu ¼ _feZ such that
condition LvD ¼ 0 holds for that frame. Let vR ¼ ueY denote the
velocity of the rigid part at the first mass point. For the condition
LvD ¼ 0 to hold, it is necessary and sufficient to require, due to
symmetry, that v� vR be orthogonal to CY-axis. This is equivalent to�
_reX þ ru1eY � ueY

�
$eY ¼ 0:

If we denote the angle between two frames CXY and CXY as
a(t) ¼ f(t) � f1(t), then we finally obtain our goal differential
equation
Fig. 1. The system itself (outer square) and its rigid component (inner square).
_a ¼ � _rsinaþ r�1cosa� r�2:

Numerical solution of this equation with initial condition
a(0) ¼ 0 shows that a always stays positive (meaning that the
frame CXY lags behind CXY), although does not grow to infinity. It
stabilizes after some time and oscillates around some constant
value. The more stiff the system is, with the rest of input being the
same, the smaller a becomes, so the closer the two frames
approach each other. Refer to graphs of Fig. 2. The limit at infinity
of the mean value of a may be estimated from solving the equi-
librium equation r�1cosa � r�2¼ 0. This value is estimated to be
a∞ ¼ arccosðr�1

∞ Þ, where r∞ is a solution of equation 4k(1� r)þ
r�3¼ 0. Table 1 shows the limit of the mean value of a depending
on k.

The presented example demonstrates the presence of the drift
between intuitively desirable frame and the actual frame CXY
granting conservation of linear and angular momentums of the
deforming motion. However, for the applications that this works
aims at, the stiffness is large enough for this kind of drift to remain
unnoticable, as is confirmed by the example above. Therefore, in
the upcoming study, we will be proposing to treat the deforming
velocity vD as Ov0, meaning that the geometrical nonlinearities
(caused by rotation) with respect to the local frame are negligible.
This will allow to work with constant in time stiffness matrix in the
local frame. The justification of such simplification in the numerical
scheme for more practical simulations will be confirmed by the
numerical experiments. It will also be shown how this simplifica-
tion allows to incorporate dynamics into the contact framework.
2.3. Dynamics

The force vectors acting on a body are described as internal, i.e.
those acting from the points of the body itself, and external forces
(Landau and Lifshitz, 1976). They are denoted Fint and Fext respec-
tively. Note that Fext¼ Fext(t) is considered here general space-
independent volumic force, but possibly time-dependent. It is
different from forces R acting on surfaces, such as contacts.

Now we can write the main dynamics equation governing the
solid pointwise:

r _v ¼ Fint þ Fext þ R; (10)
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Fig. 2. Evolution of the angle a between the two frames for varying stiffness k.



Table 1
The increase of stiffness k causes the decrease of a∞

k 1 10 100 1000 10 000

a∞ 0.5316 0.2139 0.0704 0.0223 0.0071
where R is taken zero everywhere outside the contact region. The
trajectory of the center of mass of the whole system is described via

_vC ¼ 1
m

0B@ Z
V 0

Fextdv
0 þ

Z
vV 0

Rds

1CA; (11)

which is a known result. Also, according to (6), the rotational
motion of the system is determined via

Ju ¼
Z
V 0

OX� rvdv0: (12)

A time discretization of this equation creates an unstable
scheme, and it additionally puts computational burden on the
simulation, which comes from the need of integration over the
entire solid. Instead, (12) must be differentiated in time. This pro-
vides an equation, which is too heavy for practical computations,
and all the terms of order higher than zero with respect to the
deformational (bulk) degrees of freedom are dropped. So we obtain
the equation for the angular momentum of a purely rigid body:

ðJuÞ_ ¼
Z
V 0

OX� Fextdvþ
Z
vV 0

OX� Rds (13)

This drastic simplification is justified by the fact of small
perturbation allowed for the solid. Numerical tests will show
satisfactory results for this simplified equation within our frame-
work of assemblies of very stiff objects. For interested readers, the
equation with one order higher, i.e. linearized, is derived in
Appendix A.

