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Abstract. In this survey (functional) compositions of weighted tree
transformations computable by weighted extended top-down tree trans-
ducers are investigated. The existing results in the literature are ex-
plained and illustrated. It is argued, why certain compositions are not
possible in the general case, and 3 informed conjectures provide an insight
into potentially 3 new composition results that extend and complement
the existing results. In particular, if all were true, then the beautiful sym-
metry in the composition results for weighted top-down and bottom-up
tree transducers would be recovered.

Keywords: weighted tree transducer, top-down tree transducer, com-
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1 Motivation

Weighted tree transducers [32, 14, 19] (also called ‘tree series transducers’) are a
joint generalization of the unweighted tree transducer (such as the top-down tree
transducer [41, 42] or the bottom-up tree transducer [43]) and the weighted tree
automaton [6, 9, 1, 30, 17, 8, 7]. A good overview over both predecessors is pre-
sented in [20]. For a more detailed historic account and an in-depth introduction
into weighted extended top-down tree transducers, we refer the reader to the first
part [36] of this survey. A popular application area that has driven tree trans-
ducer research in the past few years is (syntax-based) machine translation [28,
27]. The second part [37] of this survey attempts to present a high-level perspec-
tive on some of the essential problems and algorithms used in this application
domain.
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?? Financially supported by the German Research Foundation (DFG) grant
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In this part of the survey, we will investigate compositions of weighted ex-
tended (top-down) tree transducers. Such a tree transducer computes a weighted
relation between input and output trees (i.e., it assigns a weight to each pair
of input and output trees). Two such relations can be composed in the usual
manner with the only difference that a weight (for example, a confidence or a
probability) is returned each time “membership is tested”. Using the real num-
bers as weight structure, we compose two weighted relations τ1 : A × B → IR
and τ2 : B × C → IR by requiring that

(τ1 ; τ2)(a, c) =
∑
b∈B

τ1(a, b) · τ2(b, c) (1)

for all a ∈ A and c ∈ C. For the sake of simplicity, let us assume that B is
finite. Equation (1) can be imagined in an operational manner. The first process
transforms the input a into an intermediate product b at a certain cost τ1(a, b).
This intermediate product is then fed into the second process, which transforms
it into a final product at cost τ2(b, c). Thus, the components are executed in a se-
quential manner. Traditionally, the multiplicative operation of the weight struc-
ture (typically, a semiring [25, 23]) is used to combine weights of processes that
are executed in series (or in sequence). Consequently, we multiply the weights
τ1(a, b) · τ2(b, c) to obtain the cost of producing c from a via the intermediate
product b. Naturally, there might be a choice of intermediate products that are
all suitable to some degree to produce the output c. Thus, we sum over all the
possibilities of producing c from a.

Compositions have been and are used in a number of application areas as
diverse as machine translation [46] and functional program optimization [29]. The
complexity of a given tree transformation problem can be tackled and broken
down into smaller pieces with the help of (de-)composition in a divide-and-
conquer approach. Once all the subproblems have been solved, the individual
solutions can be recombined with the help of composition. This approach is used
in [46], where a translation model is broken into 3 smaller pieces:

– a reordering component, which changes the order of subtrees but keeps the
trees otherwise intact,

– an insertion component, which has the ability to spontaneously add subtrees
to the output of the translation, and

– a translation component, which just translates the words (or phrases) occur-
ing in the input tree.

These components can now be trained and optimized individually (even from
different resources). However, since the evaluation of composition chains can be
very inefficient [40], automatic procedures that “compose” finite representations
of such weighted relations are desirable. Naturally, the obtained finite represen-
tation should compute the composition of the weighted relations computed by
the input representations. As expected, the finite representation discussed in this
survey is the weighted extended top-down tree transducer (xtt) together with
its variants.
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In contrast to the first part [36] of this survey, we do not require a complete
semiring [25, 23] here, which yields that we have to avoid infinite summations.
This change prompts a minor change in the definition of the model because
we have to disallow rules that contain no input and output symbol at all. In
fact, infinite sums also restrict the potential compositions because we have to
guarantee that the sum in (1) is finite. This is achieved by two simple conditions,
of which each is sufficient to guarantee the finiteness of the sum in (1). Moreover,
we introduce a simple variant of our main model that has rule identifiers in
order to simplify the composition constructions. The additional indirection via
identifiers allows us to construct the same rule several times under different
names. In this way we can obtain a closer and more direct relationship between
the rules of the input xtt and the composed xtt.

