
HAL Id: hal-01508674
https://hal.science/hal-01508674v1

Submitted on 14 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling the Wind Turbine Benchmark with PWA
Hybrid Automata (Experience Report)

Nikolaos Kekatos, Marcelo Forets, Goran Frehse

To cite this version:
Nikolaos Kekatos, Marcelo Forets, Goran Frehse. Modeling the Wind Turbine Benchmark with PWA
Hybrid Automata (Experience Report). ARCH17. 4th International Workshop on Applied Verification
of Continuous and Hybrid Systems., Apr 2017, Pittsburgh, United States. �hal-01508674�

https://hal.science/hal-01508674v1
https://hal.archives-ouvertes.fr


This space is reserved for the EPiC Series header, do not use it

Modeling the Wind Turbine Benchmark

with PWA Hybrid Automata

(Experience Report)

Nikolaos Kekatos1, Marcelo Forets1, and Goran Frehse1∗

University Grenoble Alpes, Verimag, France
{nikolaos.kekatos, marcelo.forets-irurtia, goran.frehse}@univ-grenoble-alpes.fr

Abstract

The wind turbine benchmark is part of the ARCH benchmark repository. It entails closed-
loop requirements and encompasses nonlinear and hybrid dynamics. Owing its origin to
industry based applications, the benchmark modeling is done with MATLAB/Simulink.
Formal verification tools, however, do not operate on simulation models but on formal
models, such as hybrid automata. Particularly efficient verification algorithms are known
for systems with Piecewise Affine (PWA) dynamics. In this vein, we construct a PWA
model of the wind turbine in the SX format, which formally describes a network of hy-
brid automata and can be used by several reachability tools. The model transformation
follows a four-step approach with the aim of (i) adapting the Simulink model to obtain a
verification model (ii) translating the Simulink blocks to equivalent blocks in SX format,
(iii) conducting compositional, syntactic hybridization to obtain a PWA approximation
of the dynamics of the nonlinear blocks, and (iv) performing model validation. We also
report some preliminary experiments on the subsystems (network components) of the wind
turbine that we conducted with SpaceEx.

1 Introduction

The benchmark was introduced by Simone Schuler, Fabiano Daher Adegas, and Adolfo Anta
from General Electrics [18] in the ARCH workshop. The authors presented a simplified non-
linear model of a wind turbine equipped with switching controllers. The composition of the
wind turbine and the controllers results in a hybrid system with nonlinear dynamics. Given
that wind turbine systems form one of the fastest-growing industries in renewable energy world-
wide, the authors consider them as a promising area for the application of verification tools.
The accompanied control objectives including safety and performance constraints establish a
pertinent benchmark for verification of requirements in hybrid systems [18].

∗The authors gratefully acknowledge financial support by the European Commission project UnCoVerCPS
under grant number 643921 and by the Metro Grenoble through the project NANO2017.



Wind turbine PWA model Kekatos, Forets and Frehse

The main issue that arises is that formal verification tools do not operate on simulation
models but on formal models. As such, the MATLAB/Simulink model has to be transformed
in order for the requirements of the wind turbine benchmark to be verified. This paper de-
scribes the process of constructing a Piecewise Affine (PWA) model expressed in SX format
(SpaceEx modeling language) [8] from the Simulink model and presents preliminary verification
results undertaken with the SpaceEx tool [14]. The model transformation includes four main
steps. We first change the Simulink model to comply with the verification standards (adding
nondeterminism, deleting unnecessary blocks). Then, we employ the SL2SX tool, [17] to assist
with the translation and the process of building the SpaceEx model. Afterwards, we conduct
compositional syntactic hybridization [15] to obtain a PWA approximation of the dynamics
of the nonlinear blocks and finally we perform model validation to check that the individual
approximations (base components) are correct and non-blocking.