We can now write dynamics formulation for the deforming
motion. Recall that consideration of dynamics in the local frame, as
opposed to the global one, introduces fictitious forces (Feynman
et al., 2013). Denote by ~u ¼ OTu, e_u ¼ OT _u the standard geo-
metric vector transformations from the global frame to the local
one, and T denotes the Cauchy stress tensor in the rigid frame of
reference. Then the momentum equation in the local frame is

r _v0 ¼ V$TþOTFext þ Ftr þ Frot ; (14)

where

Ftr ¼ �OTr _vC ;
Frot ¼ �~u� ð~u� rx0Þ � e_u� rx0 � 2~u� rv0

and the divergence operator V$ is taken with respect to the actual
configuration x

0
. The term Ftr is a translational (rectilinear) inertia

force and distributed homogeneously over the whole solid, acting
as an additional gravity pointing in the direction opposite to the
solid's rectilinear acceleration. In computations, this term is better
written in terms of external forces and contact due to (11). The term
Frot consists of rotational fictitious forces, namely, the centrifugal,
Euler and Coriolis forces.

Note that the Equations (11) and (12) require only the time
discretization, while Equation (14) is the one requiring both tem-
poral and FEM discretization. The latter one provides the most
computational load. In this paper, elasticity law T ¼ ℂ : E with
linear strain tensor E is imposed on the stress tensor since the
deformations are assumed to be of small magnitude in the local
frame. The nonlinear with respect to displacement and velocity
terms are neglected. This lets us use time-independent volume V
and its surface vV instead of V

0
and vV

0
, as well as ignoring the

difference between r and rR in various integrations performed in
the Finite Element discretization. We should obtain the standard
formulation of the elastic problem with constant in time stiffness
matrix.

As we have finished with the formalism, it is now possible to
construct a consistent numerical method for solving (10) using the
FFR method.

3. The numerical method

Since a body is provided in its rigid (undeformed) state at the
initial instant of time, it is straightforward to construct unique
operators L and G for it, so this allows to find vR ¼ GLv and,
consequently, vD. From it, we easily obtain v′ using (9). The time-
step is denoted h and is assumed constant in this paper. The
value of a discrete function f at a node i, corresponding to ti¼ t0þ hi,
is denoted fi.

3.1. Single solid

Traditionally, in non-smooth contact dynamics (NSCD) all the
contact interactions are represented as those occurring through a
finite set of points rather than continuum surfaces, as the last case
lacks consistent general framework due to its difficulty. The non-
smooth contact framework relies on contact laws that are written
for each point individually, together organizing a contact network
with a global contact law. A commonly used one and employed in
this paper is the law connecting the reaction R at the current
contact point with the relative velocityU of the interacting solids at
that point, for example, the Signorini non-penetration condition
and the Coulomb friction law with a friction coefficient m, respec-
tively below:�
RN ¼ projℝþðRN � cNgÞ;
RT ¼ projDðmRNÞðRT � cTUTÞ:
Here subscripts N and T mean normal and tangential compo-

nents respectively, g � 0 is the gap function, i.e. the distance be-
tween the bodies examined for contact, c means a positive
conditioning coefficient, and D(r) means a two-dimensional disk of
radius r. Note that RT is parallel to UT and is pointing in the opposite
direction. Symbol projA denotes projection onto convex set A2ℝk

containing zero, for some k. This means the following: x 2 A im-
plies projAx¼ x and x ; A implies projAx¼ cx where c is the largest
such number that cx 2 A. For more on this, as well as a more used
Signorini velocity condition, see (Moreau,1988; Moreau 2004; Jean,
1999; Vola et al., 1998).

For practical purposes, at least for one body in contact, a contact
point that this structure is having at a certain instant of time is
assumed to be precisely a node of the mesh arising from its space
discretization, such as the Finite Element discretization. Then for
the second body, since the actual contact region in general is not
localized close enough to either of the FEM nodes on its surface, the
position of its contact point is found from the orthogonal projection
of the point of the first body to the surface of the second.

Let the body have a set {a} of contact points on its surface over
the time interval [ti,tiþ1]. There is an orientation at the contact point
a given via a matrix ℂa that is constructed from its basis vector
being orthogonal to the surface of the body at the contact point. So
we assume by default that at least one of the bodies has a smooth
(in geometrical sense) surface at the contact point during the



contact in order for ℂa to be defined correctly. The reaction at the
point a expressed in ℂa is denoted ~Ra. So in the global frame
Ra ¼ ℂa

~Ra. Note that in general ℂasO. There is also a strong
assumption that the contact geometry does not change during the
time interval [ti,tiþ1], which is equivalent to the fact that ℂa remains
constant over the interval and the point a does not move in the
local frame. Nevertheless, to achieve as much generality as possible,
we assume thatOmay be changing over that same interval [ti,tiþ1].
This may happen, for example, when a body turns while touching a
static surface with its corner.

