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Prior Knowledge Optimum Understanding by means of Oblique Projectors and Their

First Order Derivatives

Guillaume Bouleux

Abstract

Recently, an optimal Prior-knowledge method for DOA estimation has been proposed. This method

solely estimates a subset of DOA’s accounting known ones. The global idea is to maximize the orthogonal-

ity between an estimated signal subspace and noise subspaceby constraining the orthogonal noise-made

projector to only project onto the desired unknown signal subspace. As it could be surprising, no deflation

process is used for. Understanding how it is made possible needs to derive the variance for the DOA

estimates. During the derivation, oblique projection operators and their first order derivatives appear and

are needed. Those operators show in consequence how the optimal Prior-knowledge criterion can focus

only on DOA’s of interest and how the optimality is reached.

I. INTRODUCTION

Trying to sort maximal information from an acquired signal,whatever the quality of sensors, their

robustness or their bad (or good) calibration, is the very aim of signal processing. Depending on the

point of view, we are forced to accept that prior knowledge isessential for treating those signals as best

as possible. The knowledge in question, albeit unconsciousknowledge, is at the heart of the modeling

process; it could be the statistics of the measured information, the knowledge of a particular model of

observations or even sometimes the knowledge of some parameters such as Direction Of Arrival (DOA)

[1], frequencies [2] or polarization state of plane waves [3], [4]. When some parameters are assumed to

be perfectly known, recent works have been proposed; some ofthem tackle the underlying parameter

estimation problem for DOA by using either subspace deflation [5] or by constraining the roots of

polynomial to be fixed, being then referenced as MODE-like (PLEDGE) [6], [7] or Weighted Subspace

Fitting based criterion. Even if the derivation of an optimal matrix, which gives the minimum variance

estimate, could be more or less intuitive or obvious for these criteria, it appears that a particular manner
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for reaching it is to use oblique projection operators and their first order derivatives. The contribution of

this correspondence is then twofold, an algebraic proof forobtaining the optimal matrix which gives the

minimum variance DOA estimate with the prior knowledge assumption and the first order expansion of

oblique projection operators, which is considered as the main effort.

II. M ODEL AND ASYMPTOTIC PLEDGE VARIANCE

Considern narrowband and far-field plane waves impinging on an Uniformand Linear Array (ULA)

composed ofL sensors separated by a half wavelength. Lett be the index of a sample (“snapshot”) and

assume that the total number of available samples isN , thent = 1, . . . N . The one sample response, or

equivalently the single-experiment time series model can be parametrized in the following manner

y(t) = A(θ)x(t) + n(t) (1)

whereA(θ) = [a(θ1) . . .a(θn)] and wherea(θi) is the i-th steering vector defined by

a(θi) = [1 ejθi . . . ej(L−1)θi ]T (2)

with θi the spatial pulsation (phase) lying to the setθ = {θi}
n
i=1. Amplitude wavex(t) and noise signal

n(t) are assumed to be stochastic processes, jointly Gaussian with zero-mean, stationary and circular of

second order moments

E[x(t)xH(t)] = P and E[n(t)nH(t)] = σ2I (3)

whereE stands for the mathematical expectation and.H for the transpose and conjugate. For the latter

use we introduce.T as the transpose and.∗ as the conjugate. At least, all the notified hat (.̂) quantities

correspond to estimated ones. The sample covariance matrixof the data observation is classically given

by R̂ = 1
N

∑N
t=1 y(t)y

H(t) and its eigendecomposition admits the form̂R = ÊSΣ̂SÊ
H
S + ÊNΣ̂NÊ

H
N

in which ÊS and ÊN are respectively the estimated signal subspace and noise subspace eigenvectors.