Much work has been done towards the verification of Simulink models [3] and several tools
have been designed to facilitate this task [19]. There are two main groups of approaches. The
first one refers to verification by simulation methodologies that can be applied directly on the
Simulink model and do not require any model transformation. Donzé [9] presented a MAT-
LAB/Simulink based tool, Breach, which performs simulation-based verification (approximate
reachability analysis) and conducts efficient signal monitoring of properties and requirements.
Another relevant MATLAB/Simulink tool is S-Taliro [4]. It conducts fast and efficient simula-
tions, with a formal focus on falsification. These two approaches have the drawback that the
set of initial states must be sampled and are restricted to models with low-dimensional initial
states. A tool that circumvents this pitfall is HySon [7]. It performs set-based simulation on
Simulink models, and approximates the set of all possible executions. However, it is not pub-
licly available and, to the best of our knowledge, it has been only tested in cases of relatively
small size. The second group of approaches relies on model transformation and requires the
construction of a verification model from its Simulink counterpart. Once the verification model
is designed, different formal verification tools could be applied. Filipovikj et al. [12] trans-
formed Simulink models into the input language of UPPAAL and used the UPPAAL Statistical
Model checker to verify properties of automotive systems. The Simulink-based tool C2E2 [11]
transforms Stateflow models to polynomial hybrid automata, saves them in the HyXML format,
and then conducts simulation-based verification.

The rest of this paper is organized as follows. Section 2 reviews the existing tools that
are utilized. In Section 3, we briefly present the benchmark model. In Section 4, we describe
the model transformation process. We report some preliminary results in Section 5. We draw
conclusions and describe our future work in Section 6. The model and configuration files for
running the case study in SpaceEx are available as an attachment.

2 Background

In this section, we briefly present the three tools that are used for the model transformation,
namely, Simulink, SpaceEx and SL2SX, and describe the hybridization technique that we apply.

2.1 Simulink

Simulink [1] is a graphical programming environment for modeling, simulating and analyzing
dynamical systems. It includes a set of block libraries and is commonly used in automatic
control and signal processing for multidomain simulation and Model-Based Design. A Simulink
model consists of a set of input and outputs variables, blocks and connections.

2



Wind turbine PWA model Kekatos, Forets and Frehse

2.2 SpaceEx

SpaceEx [14] is a verification platform for hybrid systems. Its main functionality is to verify that
a given mathematical model of a hybrid system satisfies desired safety properties. SpaceEx offers
three different algorithms for set-based reachability analysis, namely the PHAVer, the LGG and
the STC, as well as a simulation option. The PHAVer (Polyhedral Hybrid Automaton Verifyer)
algorithm is applicable to linear hybrid automata, i.e. hybrid systems with piecewise constant
bounds on the derivatives, and produces exact reachibility results. The LGG Support Function
algorithm implements a variant of the Le Guernic-Girard (LGG) algorithm [16]. The STC
(Space-Time approximation with Clustering) algorithm relies on LGG but it computes fewer
convex sets for a given accuracy and yields more precise results for discrete transitions. These
algorithms over-approximate the reachable sets and can be applied to hybrid systems with
piecewise affine dynamics and non-deterministic inputs.

The models for SpaceEx are specified in the SX modeling language [8]. The format is similar
to the standard hybrid automata, syntactically extended with hierarchy and templates. An SX
model consists of base and network components as well as binds. Base components correspond
to single hybrid automata, whereas network components correspond to the parallel composition
of several hybrid automata. A bind instantiates a component inside a network (similar to a
template instantiation), possibly remapping its variables to variables of the network. The
parameters of a component can be variables (changing over time), constants or synchronization
labels (every transition is associated with a label). The variables can be real-valued or boolean
(depending on their type), local or global (depending on their usage outside the base component)
and controllable or uncontrollable (typically, distinguishing between variables that appear in
differential and algebraic equations). More information can be found at [10].

SpaceEx requires two input files to run, a model file of the hybrid automata in SX format
and a configuration file that specifies the analysis options and preferences. In the latter file,
the user can define, among else, the initial states, output formats, number of iterations, e.g.
searching for a fixed point, time horizon, forbidden states. An informal introduction to SpaceEx
and its modeling paradigm is available at [13].