We shall consecutively discretize (11), (13) and (14). The scheme
used for the temporal discretization is a Newmark symmetric one
(also called trapezoidal), known for being a second-order accurate
(for smooth regimes), unconditionally stable implicit scheme,
(Hughes, 1987; Ascher and Petzold, 1998). For (11), obtain

vC;iþ1 ¼ vC;i þ
h
2m

Z
V

�
Fext;i þ Fext;iþ1

�
dvþ h

m

X
a

ℂa
~Ra: (15)

For the rotational motion (13), obtain

Jiþ1uiþ1 ¼ Jiui þ
h
2

Z
V

OiX� Fext;idvþ
h
2

Z
V

Oiþ1X� Fext;iþ1dv

þ hOiþ1

X
a

XðaÞ �OT
iþ1ℂa

~Ra:

(16)

Write the time-stepping equation for the deforming motion
(14) as

rv0iþ1 ¼ rv0i þ
h
2
ðV$Ti þ V$Tiþ1Þ þ

h
2

�
OT

i Fext;i þOT
iþ1Fext;iþ1

�
� h
2

r

m

Z
V

�
OT

i Fext;i þOT
iþ1Fext;iþ1

�
dv� h

r

m
OT

iþ1

�
X
a

ℂa
~Ra þ h

2
�
Frot;i þ Frot;iþ1

�
:

(17)

The two terms with the integration and the summation are the
inertia force Ftr due to translation, expressed through the external
and contact forces respectively. From (15)e(17), we see that the
only way the elastic degrees of freedom influence the degrees of
freedom of the rigid part is through contact forces. If no contact
interactions occur, the rigid part becomes fully decoupled from the
local elasto-dynamics and obeys the momentum conservation due
to external forces only. This will also be confirmed by the numerical
experiments in Section 4.

An interesting observation about a typical structure we consider
is that a low magnitude of its perturbations makes it possible to
neglect the contribution from the local displacement d

0
and its ve-

locity v
0
in all three terms inside Frot, leaving only the contribution

coming from the rigid configuration X. This in particular completely
eliminates the Coriolis term and leaves

Frot ¼ �2~u� rv0 � ~u� ð~u� rðXþ d0ÞÞ � e_u� rðXþ d0Þz� ~u

� ð~u� rXÞ � e_u� rX:

(18)

This is a very crucial advantage of the FFR method for very stiff
objects, since FEM does not only create a constant in time stiffness
matrix in this case, but also a constantmassmatrix, so the inversion
of a generalized matrix (see below) is simplified significantly. This
makes it different from the applications of flexible multi-body
dynamics, where mass matrices end up being coordinate-
dependent, (Shabana et al., 2007). We emphasize that this simpli-
fication is due to conditions jd0j ≪ 1 and jv0j ≪ 1 and otherwise
could lead to inaccurate prediction. Note that for the centrifugal
force its trapezoidal discretization is obviously taken as the average
between two endpoints of the interval [ti,tiþ1] as opposed to the
Euler force. The latter is approximated via themid-point rule due to
impossibility to approximate the angular acceleration at the
endpoints:

�he_u� rXz� r
�
OT

iþ1uiþ1 �OT
i ui

�
� X:

Let {uj} with j¼ 1,…,n denote the set of the basis nodal functions
for the whatever Finite Element discretization we are using inside
the local frame CXYZ, and the local displacement d

0
and velocity v

0

are approximated as
P
j
jjuj and

P
j
ljuj respectively, with n un-

knowns jj and lj ¼ _jj. So (17) bears its FEM analogue with a mass
matrix M and a stiffness matrix K in a form�
Mþ h2

4
K

�
liþ1 ¼

�
M� h2

4
K

�
li � hKji þ

h
2
�ðFeÞi þ ðFeÞiþ1

�
þ hA þA

�
OT

i ui �OT
iþ1uiþ1

�
þ h

�
X
a

ℍ
T
aO

T
iþ1ℂa

~Ra:

(19)

Here

A ¼
Z
V

rRðX� u1; X� u2; /; X� un ÞTdv;