Finally, the diagonal matriceŝΣS and Σ̂N hold for the corresponding eigenvalues. Suppose now that

only nu DOA are unknown and thennk DOA are known; the setθ is therefore composed of disjoint

setsθu = {θi}
nu

i=1 andθk = {θj}
nk

j=1 DOA. The consequence of this assumption is to disjointly separate

all the matrices into two subsets which depend directly or indirectly on parameterθ. Then and without

loss of generality we have

• A = [ Au Ak], andA(θ) = A(θk,θu),

• Σ̂S =




Σ̂Su

0

0 Σ̂Sk



,
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• PA(θ) = A(AHA)−1AH = PA(θu,θk),

• P⊥
A(θu,θk) = I − PA(θu,θk),

• P⊥
A(θu,θk) = PB(θu,θk)

whereB is the matrix whose columns span the null space ofA. The estimation problem is therefore

reduced at estimating only the setθu of unknown DOA. This problem has been already approached and

it is optimally solved by the PLEDGE minimizer [6],argminθu
Trace

[

PB(θu,θk)ÊsWÊ
H
s

]

, where

W is a positive definite weighting matrix. To show now that PLEDGE is optimum, i.e. it reaches the

Stochastic Cramèr-Rao Bound (CRB) [6]

C(θu) =
σ2

2N

[

Re
{(

DH
u Π⊥

ADu

)

⊙
(
PH

u AHR−1AP u

)T
}]−1

where⊙ is the classical Hadamard-shur product; we need the following

Theorem 1. The asymptotic variance for the nu unknown estimates admits the expression

C̄ =
σ2

2N

[
Re(M ⊙ (WT )

T )
]−1

{

Re
[

M ⊙ (A†
uPAu|Ak

ESW Λ̂WEH
S PH

Au|Ak
A†H

u )T
]}

[
Re(M ⊙ (WT )

T )
]−1

(4)

whereWT = A†
uPAu|Ak

ESWEH
S PH

Au|Ak
A†H

u . Here,P
Au|Ak

is defined as an oblique projector. This

projector projects onto the subspace spanned by the columnsof Au along with the subspace spanned by

the columns ofAk [8]. It has the expression

P
Au|Ak

= Au(A
H
u P⊥

Ak
Au)

−1AH
u P⊥

Ak
(5)

and the properties

• P
Au|Ak

+ P
Ak|Au

= PA.

• P
Ak|Au

= PAk

(
I −Au(A

H
u P⊥

Ak
Au)

−1AH
u P⊥

Au

)
,

with P⊥
Au

= I −Au(A
H
u Au)

−1AH
u and identicallyPAk

= Ak(A
H
k Ak)

−1AH
k .

We also defineM =
(
DH

u P⊥
ADu

)
with Du = [d1 . . .dnu

],di = (da(θi)/dθi) and Λ̂ = ΣS(ΣS −

σ̂2I)−2 the covariance matrix of the eigenvectors estimation errors (ÊS −ES).

Proof: By denoting the functionV (θu) = argmaxθu
Trace

[

PA(θu,θk)ÊsWÊ
H
s

]

, it yields that

θ̂u maximizesV (θu). Under good relation of regularity forV (θu) and sinceθ̂u converges toθu as

N → ∞ [9], we can give the first order Taylor series expansion ofV ′ around the true valueθu by

0 = V ′(θu) + V ′′(θu)(θ̂u − θu), and deduce obviously the estimation error

(θ̂u − θu) = −{V ′′(θu)}
−1V ′(θu) + o(V ′(θu)) (6)
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which holds for large sample. LetV ′

i andV ′′

ij stands for thei-th component of the gradientV ′(θu)

and thei, j-th component of the hessianV ′′(θu) respectively and let for ease of notation the projection

operatorPA(θu,θk) correspond toPA. With this, both derivatives have the following expressionsV ′

i =

Trace
[

∂PAi
ÊSWÊ

H
S

]

andV ′′

ij = Trace
[

∂PAij
ÊSWÊ

H
S

]

where∂PAi
and∂PAij

are respectively

the first and second order derivatives ofPA. At least, by invoking the convergence in distribution for the

estimatesÊS towards their true value, we obtain thatV ′

i = Trace
[

∂PAi
ÊSWEH

S

]

+ o(N−1/2) and

V ′′

ij = Trace
[
∂PAij

ESWEH
S

]
for N → ∞; result used in [9] (see the references therein for originate

work on).

The key point here is the derivatives ofPA with respect to the unknown parameters and only those

ones. If giving a theoretical expression for the first order derivative is somehow more or less straight,

the second order derivative, is a long way.