2.3 Simulink to SpaceEx Translator (SL2SX)

SL2SX [17] is a semi-automated tool that undertakes the translation of Simulink models into
SpaceEx models. The translator accepts a Simulink model that is saved in XML format and
generates as an output a network of hybrid automata in SX format. The translation preserves
most of the structural aspects of the Simulink diagram, such as the names, hierarchy and
graphical positions. Blocks that are not supported are translated into “empty” components,
which must then be completed by the user.

2.4 Compositional Syntactic Hybridization

Hybridization is an abstraction method to obtain PWA over-approximations of nonlinear dy-
namics [5]. It consists of partitioning the state-space into a set of domains, and for each domain,
approximating the nonlinear dynamics by simpler ones plus nondeterministic inputs to account
for the abstraction error. Existing hybridization methods operate on the composed (flattened)
system. Compositional syntactic hybridization, a recently proposed method [15], performs the
PWA over-approximation in a compositional manner and takes advantage of the on-the-fly com-
position of hybrid systems that is supported by the SpaceEx platform. Three main steps are

3



Wind turbine PWA model Kekatos, Forets and Frehse

Figure 1: Wind turbine - Simulink model - Top Level [18].

Figure 2: Wind turbine - Simulink model - Plant [18].

involved: syntactic decomposition, replacing the nonlinear ODE by a linear ODE with nonlinear
algebraic equations; hybridization, constructing a PWA approximation for each algebraic equa-
tion and providing a sound over-approximation of the original system by adding an error term;
and finally composition of the hybrid automata, and elimination of the algebraic equations.

3 Benchmark Model

The wind turbine modeling is done with MATLAB and Simulink [18]. Figure 1 shows the
top-level model of the Simulink block diagram and Figure 2 depicts the physical part (plant) of
the wind turbine. The wind turbine dynamics are highly nonlinear functions of the operating
point defined by the rotor speed, wind speed and blade pitch angle.

4



Wind turbine PWA model Kekatos, Forets and Frehse

The plant consists of three subsystems: a servo-elastic, an aeroelastic and a pitch-actuator.
The servo-elastic subsystem describes the tower fore-aft dynamics and the rotor dynamics.
It is interconnected with the aeroelastic subsystem through signals that correspond to the
aerodynamic torque and thrust. While the servo-elastic subsystem consists of linear operators,
the aeroelastic subsystem has several nonlinear blocks. There are two Square functions, two
Products, two Divisions and two fourth-order Polynomials. The polynomials correspond to
the aerodynamic torque coefficient (cP) and thrust coefficient (cT ), respectively. They are
computed through a regression model. The pitch actuator dynamics can be expressed by a
second-order lag, a first-order lag or a time-delay. The pitch actuator subsystem has two input
signals, the demanded pitch angle and the pitch actuator type and outputs the actual pitch
angle to the aeroelastic subsystem. Apart from the linear operators, it contains a Multiport
Switch, three Compare to constant blocks, three Enable blocks and three Enabled Subsystems.

As for the control part, there is a generator-torque controller and a collective blade-pitch
controller. The blade pitch controller is a gain-scheduled PID whose objective is to minimize the
speed error between the filtered generator speed and the rated generator speed. It incorporates
an anti-windup scheme to prevent integration wind-up when the actuator is saturated. The
nonlinear blocks correspond to a Division and a Product. The generator-torque controller aims
to maximize the extracted maximum power from the wind by tracking the optimal tip-speed
ratio λopt. It is a hybrid controller with 5 locations and 2 input signals, namely the filtered
generator speed and the pitch angle. It is written as an Embedded MATLAB Function and it
includes two nonlinear operators, a Square and a Division.

Note that the benchmark model is designed from an industrial viewpoint and its verification
task is considered to be of high difficulty. That ensues from the existence of several nonlinearities
(over 10 distinct ones) and blocks that cannot be expressed by linear or hybrid dynamics. As
far as the model dimension is concerned, the controllers introduce two state variables and the
plant introduces 3 - 5 states (depending on the pitch actuation). As such, the total number of
state variables of the Simulink (closed-loop) model varies from 5 to 7. This number is further
increased, if we consider the rate limiters and memory blocks. The SpaceEx model adds an
extra variable to capture the time evolution. Another point is that the Simulink model is more
detailed than the mathematical model described in the benchmark paper [18] (e.g. rate limiters).
There are two minor points regarding the benchmark model that are worth mentioning; some
MATLAB paths need to be modified in order to be platform/user independent and there is a
call to a toolbox (WAFO) that is not included in the benchmark files.