A ¼
Z
V

rR

�
u15X : Sþ sXTu1;u25X : Sþ sXTu2;/;un5X

: Sþ sXTun

�T
dv;

S ¼ �1
2

�
OT

i ui5uiOi þOT
iþ1uiþ15uiþ1Oiþ1

�
;

s ¼ 1
2

�			ui

			2 þ 			uiþ1

			2�:
The term Fe accounts both for the pointewise external force and

its contribution inside Ftr. Its j-th component is

Fe;j ¼ OT :

0@ Z
V

uj5Fextdv� 1
m

Z
V

rRujdv5
Z
V

Fextdv

1A:

Fe¼ 0 for homogeneous in space external force, such as, for
example, gravity. Similar to the external forces, the pointewise
contact force and its contribution to the translational inertia term
Ftr are organized together, via the matrix ℍa given as

ℍa ¼ u1ðaÞ �
1
m

Z
V

rRu1dv; u2ðaÞ �
1
m

Z
V

rRu2dv; /; unðaÞ

� 1
m

Z
V

rRundv

!
:

(20)
The non-smooth contact dynamics framework connects the

local degrees of freedom, for which the dynamics equations are



formulated, with the actual ones, used for the formulation of the
physical interaction laws between the solids. For the dynamics
equations, two generalized mass matrices, explicit and implicit,
uniting both the rigid and the deforming parts are introduced:

A± ¼

0BBBBBB@
mI3�3 0 0

0 Jiþ1
2±

1
2

0

0 0 M±
h2

4
K

1CCCCCCA:

In order to further integrate the presented FFR method into the
NSCD framework, the evaluation of the relative velocity Ua in the
contact frame ℂa must be presented through the local variables vC,
u, l. This evaluation is given by (8):

ℂaUa ¼ vC þ u�OXðaÞ þOv0ðaÞ þ u�Od0ðaÞ:
The last term is nonlinear with respect to the local variables,

since the local displacement d0
iþ1 is implicitly predicted through

liþ1. In this article, it is dropped due to the large stiffness assump-
tion vDzOv0. The numerical tests with neglected nonlinear term
show physically consistent results for moderate spins, as they will
be compared with the method of a large transformation. So we
shall obtain the extended to the rigid part matrices ℍa± so that the
explicit and the implicit relative velocities are

ðUaÞiþ1
2±

1
2
¼ ℍa±

0@ vC
u

l

1A
iþ1

2±
1
2

(21)

with a hybrid term

ℍa± ¼ ℂT
aOiþ1

2±
1
2

OT
iþ1

2±
1
2
; �XðaÞOT

iþ1
2±

1
2
; ℍa

!
: (22)

Here X represents a skew-symmetric matrix made of the
vector X.

Remark 3. Rigorously speaking, the termℍa insideℍa± defined by
(20) should not contain the inertia part (the integral terms in (20))
which is only used for correct distribution of the translational
inertia force, arising from the reaction, over the whole FEM vari-
ables. In (21), this part produces

R
V
rR
P
j
ljujdv which is a FEM

approximation of
R
V
rRv0dv, but since vD is treated as Ov0, according

to Section 2.1, this term may be seen as zero due to LvD ¼ 0.

So the motion of a single body is formalized by a nonlinear
system of equations

Aþ

0@ vC
u

l

1A
iþ1

¼ A�

0@ vC
u

l

1A
i

þ hFg þ h
X
a

ℍT
aþ ~Ra (23)

with vector Fg containing the remaining non-contact terms of (15),
(16) and (19) respectively. For the position variables, we shall have
trapezoidal approximations in a form

xC;iþ1 ¼ xC;i þ
h
2
�
vC;i þ vC;iþ1

�
;

jiþ1 ¼ ji þ
h
2
ðli þ liþ1Þ:

Let ℚ denote a skew-symmetric matrix of the angular velocity:
ℚ ¼
0@ 0 �uz uy

uz 0 �uy
�uy ux 0

1A:

From the discretization of _O ¼ QO, (Cardona and Geradin,
2001), we get

Oiþ1 ¼
�
I� h

2
ℚiþ1

��1�
Iþ h

2
ℚi

�
Oi: (24)