A. First order derivative of PA w.r.t the unknown parameters

Let us start by recalling the projection operator gradient expression ofPA stated in [10]. Forn

directions of interest, in other words for the setθ, the trilinear gradient tensor has the form

∂PA

∂θ
= P⊥

A

∂A

∂θ
A† +A†H ∂AH

∂θ
P⊥

A (7)

where each slide of the tensor is associated with aθi, i = 1, . . . , n direction, see Fig1-(a) for visual illus-

tration. Since onlynu directions are of interest, (7) can be rewritten∂PA

∂θu
= P⊥

A
∂A
∂θu

A† +A†H ∂AH

∂θu
P⊥

A.

Owing toA = [Au Ak] and making use of the block inversion matrix lemma, the pseudo-inverse ofA

admits the expression

[Au Ak]
† =




AH

u Au AH
u Ak

AH
k Au AH

k Ak





−1 


AH

u

AH
k





=




A†

uPAu|Ak

A
†
kPAk|Au



 . (8)

The first order derivative ofPA in the i-th direction (thei-th component of∂PA) is next obtained by

remarking that onlynu directions are of interest amongn. Consequently, each slice of the tensor∂A
∂θ has

the partition which correspond to the known DOA null, i.e. the sub-tensor∂Ak

∂θu
= 0; this is easily drawn

in Fig1-(b). The bottom partitionA†
kPAk|Au

of the pseudo-inverse[Au Ak]
† is in consequence useless
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∂A
∂θ1

∂A
∂θnu

∂A
∂θ2PA

⊥
A†

∂a(θ1)
∂θ1

0

0
∂a(θnu )

∂θnu

0
∂a(θ2)
∂θ2

0PA
⊥ A

†
uPAu|Ak

A
†
k
PAk|Au

0

0

0

(a) (b)

Fig. 1. (a) third order tensor representation for∂A
∂θnu

, (b) third order tensor representation for∂A
∂θnu

with the explicit drawing

of ∂Ak

∂θu
= 0

and we straightforwardly obtain fori = 1, . . . , nu

∂PAi
= P⊥

A

∂Au

∂θi
A†

uP Au|Ak
+ PH

Au|Ak
A†H

u

∂AH
u

∂θi
P⊥

A

, ∂PAi
+
(

∂PAi

)H
. (9)

If we look over the composition of (9), we firstly see that we have two terms transpose and conjugate

each other and secondly that thanks to the oblique projectorP
Au|Ak

action, the subspace associated with

the first derivative∂PAi
only lives onto the subspace associated with the unknown parameters. So, We

can here already extrapolate that all the derivatives ofPA will lie solely onto the unknown parameters

subspace which gives already an idea on the way the PLEDGE criterion acts. But let us pursue the efforts

to finish the proof.

B. Second order derivative of PA w.r.t. the unknown parameters

Based on (9),∂PAij
is basically obtained by deriving the term∂PAi

and by summing next the result

to its transpose and conjugate term. The mathematical interest is therefore condensed to∂PAij
the first

right hand side term of∂PAij
, ∂PAij

+
(

∂PAij

)H
with

∂PAij
= −P⊥

A

∂Au

∂θj
A†P

Au|Ak

∂Au

∂θi
A†

uP Au|Ak
− PH

Au|Ak
A†H

u

∂Au

∂θj
P⊥

A

∂Au

∂θi
A†

uPAu|Ak

+P⊥
A

∂Au

∂θiθj
A†

uP Au|Ak
− P⊥

A

∂Au

∂θi
A†

uPAu|Ak

∂Au

∂θj
A†

uP Au|Ak
+ P⊥

A

∂Au

∂θj
A†

u

∂P
Au|Ak

∂θj

(10)

for which the very last element
∂P

Au|Ak

∂θj
is so far unknown. Although, to our knowledge there is no

theoretical expression for it. The next efforts concern then this element.
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The oblique projector is by property idempotent and so is itsderivative; as a consequence we have

∂P
Au|Ak

∂θj
=

∂P 2
Au|Ak

∂θj
=

∂P
Au|Ak

∂θj
P

Au|Ak

︸ ︷︷ ︸

I

+P
Au|Ak

∂P
Au|Ak

∂θj
︸ ︷︷ ︸

II

. (11)

Providing an analytical expression for (11) needs obviously to solve (11)-I and (11)-II.