4 Model Transformation

This section presents the model transformation process, covering the model adaptation, trans-
lation, hybridization and validation steps.

4.1 Model Adaptation

To apply formal verification techniques, it is necessary to obtain a verification model from the
original simulation model. Such a transformation should consider the inherent differences be-
tween these two model classes. Typically, a simulation model includes details that should be
obscured from the verification model. A verification model could also be enriched with non-
determinism so as to check the behavior of the system under uncertain or varying parameters,
disturbances or user inputs.

5



Wind turbine PWA model Kekatos, Forets and Frehse

An illustrative example is the Simulink block corresponding to the wind speed profile. The
wind profile is an input to the model that is read from a data structure in the MATLAB
workspace. In principle, such a profile could be translated into a hybrid automaton, but this
would not be very efficient in the analysis. As a matter of fact, there are 33 possible profiles
of user-defined wind speed signals in the MATLAB aeromaps.mat file. However, even if all
these cases are tested, there is still no guarantee that the closed-loop system is going to operate
correctly. Actually, there might be a different wind profile that could yield undesirable behav-
iors. On the contrary, under the SX format, this matter could be simply resolved by adding
a non-deterministic input signal that covers the minimum and maximum wind speeds. It is
possible to impose bounds on the rate of change of the wind speed.

It is also necessary to preprocess and further modify the Simulink model. In fact, all the
Scopes, Mux, Demux, Enabled Subsystems, Manual Switches, Save to workspace have to be
deleted/replaced as their corresponding actions are defined in a different way with SX format
and SpaceEx1. Another modification concerns the three available pitch actuators that exist
in the Simulink model. As the pitch actuator dynamics cannot be neglected for large wind
turbines, we consider the most critical and representative case, i.e. the second-order lag.

4.2 Translation

The second step of the model transformation is to translate the Simulink model into an equiva-
lent SpaceEx model; equivalent in the sense that the model remains the same while the syntax
changes. For this task, we employ the SL2SX translator. Having the mechanical aspects of the
model translation carried out by a tool significantly reduces errors. The translation takes a few
seconds and produces an SX file with 18 Network and 89 Base Components. However, not all
Simulink blocks can be exactly translated, as they cannot be expressed as hybrid automata.
The Simulink blocks that are automatically translated into base components are the following:
Add, Subtract, Divide, Multiply, Constant, Gain, Saturation, Integrator, Subsystem, Inport,
Outport.

Finally, it is possible to make the SX model more compact by reusing base components and
deleting the ones that are duplicate or serve the same role. With this configuration, the total
number of base components can be reduced approximately up to 30 distinct ones2. Figure 3 and
Figure 4, respectively, present the top level block (network component) and the plant subsystem
of the wind turbine model in SX format, as shown in the Model Editor of SpaceEx.

Implementation Issues After modifying the Simulink blocks, we have to perform further
preprocessing in order to be able to use the SL2SX translator. Special attention should be given
to the names and the connections. As of version 1.0.1 of SL2SX, the block names should not
extend to multiple lines, as the respective blocks will not be parsed by the translator. There may
occur errors with models that are saved in old Simulink versions. Also, after constructing the
SX Model with the SL2SX tool, there is a need for post-processing. In particular, the translator
produces the expressions “; &gt” and “; &lt” instead of the correct inequality symbols “<” and
“>”, respectively3.

1Currently, the preprocessing is done manually. However, in principle, this step could be automated. Deleting
unnecessary blocks and checking naming issues should be a straightforward task.

2This process is currently manual but it could be automated; either as a functionality of SL2SX or as a
post-processing step.

3This a known issue with the way that SAX parser (which is called by SL2SX) handles special characters.