3.2. Multi-body system with contact

If all ~Ra in (23) were known, this system of 6þ n equations for
each time step could be solved with some iterative solver for
nonlinear systems. The information about ~Ra can only be obtained
via coupling with interaction laws, arising in non-smooth multi-
body dynamics. Consider a system of N bodies, and for each body
the Equation (23) is used. Let us introduce 0:5⩽q⩽1. Uniting dy-
namics equations together with the connection between the
generalized velocities and the actual relative velocities at contacts,
we obtain a global system for the multi-body dynamics

�
Aþ �hℍT

þ
qℍþ 0

�
$

�
Viþ1
R

�
¼
�
A�
�ð1� qÞℍ�

�
$Vi þ

�
hFg
Uiþq

�
;

(25)

LawðUiþq;RÞ ¼ 0; (26)

to solve over [ti,tiþ1], with A± and Fg now meaning their global
analogues, V and R contain all the degrees of freedom for all bodies
(generalized velocity vector) and all the relative reactions respec-
tively. The relative velocity Uiþq and R are conntected via some
interaction law (26). Note that if the Signorini non-penetration
condition is used in (26), the parameter q serves as a measure of
restitution during shocks, ranging from q ¼ 0.5(full restitution) to 1
(sticking).

Global matrices ℍ± are comprised of ℍa± in a following way. In
the beginning of each time step, the whole multi-body system is
scanned for potential contact interactions. The network of contact
points is only initialized for those surface FEM nodes of each solid
that pass criteria of close enough proximity to another solid in the
system, for the sake of reducing the size of matrices ℍ±. These
contact points shall be called active. Matrix ℍþ is made of special
block rows. The entire contact network is naturally divided into
local interactions for each pair of the solids, and if a local interaction
is taking place for some fixed pair of bodies l and m, this corre-
sponds to a certain and only one block row of matrixℍþ. Each block
row of such type consists of zeros and only two matrices of type
ℍaþ, placed at block columns l andm. This follows from the fact that
the relative velocity for two interacting solids at their common
contact point a is

ðUaÞiþ1 ¼ ℍl
aþ

0@ vC
u

l

1Al

iþ1

� ℍm
aþ

0@ vC
u

l

1Am

iþ1

or with opposite sign, depending on which body is considered
‘master’ or ‘slave’ with respect to another. Note that ℍl

aþ and ℍm
aþ

may have a different number of columns, which depends on the
number of the Finite Element degrees of freedom each of the bodies
is using, but they necessarily have the same number of rows, which



is equal to 3. ℍ� is simply an explicit modification of ℍþ corre-
sponding to the orientation matrices Oi of each body in the
network.

The Schur complement system, (Koziara and Bicanic, 2008), in
this case is formed as�
Uiþq ¼ WðViþ1ÞR þ UfreeðViþ1Þ; ð27aÞ
Viþ1 ¼ B1ðViþ1ÞR þ B2ðViþ1Þ; ð27bÞ

where

B1 ¼ hA�1
þ ℍT

þ;
B2 ¼ A�1

þ A�Vi þ hA�1
þ Fg ;

W ¼ qℍþB1;
Ufree ¼ qℍþB2 þ ð1� qÞℍ�Vi:

The dependence of W, Ufree on Viþ1 implies that the contact
solver for 27(a) must be used simultaneously along with the
nonlinear dynamics solver in 27(b), such as, for example, a fixed-
point method. There exists a variety of contact solvers, of which
themost known are the nonlinear Gauss-Seidel method (NGLS) and
the Newton's method, (Koziara and Bicanic, 2008). The latter is
usually faster, but is not robust and may not converge for highly
dynamic applications. We shall use NGLS in the numerical section
due to its robustness, proven convergence results, (Jourdan et al.,
1998). A brief sketch of the algorithm used in the numerical sec-
tion is the following.

Concerning implementation, note the algorithmic block called
‘Rotator’. It updates all the variables for both iterative solvers due to
rotations only. Global mass matrices A± are time-dependent only
due to presence of the inertia tensors J. The inversion ofAþ and the
following multiplication A�1

þ A� for each step are computationally
cheap due to the blockediagonal profile of these matrices. Indeed,



for an arbitrary body its inertia tensor satisfies J ¼ OJDO
T , where

JD is a diagonal form of the inertia tensor with respect to the
floating rigid frame, so it is constant and so is its inverse. Thus for a
single solid