1) Solving (11)-I: We make use of

∂(P
Au|Ak

Au)

∂θj
=

∂P
Au|Ak

∂θj
Au + P

Au|Ak

∂Au

∂θj

=
∂Au

∂θj
(12)

to deduce that
∂P

Au|Ak

∂θj
Au = (I − P

Au|Ak
)
∂Au

∂θj
(13)

and obtain the relation which governs
∂P

Au|Ak

∂θj
P

Au|Ak
by right multiplying (13) by(AH

u P⊥
Ak

Au)
−1AH

u P⊥
Ak

.

Finally it yields,
∂P

Au|Ak

∂θj
P

Au|Ak
= (I − P

Au|Ak
)
∂Au

∂θj
A†

uPAu|Ak
(14)

and (11)-I is fulfilled.

2) Solving (11)-II: We utilize here the decomposition of orthogonal projectorPA, namelyP
Au|Ak

+

P
Ak|Au

= PA, for having

∂PAj
=

∂P
Au|Ak

∂θj
+

∂P
Ak|Au

∂θj
. (15)

We obtain (11)-II plus an annoying term by left multiplying (15) byP
Au|Ak

, the good point now would

be that the annoying term vanishes. this is what we are about to prove.

If we consider that the parameters of interest are the unknown ones, they belong so to the setθu, then

the first order derivative
∂P

Ak|Au

∂θj
can be expressed to as

∂P
Ak|Au

∂θj
= Ak

∂(AH
k P⊥

Au
Ak)

−1

∂θj
AH

k P⊥
Au

+Ak(A
H
k P⊥

Au
Ak)

−1AH
k

∂P⊥
Au

∂θj
. (16)

Then straightforwardly left multiplying (16) byP
Au|Ak

gives

P
Au|Ak

∂P
Ak|Au

∂θj
= 0

sinceP
Au|Ak

P⊥
A = 0 andP

Au|Ak
∂PAj

clearly reduces to

P
Au|Ak

∂PAj
= P

Au|Ak

∂P
Au|Ak

∂θj
. (17)
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We replace consequently the expression given in (9) inside (17) to obtain finally

P
Au|Ak

∂P
Au|Ak

∂θj
= P

Au|Ak
P⊥

A

∂Au

∂θj
A†

uPAu|Ak

+ P
Au|Ak

PH
Au|Ak

A†H
u

∂AH
u

∂θj
P⊥

A

= P
Au|Ak

PH
Au|Ak

A†H
u

∂AH
u

∂θj
P⊥

A (18)

and we have an expression for (11)-II.

In accordance with (11), the derivative ofP
Au|Ak

for the j-th, j = 1, . . . , nu direction is in conclusion

given by

∂P
Au|Ak

∂θj
= (I − P

Au|Ak
)
∂Au

∂θj
A†

uPAu|Ak
+ P

Au|Ak
PH

Au|Ak
A†H

u

∂AH
u

∂θj
P⊥

A.

At this stage, it worth nothing to give the expression of
∂P

Ak|Au

∂θj
obtained by subtracting

∂P
Au|Ak

∂θj
to

∂PAj
hence

∂P
Ak|Au

∂θj
= −P

Ak|Au

∂Au

∂θj
A†

uPAu|Ak
+ (I − P

Au|Ak
)PH

Au|Ak
A†H

u

∂AH
u

∂θj
P⊥

A.

In passing, we note that the conjugate symmetry is lost and that interpreting the hard projector mixing

is a real challenge.

C. Distribution error for the estimates

We embed the previous results insideV ′(θu) andV ′′(θu) to have for sufficiently large enoughN

and after basic algebraic relations

V ′

i = 2 Re
{

Trace
[

PH
Au|Ak

A†H
u

∂AH
u

∂θi
P⊥

AÊSWEH
S

]}

+ o(N−1/2)

V ′′

ij = −2 Re
{

Trace
[
∂AH

u

∂θj
P⊥

A

∂AH
u

∂θi
A†

uPAu|Ak
ESWEH

S PH
Au|Ak

A†H
u

]}

.