6



Wind turbine PWA model Kekatos, Forets and Frehse

Figure 3: Wind turbine - SpaceEx model - Top Level.

Figure 4: Wind turbine - SpaceEx model - Plant.

4.3 Hybridization

The third step is to generate PWA approximations and describe them in SX format for all these
Simulink blocks that cannot be handled automatically, either because no exact translation
is available (e.g. nonlinearities) or because translation cannot be applied (e.g. Embedded
MATLAB Function).

To obtain PWA approximations of nonlinear dynamics, we use an abstraction method we call
syntactic hybridization. This method essentially partitions the state-space into a set of domains,
and for each domain, it approximates the nonlinear dynamics by simpler ones with added
nondeterministic inputs to account for the abstraction error. However, instead of operating
on the composed (flattened) system, we decompose the original dynamics and carry out the
state-space partitioning and PWA approximation on the components. In this way, we can avoid
having intractably large models and the explosion in the number of partitions can be mitigated.
In essence, we break down the nonlinear blocks into components that have a small number of
input variables and interconnect them together.

A practical intermediate step is to get bounds on the behavior (min, max) of the input
signals of the nonlinear Simulink blocks. The shorter the ranges of the signals, the smaller
the number of locations that is required by the PWA abstraction, given a desired error bound.
There are different ways to estimate them. In this paper, we run Simulink simulations for

7



Wind turbine PWA model Kekatos, Forets and Frehse

different scenarios and initial conditions to obtain a (not necessarily conservative) estimation of
the signal range. Note that the signal range serves only as an indication for the hybridization
step. The approximation is equipped with out-of-range (error) states. So, if the range is found
to be insufficient during reachability computations, it is revised (enlarged).

For the wind turbine benchmark, the constructed base components have only one or two
input signals and one output signal, the state space is partitioned into a set of domains, de-
scribed by hyper-rectangles, the approximations are linearized (first-order Taylor) around the
center of each domain, and the abstraction (linearization) error is computed by the evaluation
of the Lagrange remainder. The maximum error is computed for each location (box). We use
a combination of interval arithmetic and global optimization to bound it [2]. All the computa-
tions (linearization domains, quantization parameters, operating points, PWA approximations,
errors) are conducted with MATLAB. We also have a script to facilitate the construction of
PWA approximations and transform them into equivalent base components models, described
in SX format. Then, we integrate all these components into a single SX file.

Note that the approximations can be conservative or non-conservative. The error is com-
puted for each location of the base components and is added as a non-deterministic input in
the corresponding invariants. However, it is possible to disregard the errors either for debug-
ging purposes or for the purpose of obtaining a deterministic model. Table 1 presents all the
Simulink blocks that need to be approximated along with the approximation method, the max-
imum induced errors and the number of locations of each approximation. Let us underscore
that the error corresponds to the maximum error that appears in one of the locations of the
PWA approximation. The individual errors in the other locations can be significantly smaller.

The resulting model has only 72 locations in all components combined. To carry out reach-
ability analysis, SpaceEx performs on-the-fly composition of the hybrid automata and instan-
tiates only the reachable parts of the state-space. The upper bound of the number of locations
of the composed model is 16 millions.

4.4 Model Validation

The fourth step of the model transformation concerns the model validation. We propose an
empirical method to evaluate whether the generated base components are correct, insofar as
they yield satisfactory behaviors and do not introduce any deadlocks. In this step, we are
essentially testing the implementation. In this vein, we have created an SX signal library with
predefined components that describe trigonometric (sine, cosine), step and ramp functions.
We have added a monitor to visualize the output4. Once we create a new approximation, we
can integrate it along with the SX library and obtain a tester module (consisting of base and
network components).

Our objective is twofold: on the one hand, to check that the approximation is non-blocking
and on the other hand to check that it is indeed an over-approximation. For the first objec-
tive, the input signals are selected in a way that compels the PWA automaton (introduced by
the hybridization process) to necessarily visit all of its locations. As soon as the input signals
exceed the allowed operating range, the automaton goes out-of-bounds and the analysis termi-
nates. That means that a fixed point has been reached. For the second objective, we perform
reachability analysis on the tester module (containing the approximation and the input signals)
and then compare the results with random simulations. In this way, we check whether the
simulations are included in the reachable sets.