J�1
iþ1 ¼ Oiþ1J

�1
D OT

iþ1

and

J�1
iþ1Ji ¼ Oiþ1J

�1
D OT

iþ1OiJDO
T
i :
4. Numerical experiments

To evaluate the method of a floating frame of reference, nu-
merical tests were conducted for two cases. The first one represents
a single object subjected to finite rigid motion with no contact in-
teractions. In the second, we perform simulations for three objects
undergoing contact. The simulations were carried out with fixed
time step Dt¼ 10�4 in all of the methods and scenarios. For
implementation, we utilized Armadillo e Cþþ linear algebra
library.
4.1. No contact

A rectangular cuboid of dimensions 1� 1� 2 is made of stone of
uniform density r ¼ 2500 kg

m3 and stiffness parameters E¼ 35 GPa
and n ¼ 0.2, where E and n denote Young's modulus and Poisson's
ratio respectively, Fig. 3. Initially, the faces of the cuboid are parallel
to either planes Oxy, Oxz, Oyz, with z-axis being parallel to the
longest edge of the cuboid, and its center of mass is placed at the
origin. The cuboid is uniformly discretized with a trilinear hex-
ahedral element, (Hughes, 1987), as 4� 4� 8, giving rise to 225
nodes.
Fig. 3. Solid for simulation.
Here, our main goal is to compare the accuracy and performance
of the FFR method with existing methods of small deformation and
a large transformation, when used to simulate the dynamics of the
cuboid subjected to initial velocity as of a rigid body. No external
forces or contact interactions assumed. The initial conditions were
given as

vC;0 ¼
0@1

0
0

1A;u0 ¼
0@ 0

u0
0

1A;

where we try separately u0¼1 and u0¼ 4p. The cuboid will move
in the direction of x-axis, while rotating around its center line
parallel to the y-axis. It should make two full turns within 1 s in the
second case.

The total number of the degrees of freedom is equal to
6þ 225� 3¼ 681, of which 6 correspond to the velocity of the
center of mass and the angular velocity. For the large trans-
formation method, i.e. Total Lagrangian method, we use nonlinear
weak formulation with test function x in the way shown:Z
V

r
vv
vt

xþ
Z
V

FðltrðEÞIþ 2mEÞ : Vx ¼ 0;

with transformation gradient F ¼ vx
vX, Green-Lagrangian strain

tensor E ¼ 1
2 ðFTF� IÞ, and velocity field v(X,t) being given in the

global frame. Standard Finite Element discretization in space and
Newmark discretization in time of this weak form bear nonlinear
algebraic system at every time step with 225� 3¼ 675 degrees of
freedom:

�
Mþ h2

4
K

�
liþ1 ¼

�
M� h2

4
K

�
li � hKji �

h
2

�
�
nðliÞ þ n

�
ji þ

h
2
ðli þ liþ1Þ

��
;

(28)

with j and l now meaning the absolute nodal displacement and
velocity respectively. The solution of this system is incorporated in
the form of the internal loop in Algorithm 1, either as a fixed-point
method or Newton method. Finally, for the small deformation
method, we only remove nonlinear terms n from (28), leaving the
rest the same, and apply the fixed-point solver providing the so-
lution at the first iteration. For the stopping criteria in the both
nonlinear solvers and the contact solver in Algorithm 1 we used
tolerance of 10�7.

We monitor the x-displacement dx of the point whose initial
coordinates are (0,0,1)T, performing 104 time steps until T¼ 1. If the
body was treated as purely rigid, then the displacement would
satisfy dx(t) ¼ tþ sin(u0t). This trajectory is used as a reference for
all the methods, due to large enough a stiffness of the solid. The
graphs are shown on Fig. 4. Both the FFR method and the large
transformation method with Newton's nonlinear solver show
excellent match with the trajectory from the purely rigid case. The
small deformation method fails to represent rotation due to
inability to track geometric nonlinearity, and provides linear in
time displacement. The large transformation method with fixed-
point nonlinear solver manages to recover accurate trajectory
only within a limited number of time steps. The number of itera-
tions per time step tends to grow and eventually reaches the
maximum allowed number of 500. These time instances are indi-
cated with vertical lines in both figures.