In the main part of this survey, we investigate compositions of xtt. In other
words, given two xtt M and N , we want to construct another xtt that com-
putes the composition of the weighted tree transformations computed by the xtt
M and N . It is known that already in the unweighted setting, this cannot always
be achieved, and we will consider two important cases:

– compositions of an xtt with a top-down tree transducer, and
– compositions of selected xtt with top-down tree transducers that can addi-

tionally have ε-rules.

The former case has been investigated in the unweighted case by [12, 5] and
these results were partially lifted to the weighted setting in [14, 33, 34]. We recall
all the relevant results and complement them by three conjectured results that
handle the missing cases. More precisely, we conjecture:

– that a constant xtt can be composed with a linear top-down tree transducer
(see Conjecture 11), where the property ‘constant’ will be introduced here,

– that a deterministic xtt can be composed with a nondeleting top-down tree
transducer (see Conjecture 13), and

– that a constant and deterministic xtt can be composed with any top-down
tree transducer (see Conjecture 14).

We explain why these conjectured cases cause additional problems, which are
due to the presence of weights. While we will not present a formal construction
for each case, we present a generic composition construction and then indicate
how to modify it to obtain a formal construction for the individual cases.

The latter case, in which we compose an xtt with a top-down tree transducer
with ε-rules, was investigated in [39] in the unweighted setting. Here, we extend
the results of [39] to the weighted setting and conjecture a new result (see Con-
jecture 23), which is again based on the new property ‘constant’. Overall, our
conjectured results complement the existing results nicely, and if all were true,
then we would obtain the beautiful symmetry in the weighted setting that is
known from compositions [12, 5] for unweighted top-down and bottom-up tree
transducers [43].
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2 Notation

The set of all nonnegative integers is IN, and we let [n] = {i ∈ IN | 1 ≤ i ≤ n}
for every n ∈ IN. We fix the set X = {xi | i ∈ IN} of (formal) variables. The
set of all finite words (or sequences) over a set S is S∗, where ε is the empty
word. The concatenation of the words v, w ∈ S∗ is v.w or simply vw. The length
of a word w ∈ S∗ is denoted by |w|. An alphabet Σ is a nonempty and finite
set, of which the elements are called symbols. For every alphabet Q, we let
Q(S) = {q(s) | q ∈ Q, s ∈ S}. The set TΣ(S) of Σ-trees3 with leaf labels S is the
smallest set U such that S ⊆ U and σ(u1, . . . , uk) ∈ U for every k ∈ IN, σ ∈ Σ,
and u1, . . . , uk ∈ U . We often omit qualifications like ‘for all k ∈ IN’ if it is
obvious from the context that k is a nonnegative integer. Moreover, we generally
assume that Σ ∩ S = ∅, and thus we write σ() simply as σ for every σ ∈ Σ.
Given another alphabet ∆, we treat elements of T∆(TΣ(S)) and Q(TΣ(S)) as
particular trees of TQ∪Σ∪∆(S).4 Finally, we write TΣ for TΣ(∅).

Next, we define a few operations on trees. The set pos(t) ⊆ IN∗ of positions
of a tree t ∈ TΣ(S) is inductively defined by pos(s) = {ε} for every s ∈ S and

pos(σ(t1, . . . , tk)) = {ε} ∪ {i.w | i ∈ [k], w ∈ pos(ti)}

for every σ ∈ Σ and t1, . . . , tk ∈ TΣ(S). The set pos(t) of positions is (totally)
ordered by the lexicographic order on IN∗. Let t, t′ ∈ TΣ(S) and w ∈ pos(t). The
label of t at position w is t(w), and the w-rooted subtree of t is t|w. Formally,
these notions can be defined by s(ε) = s|ε = s for every s ∈ S and

σ(t1, . . . , tk)(ε) = σ σ(t1, . . . , tk)(i.v) = ti(v)
σ(t1, . . . , tk)|ε = σ(t1, . . . , tk) σ(t1, . . . , tk)|i.v = ti|v

for every σ ∈ Σ, t1, . . . , tk ∈ TΣ(S), i ∈ [k], and v ∈ pos(ti). For every subset
L ