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Prior Knowledge Optimum Understanding by means of Oblique Projectors and Their

First Order Derivatives

Guillaume Bouleux

Abstract

Recently, an optimal Prior-knowledge method for DOA estiorahas been proposed. This method
solely estimates a subset of DOA's accounting known ones gidbal idea is to maximize the orthogonal-
ity between an estimated signal subspace and noise sublspaomstraining the orthogonal noise-made
projector to only project onto the desired unknown signakgace. As it could be surprising, no deflation
process is used for. Understanding how it is made possitdesnto derive the variance for the DOA
estimates. During the derivation, oblique projection apars and their first order derivatives appear and
are needed. Those operators show in consequence how theabptiior-knowledge criterion can focus

only on DOA's of interest and how the optimality is reached.

I. INTRODUCTION

Trying to sort maximal information from an acquired signahatever the quality of sensors, their
robustness or their bad (or good) calibration, is the verg af signal processing. Depending on the
point of view, we are forced to accept that prior knowledgessential for treating those signals as best
as possible. The knowledge in question, albeit unconsdioos/ledge, is at the heart of the modeling
process; it could be the statistics of the measured infeomathe knowledge of a particular model of
observations or even sometimes the knowledge of some ptemseich as Direction Of Arrival (DOA)
[1], frequencies [2] or polarization state of plane wavels [8]. When some parameters are assumed to
be perfectly known, recent works have been proposed; sontkeeai tackle the underlying parameter
estimation problem for DOA by using either subspace deftafle] or by constraining the roots of
polynomial to be fixed, being then referenced as MODE-likeHPGE) [6], [7] or Weighted Subspace
Fitting based criterion. Even if the derivation of an optimaatrix, which gives the minimum variance

estimate, could be more or less intuitive or obvious for ¢hesteria, it appears that a particular manner
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for reaching it is to use oblique projection operators arairtfirst order derivatives. The contribution of
this correspondence is then twofold, an algebraic proobfdaining the optimal matrix which gives the
minimum variance DOA estimate with the prior knowledge asgtion and the first order expansion of

oblique projection operators, which is considered as thin reffort.

[I. MODEL AND ASYMPTOTIC PLEDGE \ARIANCE

Considern narrowband and far-field plane waves impinging on an Unifamd Linear Array (ULA)
composed ofl, sensors separated by a half wavelength.ile¢ the index of a sample (“snapshot”) and
assume that the total number of available sampl€s,ishent = 1,... N. The one sample response, or

equivalently the single-experiment time series model campdrametrized in the following manner
y(t) = A(0)x(t) + n(t) 1)
where A(0) = [a(61) ...a(f,)] and wherea(6;) is thei-th steering vector defined by
a(f;) = [1 &% .. LT )

with ¢; the spatial pulsation (phase) lying to the 8et {6;}?_,. Amplitude wavex(t) and noise signal
n(t) are assumed to be stochastic processes, jointly Gaussiarzevdb-mean, stationary and circular of

second order moments
E[m(t)acH(t)] =P and E[n(t)nH(t)] =o’I 3)

whereE stands for the mathematical expectation afidfor the transpose and conjugate. For the latter
use we introduce’ as the transpose antl as the conjugate. At least, all the notified hatquantities
correspond to estimated ones. The sample covariance nadittire data observation is classically given
by R= L SN y(t)y"(t) and its eigendecomposition admits the fofin= EsSsEG + ExSyEN

in which Eg and Ey are respectively the estimated signal subspace and ndispate eigenvectors.
Finally, the diagonal matriceXs and 3 hold for the corresponding eigenvalues. Suppose now that
only n,, DOA are unknown and then; DOA are known; the sef is therefore composed of disjoint
sets@, = {0;};, and@, = {0,};-, DOA. The consequence of this assumption is to disjointlyasaie

all the matrices into two subsets which depend directly diréctly on parametef. Then and without
loss of generality we have

e« A=A, A;],andA(0) = A(64,0,),

. s 0
N
0 g



e« PA(0) = A(AHA)—lAH = PA(0,,0),

o P5(0,,0,)=1—PA(0,,0;),

« P4(0.,6;) = Pp(6.,6y)
where B is the matrix whose columns span the null spacedofThe estimation problem is therefore
reduced at estimating only the ¢t of unknown DOA. This problem has been already approached and
it is optimally solved by the PLEDGE minimizer [6}rg ming, Trace[PB(Ou,ek)ESWEf , Where
W is a positive definite weighting matrix. To show now that PLED is optimum, i.e. it reaches the
Stochastic Crameér-Rao Bound (CRB) [6]

-1
C(8a) = [Re{ (pimp,) o (PIAT R AP,)" }]
where® is the classical Hadamard-shur product; we need the faligwi

Theorem 1. The asymptotic variance for the n,, unknown estimates admits the expression

_ o2
C

o~ [ReM © (Wr)")] {Re|M © (Al P4 14, EsWAWEL PY |, Al ]}
[ReM © (Wr)")] ™ (@)

whereWr = A[ P4 4, EsWE{ P ™ AH Here,P is defined as an oblique projector. This

AylAy
projector projects onto the subspace spanned by the colomAg along with the subspace spanned by

the columns ofA; [8]. It has the expression

PAu\Ak = AU(AEPAF;CAU)_IAUHPA;;C (5)
and the properties
e P, a t P, 4 =Pa
e« P, .. =Pa (I-A,AP4 A) AP, ),

with P4 =1 — A,(AYA,)"1 A and identicallyP 4, = Ay (A} A;) 71 Af]
We also defineM = (DY P4D,) with D, = [d; ...d,,].d; = (da(6;)/df;) andA = Eg(Zg —

62I)~2 the covariance matrix of the eigenvectors estimation erthts — Es).

Proof: By denoting the functioV/ (8,) = argmaxg, Trace| Pa(6.,0,)E,WE" |, it yields that
0, maximizesV (6,,). Under good relation of regularity fov'(6,,) and sinced,, converges td, as
N — oo [9], we can give the first order Taylor series expansionVdf around the true valué, by

0=V"'(0,) +V"(,)(6,—8,), and deduce obviously the estimation error

(0, —6,) = _{V”(Ou)}_lvl(eu) + O(V,(eu)) (6)



which holds for large sample. L&t’; and V”;; stands for the-th component of the gradieit’(6,,)

and thei, j-th component of the hessidi” (0,,) respectively and let for ease of notation the projection
operatorP 4 (0., 6;.) correspond tdP 4. With this, both derivatives have the following expressi®ff; =
Trace[aPAiESWEg{] andV”;; = Trace{aP AijEvaEﬂ wheredP 4, anddP 4, are respectively
the first and second order derivativesiBj. At least, by invoking the convergence in distribution foet
estimatesE ¢ towards their true value, we obtain thet; = Trace[aPAiESWEg} + o(N‘l/z) and
V"= Trace[aPAijESWEg] for N — oo; result used in [9] (see the references therein for originat
work on).

The key point here is the derivatives &4 with respect to the unknown parameters and only those
ones. If giving a theoretical expression for the first orderivhtive is somehow more or less straight,

the second order derivative, is a long way.

A. First order derivative of P4 w.r.t the unknown parameters

Let us start by recalling the projection operator gradiexgression of P4 stated in [10]. Forn

directions of interest, in other words for the gktthe trilinear gradient tensor has the form

20 _PAaaA +A 20 Py (7)
where each slide of the tensor is associated with &= 1, ..., n direction, see Figl-(a) for visual illus-

tration. Since onlyn,, directions are of interest, (7) can be rewrittgfs = P4 24 AT+ ATH 8" py.

Owing to A = [A, Ax] and making use of the block inversion matrix lemma, the pseoderse ofA

admits the expression

T AA, ATa| A
[Au Ak] =
AA. A A, Al

ALPAu\Ak
- | . ®)
ALP

AplAy

The first order derivative ofP 4 in the i-th direction (thei-th component 0D P,) is next obtained by
remarking that onlyz,, directions are of interest among Consequently, each slice of the ten%@r has
the partition which correspond to the known DOA null, i.ee &ub-tenso% = 0; this is easily drawn
in Figl-(b). The bottom partitiorALPA of the pseudo-inversd, A;]' is in consequence useless

klAu



AlPa, a,
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Fig. 1. (@) third order tensor representation {4, (b) third order tensor representation fg#4- with the explicit drawing

0A,
of 6. =0

and we straightforwardly obtain far=1,...,n,
0A oAl
_ 1 U At H tH v pl
aPA1 — PA 89l AuPAu\Ak +PAu\AkAu —89Z PA
H
2 9P, + (8PAi) . @)

If we look over the composition of (9), we firstly see that wevdéwo terms transpose and conjugate
each other and secondly that thanks to the oblique projéefor, action, the subspace associated with
the first derivatived P4, only lives onto the subspace associated with the unknowanpeters. So, We
can here already extrapolate that all the derivative®afwill lie solely onto the unknown parameters
subspace which gives already an idea on the way the PLED®&ion acts. But let us pursue the efforts

to finish the proof.