We remark that we also experimented with neglect of the
rotational fictitious forces in FFRmodel, i.e. the term Frot in (14). The
displacement of the rigid frame was calculated the same as
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Fig. 4. Displacement of the top point for u0¼1 (left) and u0¼ 4p (right). Vertical dotted lines indicate the moment of failure of convergence for the fixed-point loop in the large
transformation method.
previously up to machine precision, and all the local oscillations
were reduced to zero (li ¼ ji¼ 0 in (19)). This agrees with the fact
that due to the absence of contact interactions, the dynamics of the
rigid part decouples from the FEM degrees of freedom in (23). This
is a consequence from the small deformability assumption that we
employed when deriving (13). On the other hand, if additionally
Fext¼ 0, then Frot is the only term containing infromation about the
rigid motion that influences the dynamics in the local frame in this
case.

Finally, we address performance of the FFRmethod compared to
other formulations by presenting the total runtime for each of the
succeeded methods in Fig. 5. The first four measurements corre-
spond to u0¼1 and the other four to u0¼ 4p.

Both the FFR and the Total Lagrangian methods required 2 it-
erations of the internal loop per time step, but the computational
disadvantage of the Total Lagrangian model is apparent. It is justi-
fied by the necessity to assemble jacobian matrix and solve a linear
system at every iteration of the Newton's method, which sacrifices
performance. Contrary to the large transformation method, the
floating frame method works more efficiently since the stiffness
matrix is evaluated once in the local frame before the start of the
time evolution, and the only nonlinearity left in the scheme is due
to rotations, which appears to be easily handled by a cheap fixed-
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Fig. 5. Runtime in seconds: number ’20 denotes the simulation corresponding to
u0¼ 4p. Both ‘large defo’ cases refer to the Total Lagrangian approach with the Newton
method as a nonlinear sover.
point solver. The FFR method and the small deformation method
showed to have comparable computational expenses, with only
marginally better performance for the latter. The FFR formulation
with neglected fictitious forces required only 1 fixed-point itera-
tion, while the original FFR method required 2, which explains why
it took less elapsed computational time for the first one to
complete.

4.2. With contact

Three cuboids of dimensions 1� 1� 2 and 1� 0.8� 2 for the
upper one are placed on an absolutely rigid surface that can move
along the x-axis which is initially orthogonal to the largest vertical
surface of the upper block. The initial positions of the center of
mass are (0,2/3,1)T, (0,�2/3,1)T and (0,0,3)T. Refer to Fig. 6. Previous
material parameters are used for the three cuboids, and they are
uniformly discretized in a way analogous to that in the previous
computational study. There are 70 contact points in total for the
Fig. 6. Solids for simulation.



simulation, 10 between each of the lower solids and the upper one,
and 25 between each of the lower solids and the rigid surface. The
Signorini velocity condition (Moreau, 1988) and the Coulomb fric-
tion laws are used at contacts, q¼ 1. The friction coefficients m¼ 0.5
at the rigid surface and m ¼ 0.3 between the upper solid and the
lower ones. The simulation was carried out until T¼ 1.5, while a
horizontal earthquake was imposed for the rigid surface in the
direction of x-axis via a velocity law

v ¼

8><>:
0 if t⩽0:1;

0:9 sin
�
5
3
pðt � 0:1Þ

�
if t >0:1:

Damping was added to each of the solids in form of a matrix
D ¼ 10�4K.

We again compare the presented method of a floating frame of
reference with the methods of small deformation and a large
transformation employing the Newton's nonlinear solver in the
internal loop. The nonlinear Gauss-Seidel contact solver was used
in all three. The tolerance of 10�5 was imposed for the relative error
in the reaction R in the external loop and in the generalized velocity
Viþ1 in the internal loop of Algorithm 1. For all three simulations,
the convergence was normally being reached after 3 iterations in
the internal loop and after at most 16 iterations in the NLGS in the
external loop.

The time-dependent graph of the average of the displace-
ment over the upper cuboid's top surface obtained from all the
three methods is shown on Fig. 7. The lowest curve corresponds
to the displacement of the rigid surface. The displacement of
the top surface of the upper cuboid lags behind because the
solid inclines in the opposite direction due to the large inertia
force.

It is clearly seen the FFR method again provides a much
better accuracy compared to the small deformation approach
which does not work reliably for finite rotations. The relative
error in the displacement between the curves obtained via the
large transformation method and the FFR method is 2.1%,
compared to 37.6% coming from the small deformation method.
The computational efficiency of the FFR method was again
similar to that of the small deformation method and signifi-
cantly stood out compared to the large transformation approach.
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Fig. 7. Mean displacement of the top surface of the upper block in the direction of the
earthquake.
The FFR method was also tested with the term Frot set to 0. To
reach the mentioned tolerance of 10�5, only 2 iterations in the
fixed-point loop and no more than 11 iterations in the NLGS were
required. It is clearly seen that the neglect of that term even for stiff
solids distorts retults visibly if contact interactions are present. For
better accuracy it must remain at place. In Fig. 7, the solution curve
in this case initially resembles that produced by the small defor-
mation method.