4Note that STC and LGG algorithms in SpaceEx do not output algebraic variables, so visualizing is possible
by mapping the algebraic variable to the solution of an ordinary differential equation.

8



Wind turbine PWA model Kekatos, Forets and Frehse

No Block (Name) Approx. # Loc. Error Bounds Remarks

1 Product (Anti windup) syntactic 4 2 x · y
2 Division (Cp/λ) syntactic 10 0.027613 (x/y)
3 Division (GS factor) syntactic 2 0.020111 1

1+x

4 Division (λ) syntactic 4 0.6983 x/y
5 Product (CT · v2ref ) syntactic 4 25.5781 x2 · y
6 Product (Cp/λ · v2ref ) syntactic 4 3.23437 x2 · y
7 Polynomial (aeromaps) syntactic 6 3.39472 4th-order
8 Polynomial (aeromaps) syntactic 6 12.2809 4th-order
9 Embedded MATLAB syntactic 28 10.48584 x2 and 1/x
10 Saturation substituted 3 0 exacta

11 Read from workspace substituted 1 – rangeb

12 Mux, Scope unnecessary – – –
13 Save to workspace unnecessary – – –
14 Enabled Subsystem unnecessary – – –
15 Multiport Switch unnecessary – – –
16 Compare to Constant unnecessary – – –
17 Manual Switch unnecessary – – –
18 Rate Limiter ignoredc – – DAE

19 Memory ignoredc – – continuous delay

Table 1: SpaceEx base components - Approximations
a for visualization reasons an extra location should be added.
b replaced by a nondeterministic input.
c to mitigate state explosion, this block has not been considered.

Figure 5: Aero-elastic subsystem - Simulink - Nonlinear Divide block shown in red.

As an illustration, let us consider a Simulink block of the aero-elastic subsystem of the wind
turbine (plant). Figure 5 shows the entire aero-elastic subsystem. The block that we focus on
is the Divide block and it is highlighted in red.

9



Wind turbine PWA model Kekatos, Forets and Frehse

Figure 6: Divide block - PWA approximation in SpaceEx.

(a) Tester - Division λ. (b) Reachable sets and Simulations.

Figure 7: SpaceEx Base Component - Division λ - Model Validation. The reachable sets of
the approximate SpaceEx block are indicated with blue, the simulation runs of the nonlinear
function are denoted in red. The simulation runs are contained in the reachable sets.

This block corresponds to the division operator and computes the division between two input
signals over time. From a physical point of view, it computes the tip-speed ratio, which is a
dimensionless variable denoted by lambda (λ). This block, being a nonlinear one, is replaced by a
PWA over-approximation with 4 locations. Figure 6 shows the approximation as a SpaceEx base
component. The variables In1 and In2 relate to the inputs, Out1 is the PWA approximation of
the division operator In1/In2 and corresponds to λ. The approximation error w1 is added in the
form of a non-deterministic disturbance. Note that all the variables should be uncontrollable,
and the error term should be included in the invariant, declared as a local variable; see Section
2.2 for more information about SpaceEx modeling language.

After incorporating the base component of the Divide block with our input library, we want
to check the previously mentioned objectives (no deadlocks and over-approximation). For this
reason, we consider that the inputs are ramp signals with varying initial conditions. The first
input is described by dIn1

dt = 1 with initial conditions in 69 < In1 < 71 and the second input

by dIn2
dt = 1 with initial conditions in 6.9 < In2 < 7.1. It is necessary to add a monitor in order

to visualize the output, as we intend to use the STC algorithm. Then, we conduct reachability
analysis, compare the results with random simulations of the original nonlinear function and
observe that for the considered scenario SpaceEx yields an over-approximation. The tester
module is shown in Figure 7a, the reachable sets and the simulation runs are shown in 7b.

10



Wind turbine PWA model Kekatos, Forets and Frehse

(a) Initial Conditions - 0 ≤ θ ≤ 0.15. (b) Initial Conditions - 0.18 ≤ θ ≤ 0.22.