B. Second order derivative of P4 w.r.t. the unknown parameters
Based on (9)0 P4, is basically obtained by deriving the tedP 4, and by summing next the result
to its transpose and conjugate term. The mathematicaksttés therefore condenseddd 4, the first

H
fight hand side term 0bPa,, £ 0P a, + (0P, )  with

L 0A, DA, 0A, , 0A,

Py, =-P AP,  —LAlP — P ATHMpl Al P
15) A;j A 893 AylAy 892 Ut AylAg Ayla, U 89] A 691 Ut AyulAy (10)
0A 0A 0A 0A oP
PJ_ uATP _PJ_ UATP uATP PJ_ uAT AylAyg
+ Aaeiej ut AylAg A 892 ut AylAg 89] ut AylAg + Ly 89] u 693

_ P _ .
for which the very last element—;>= is so far unknown. Although, to our knowledge there is no

theoretical expression for it. The next efforts concermtttés element.



The oblique projector is by property idempotent and so isi@gvative; as a consequence we have

oP, ., 0P, . 0P, . p Pain, 1)
26,  09; 00, & AT TauaT g
I 11
Providing an analytical expression for (11) needs obviptrsisolve (11)-1 and (11)-II.
1) Solving (11)-I: We make use of
a(PA |A Au) a'IDA |A aJAu
— 2l L = 2Tk p 4+ P _—u
20, 26, + 4,4, 06
0A,
_ 12
7, (12)
to deduce that
a'IDA |A a*Au
——>*A,=I-P — 13
ae] ( Au\Ak) 89] ( )
d
and obtain the relation which governpf‘;‘és%PAu‘Ak by right multiplying (13) by(AY P4 A,) 1Al P4 .
Finally it yields,
oP, 0A
_ Aulfy = (I — ZTu AT
89]' PAu\Ak (I PAu\Ak) 89] AuPAu\Ak (14)
and (12)-1 is fulfilled.
2) Solving (11)-1I: We utilize here the decomposition of orthogonal projed®y, namelyP, , +
P, A, = Pa, for having
BP A — OP, .  OP, .. 15
AT 98, o8, (15)

We obtain (11)-1I plus an annoying term by left multiplyings) by P the good point now would

AylAyg?

be that the annoying term vanishes. this is what we are abopitove.

If we consider that the parameters of interest are the unknanes, they belong so to the #&t, then

opP
the first order derivative—;~*= can be expressed to as
P, AL P4 A ) Hpl OP4
! v Af'P Ap(Af P Ap) AR — A 16
20, k 20, r Pa, + A(Ap Py Ay) " A 90, (16)
Then straightforwardly left multiplying (16) by, . gives
P aPAk\Au -0
Auldi 893 N
sinceP, ., P4 =0 and P, A, 0Pa4, clearly reduces to
oP, .,
P, . 0Pa =P ul Ak (17)

s = PaiacT9
J



We replace consequently the expression given in (9) insid® to obtain finally

oP, | 0A,
— 2 = P, . P
AylAg 80] AylAa, T A (99 u AylAg
DAl
H tH9AY 51
+ PAu\Ak PAu\Ak u 89 P
DAl
tHY 7 u pl
PAu\Ak PA \AkA 89 P (18)
and we have an expression for (11)-11.
In accordance with (11), the derivative 8%, , for thej-th,j =1,...,n, direction is in conclusion
given by
oP, 0A oAl
AAy (TP ZTUAT P P pPHE  AtHZw pL
aej ( Au\Ak) aaj Ut AylAy + AulAp T Aula, U 9o A

| A

. . . : .__OP _
At this stage, it worth nothing to give the expression-ef;-== obtained by subtractlng17

OP 5, hence

oP, . A, Al
1L T 2] 9 AuPAu\Ak+(I_P H ATHa_u

= P3.
96 AxlA 90, A

Au\Ak) AylAy u 69‘7

In passing, we note that the conjugate symmetry is lost aadititerpreting the hard projector mixing

is a real challenge.