5. Conclusion

In the preceding, a numerical method based on the method of a
floating frame of reference to solve dynamics of a system assuming
deformability of low magnitude and non-smooth contact in-
teractions was formulated. The main goal of the method is to
conduct separation between the rigid and the deforming motions
at each step in a way that minimizes the coupling between the
reference (rigid) motion and the bulk behavior of the system with
respect to this frame of reference. In our results, we found the
following.

� For a deformable solid under rotation, there is always a
geometrically nonlinear deformation with respect to the refer-
ence frame that we introduced. However, it is negligible if large
stiffness is assumed. For this reason, constant in time stiffness
matrix was proposed.

� The minimal coupling was achieved thanks to the zeroth order
(with respect to the FEM degrees of freedom) approximation in
the angular momentum equation and neglect of the FEM de-
grees of freedom in the fictitious forces in the reference frame.
The latter granted a constant mass matrix.

� The neglect of the geometrically nonlinear dynamics in the
reference frame also allowed for linear connection between the
generalized velocity and the relative velocity at contact points,
Equation (21).

� The method provides better experimental results for stiff sys-
tems undergoing small deformations than that provided by the
method involving absolute nodal coordinate fomulation with
constant stiffness matrix and, compared to the Total Lagrangian
approach (no linearization used), works faster since the linear
stiffness model holds in the rigid frame. For this FFR model, the
rigid (reference) dynamics fully decouples from the bulk (local)
dynamics in case of free motion, i.e. the absence of contact
forces.

The next step in the research would be an introduction of some
model reduction technique for the deforming part of the motion
residing in the rigid frame only, in order to diminish the size of
problem (25) and provide even better speed-up with insignificant
sacrifice of accuracy, depending on use cases. An example of such
work is given in (Lozovskiy, 2014).
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Appendix A

Let D denote a determinant (jacobian) of the transformation
gradient matrix



D ¼ det


vx0

vX

�
:

Then rR ¼ rD. Differentiate (6) in time. This produces two terms
on the right-hand side (RHS), according to Leibniz's rule:

ðJuÞ_ ¼
Z
V

ððu�OXÞ � rRvÞdvþ
Z
V

OX� rR _vdv: (A.1)

The second term on the RHS may be written for the actual
domain V' and

Z
V 0

OX� r _vdv0 ¼
Z
V

OX� FextDdvþO

Z
V 0

X� V$Tdv0:

Consider

Z
V 0

X� V$Tdv0 ¼ �
X3
j¼1

Z
V 0

vX
vx0j

� Tejdv
0 þ

Z
vV 0

X� Tnds

with ejmeaning unit j-axis vector and n the outward unit normal to
the surface of vV

0
. Linearization provides

�
X3
j¼1

Z
V 0

vX
vx0j

� Tejdv
0 ¼ 0; (A.2)

and so

O

Z
V 0

X� V$Tdv0 ¼
Z
vV 0

OX� Rds: (A.3)

It also can be shown directly that, up to the linear order of the
bulk degrees of freedom, D¼ 1þVR$d

0
. So we obtain

ðJuÞ_ ¼
Z
V

ð1þ VR$d
0ÞOX� Fextdvþ

Z
vV 0

OX� Rdsþ J0u (A.4)

with tensor

J0 ¼
Z
V

OX5rRvDdv�
Z
V

ðOXÞTrRvDdvI3�3: (A.5)

The first term on the RHS of (A.29) is equal to J
0
u.

Remark 4. Define

GT ¼

0BBBB@
Z
V

ð$ÞdvZ
V

r� ð$Þdv

1CCCCA:

Note in a case of a finite discrete mechanical system, GT is a
usual transposition of matrixG. The left-hand side term of (A.2) is a
continuous analogue of the rotational part of quantityGTFint which
can be written explicitly for discrete systems. This quantity is
precisely zero for purely rigid bodies, due to symmetry of the stress
tensor (in the absence of force couples), andmay serve as ameasure
of deformability of a solid.
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