Figure 8: Pitch actuator - SpaceEx Network Component - Reachable Sets (blue: Output, red:
Input)

(a) Output - Omega (b) Output - Displacement (xT dot).

Figure 9: Servo-elastic - SpaceEx Network Component - Reachable Sets

The same approach (in a hierarchical way) is utilized in order to check that compositions
of multiple base components, network components or larger subsystems operate correctly.

5 Preliminary Results

In this section, we present validation runs for some of the subsystems (network components).
We start with the pitch-actuator subsystem of the wind turbine plant. The input of this
block is the commanded pitch angle and the output is the actual pitch angle. Considering the
STC scenario, a global time horizon of 10s, and a constant input signal, we get a fixed point.
Figure 8 depicts the reachable sets for different initial conditions. The input signals are shown
in red and the output signals in blue.

Next, we consider the servo-elastic subsystem of the wind turbine plant. Given constant
inputs, a global time horizon of 20s and the STC scenario, SpaceEx finds a fixed point. Figure
9 depicts the reachable sets for initial conditions: 0 ≤ Omega ≤ 0.1 and 0 ≤ xT dot ≤ 0.1.

11



Wind turbine PWA model Kekatos, Forets and Frehse

Figure 10: Torque Controller - SpaceEx Network Component - Output.

(a) Input 1 - Omega d. (b) Input 2 - Theta.

Figure 11: Torque Controller - SpaceEx Network Component - Inputs.

Finally, we analyze the torque controller. The approximation consists of 28 locations, has
two input signals (omega d, theta) and one output (torque). We consider the input signals of
Figure 11 (a ramp and a sine function), as they cover, when combined, the entire 2D operating
range (from minimum to maximum allowed values). Indeed, with this configuration, SpaceEx
visits all the controller locations and finds a fixed point after 16 seconds. The reachable sets are
computed with the PHAVer scenario. The reachable sets of the torque controller are displayed
in Figure 10.

6 Conclusions

Model transformation plays an important role in bridging the gap between industrially rele-
vant models and verification tools. This work aims to assist the application of hybrid system
reachability tools to industrial-sized models described by MATLAB/Simulink. The existence
of a translator from Simulink to SpaceEx already facilitates the use of Simulink models within
SpaceEx environment. However, the large variety of Simulink blocks and their diverse features

12



Wind turbine PWA model Kekatos, Forets and Frehse

pose difficulties in mapping Simulink subsystems to SpaceEx components. There are several
Simulink blocks that cannot be described by hybrid automata with PWA dynamics and there-
fore cannot be processed by SpaceEx. In practice, most of these blocks correspond to nonlinear
functions and operations.

The wind turbine benchmark constitutes a relevant example, insofar as it represents an
industrial case study, while including many nonlinear blocks. Through syntactic hybridization,
it is possible to over-approximate the dynamical behavior of these blocks and seamlessly inte-
grate them within SpaceEx components. Note that the resulting model of hybrid automata is
expressed in the general SX format. As such, it can be fed directly into SpaceEx platform, or
translated into formats that comply with other verification tools using the HyST [6] tool.

Our future work is targeted towards verifying the requirements of the wind turbine bench-
mark. As the proposed approximation contains around 16 million locations, there is a short-
coming concerning the computational costs and execution time. Currently, SpaceEx identifies
the initial locations of the approximation through enumeration, which does not scale. A po-
tential way to tackle this issue is to use compositional reasoning to identify the initial locations
and instantiate as few locations as possible during the analysis.

Acknowledgments

The authors would like to thank Simone Schuler for valuable discussions on wind turbine models.

References

[1] MATLAB 9.0 and Simulink 8.7. The MathWorks, Inc., Natick, Massachusetts, United States.

[2] Matthias Althoff, Olaf Stursberg, and Martin Buss. Reachability analysis of nonlinear systems
with uncertain parameters using conservative linearization. In Decision and Control, 2008. CDC
2008. 47th IEEE Conference on, pages 4042–4048. IEEE, 2008.