C. Distribution error for the estimates

We embed the previous results insi#€(6,) and V”/(6,) to have for sufficiently large enough’
and after basic algebraic relations
1 0AY
“ 00,

AH
V=2 Re{ Trace[(9 u Pla u

V) =2 Re{ Trace[Pﬁu| 4, A PLEsWEY } } +o(N71/2)

H
90, . AP 4,4, EsSWE{PY 4 Al ]}
Remind that matring is estimated by the eigen-decomposition of the sample @nee R. The
statistics of each column vectors, let s@y,, £ = 1,...,n depend consequently on those Bf It has

been proven, few decades ago, that these statistics areptigally jointly Gaussian distributed with



zero means. This result is for example announced in [9, ledinea [11, Lemma 2.1]. As a consequence,
the gradientV’(0,) is also asymptotically Gaussian, with zero mean and caveeigiven by

2 H
20 Re{ 0A, Pt DA,

H, = —
7N 00, 00,

ALPAu\AkESWAWEgPi\AkALH}

with A = Z¢(Xg—62I)~2 the covariance matrix of the eigenvectors estimation sitBry — Eg). The
asymptotic results of [12] implies that the asymptotic rastion error distribution is therefore

~

(eu - ou) € N(Ov C_')v (19)

where
C=Ww"1tHWV" (20)
The proof is complete by replacing in matrix forfd and V'’ into (20). [ |

I1l. THE OPTIMAL WEIGHTED MATRIX

In this section we prove thaW,,. = Egl(Zg — 6%I)? yields the asymptotic estimation error
distribution to have the minimum variance, i.e. it reaches $tochastic Cramér-Rao Bound (CRB).

From APA" = Eg (25 — 6%I) EY we deduce that

Ys=EYAPA"Eq 4+ 5°1 (21)
and easily write that
AP, . Es(Ss—°EYPY Al = [1 0} P g . (22)
We next make use of the relation
35 (Bs - 62 1) = (Bs — 6%) + o'2gt - 67T (23)

and focus onv*X 3! — 621 which is equivalent to

Es(o'St -6’ IEY = -A(6*PA" A+ I)7'PA". (24)



Going further, we obtain that

AP, ., Bso'ss' —*DEEPY | A" = [1 o (62PA"A+DP[1 o

AylAg

- [I 0} (I - PA"(APAY 1+ 1)1 A)P
0

I

— 1 o}P0

I

- [1 0} PAHR'AP || . (25)
0

Then, subtracting (25) to (22) gives the following equality

AlP, . EsWoEZPI AlH — pIAHR=1AP,.

AylAy AyulAy

Replacing this expression inside (4) shows at least thamaity of the PLEDGE approach with an
optimal weighted matrid,,: = X' (Zs — 621)2.

The reader can notice that the optimal weighted matrix igesged with respect t& s and notXg,
which could be surprising. Although the PLEDGE minimizecdses only on the unknown DOA, the
optimal weighted matrix utilizes the whole signal subspaéermation. One could think this is obvious
since no deflation is employed but things are not that simpatdually, the sole contribution of the
unknown parameters is used but this is hidden behind the egriterion is constrained by the known
parameters. This is the force of the PLEDGE approach - itsgare optimal solution without explicitly
deflating. Inspecting the variance for the estimates bétgnig 6,, shows that a perfect oblique projection
operator appears, explaining somehow why the criteriopismal and why only the unknown parameters

contribute to the optimality; even if the weighted matrixesshe whole set of parameters.

IV. CONCLUSION

Some works have been proposed for treating the problem hatstg DOA under prior knowledge.
The optimal solution to this problem does not employ any tiefigprocess whereas the criterion focuses
solely on the parameters of interest. In the present work s proposed to better understand this
by giving the theoretical variance for the estimates of redé Particularly, the minimum variance is
implicitly obtained by the use of oblique projection operatassociated with their first order derivatives.
The main contribution herein was therefore to propose #taal expressions for these operators and to

show the optimality of the Prior-knowledge criterion.
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