Remind that matrixÊ
H
S is estimated by the eigen-decomposition of the sample covariance R̂. The

statistics of each column vectors, let sayêSk
, k = 1, . . . , n depend consequently on those ofR̂. It has

been proven, few decades ago, that these statistics are asymptotically jointly Gaussian distributed with
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zero means. This result is for example announced in [9, lemma4] or [11, Lemma 2.1]. As a consequence,

the gradientV ′(θu) is also asymptotically Gaussian, with zero mean and covariance given by

Hij =
2σ2

N
Re

{
∂AH

u

∂θi
PA

⊥∂Au

∂θj

A†
uPAu|Ak

ESW Λ̂WEH
S PH

Au|Ak
A†H

u

}

with Λ̂ = ΣS(ΣS − σ̂2I)−2 the covariance matrix of the eigenvectors estimation errors (ÊS −ES). The

asymptotic results of [12] implies that the asymptotic estimation error distribution is therefore

(θ̂u − θu) ∈ N (0, C̄), (19)

where

C̄ = (V ′′)−1H(V ′′)−1. (20)

The proof is complete by replacing in matrix formH andV ′′ into (20).

III. T HE OPTIMAL WEIGHTED MATRIX

In this section we prove thatWopt = Σ−1
S (ΣS − σ̂2I)2 yields the asymptotic estimation error

distribution to have the minimum variance, i.e. it reaches the Stochastic Cramèr-Rao Bound (CRB).

FromAPAH = ES

(
ΣS − σ̂2I

)
EH

S we deduce that

ΣS = EH
S APAHES + σ̂2I (21)

and easily write that

A†
uPAu|Ak

ES(ΣS − σ̂2I)EH
S PH

Au|Ak
A†H

u =
[

I 0
]

P




I

0



 . (22)

We next make use of the relation

Σ−1
S (ΣS − σ̂2I)2 = (ΣS − σ̂2) + σ4Σ−1

S − σ̂2I (23)

and focus onσ4Σ−1
S − σ̂2I which is equivalent to

ES(σ
4Σ−1

S − σ̂2I)EH
S = −A(σ̂−2PAHA+ I)−1PAH . (24)
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Going further, we obtain that

A†
uPAu|Ak

ES(σ
4Σ−1

S − σ̂2I)EH
S PH

Au|Ak
A

†H
k =

[

I 0
]

(σ̂−2PAHA+ I)−1P
[

I 0
]

=
[

I 0
]

(I − PAH(APAH + σ̂2I)−1A)P




I

0





=
[

I 0
]

P




I

0



−
[

I 0
]

PAHR−1AP




I

0



 . (25)

Then, subtracting (25) to (22) gives the following equality

A†
uP Au|Ak

ESWoptE
H
S PH

Au|Ak
A†H

u = PH
u AHR−1AP u.

Replacing this expression inside (4) shows at least the optimality of the PLEDGE approach with an

optimal weighted matrixWopt = Σ−1
S (ΣS − σ̂2I)2.

The reader can notice that the optimal weighted matrix is expressed with respect toΣS and notΣSu

which could be surprising. Although the PLEDGE minimizer focuses only on the unknown DOA, the

optimal weighted matrix utilizes the whole signal subspaceinformation. One could think this is obvious

since no deflation is employed but things are not that simple.Actually, the sole contribution of the

unknown parameters is used but this is hidden behind the way the criterion is constrained by the known

parameters. This is the force of the PLEDGE approach - it gives an optimal solution without explicitly

deflating. Inspecting the variance for the estimates belonging toθu shows that a perfect oblique projection

operator appears, explaining somehow why the criterion is optimal and why only the unknown parameters

contribute to the optimality; even if the weighted matrix uses the whole set of parameters.

IV. CONCLUSION

Some works have been proposed for treating the problem of estimating DOA under prior knowledge.

The optimal solution to this problem does not employ any deflation process whereas the criterion focuses

solely on the parameters of interest. In the present work we have proposed to better understand this

by giving the theoretical variance for the estimates of interest. Particularly, the minimum variance is

implicitly obtained by the use of oblique projection operators associated with their first order derivatives.

The main contribution herein was therefore to propose theoretical expressions for these operators and to

show the optimality of the Prior-knowledge criterion.
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