[3] Rajeev Alur, Aditya Kanade, S Ramesh, and KC Shashidhar. Symbolic analysis for improving
simulation coverage of Simulink/Stateflow models. In Proceedings of the 8th ACM international
conference on Embedded software, pages 89–98. ACM, 2008.

[4] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. S-taliro: A
tool for temporal logic falsification for hybrid systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 254–257. Springer, 2011.

[5] Eugene Asarin, Thao Dang, and Antoine Girard. Hybridization methods for the analysis of non-
linear systems. Acta Informatica, 43(7):451–476, 2007.

[6] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. HYST: a source transformation and
translation tool for hybrid automaton models. In Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, pages 128-133. ACM, 2015.

[7] Olivier Bouissou, Samuel Mimram, and Alexandre Chapoutot. HySon: Set-based simulation of
hybrid systems. In 2012 23rd IEEE International Symposium on Rapid System Prototyping (RSP),
pages 79–85. IEEE, 2012.

[8] Scott Cotton, Goran Frehse, and Olivier Lebeltel. The SpaceEx modeling language, 2010.

[9] Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems.
In International Conference on Computer Aided Verification, pages 167–170. Springer, 2010.

[10] Alexandre Donzé and Goran Frehse. Modular, hierarchical models of control systems in SpaceEx.
In Control Conference (ECC), 2013 European, pages 4244–4251. IEEE, 2013.

13



Wind turbine PWA model Kekatos, Forets and Frehse

[11] Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan, and Parasara Sridhar Duggirala.
Automatic reachability analysis for nonlinear hybrid models with C2E2. In CAV’16, pages 531–
538, 2016.

[12] Predrag Filipovikj, Nesredin Mahmud, Raluca Marinescu, Cristina Seceleanu, Oscar Ljungkrantz,
and Henrik Lönn. Simulink to UPPAAL statistical model checker: Analyzing automotive indus-
trial systems. In FM 2016: Formal Methods: 21st International Symposium, Limassol, Cyprus,
November 9-11, 2016, Proceedings 21, pages 748–756. Springer, 2016.

[13] Goran Frehse. Introduction to SpaceEx v0.8. http://spaceex.imag.fr/sites/default/files/

introduction_to_spaceex_0.pdf.

[14] Goran Frehse, Colas Le Guernic, Scott Cotton Alexandre Donzé, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. Spaceex: Scalable verification of
hybrid systems. In CAV’11, pages 379-395, 2011.

[15] Nikolaos Kekatos, Marcelo Forets, and Goran Frehse. Constructing verification models of nonlinear
Simulink systems via syntactic hybridization. Submitted, https://hal.archives-ouvertes.fr/
hal-01487658, 2017.

[16] Colas Le Guernic and Antoine Girard. Reachability analysis of linear systems using support
functions. Nonlinear Analysis: Hybrid Systems, 4(2):250–262, 2010.

[17] Stefano Minopoli and Goran Frehse. SL2SX translator: From Simulink to SpaceEx models. In
Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control,
pages 93-98. ACM, 2016.

[18] Simone Schuler, Fabiano Daher Adegas, and Adolfo Anta. Hybrid modelling of a wind turbine
(benchmark proposal). Applied Verification for Continuous and Hybrid Systems (ARCH), 2016.

[19] N. Zhan, S. Wang, and H. Zhao. Formal Verification of Simulink/Stateflow Diagrams: A Deductive
Approach. Springer International Publishing, 2016.

14

http://spaceex.imag.fr/sites/default/files/introduction_to_spaceex_0.pdf
http://spaceex.imag.fr/sites/default/files/introduction_to_spaceex_0.pdf
https://hal.archives-ouvertes.fr/hal-01487658
https://hal.archives-ouvertes.fr/hal-01487658

	Introduction
	Background
	Simulink
	SpaceEx
	Simulink to SpaceEx Translator (SL2SX)
	Compositional Syntactic Hybridization

	Benchmark Model
	Model Transformation
	Model Adaptation
	Translation
	Hybridization
	Model Validation

	Preliminary Results
	Conclusions

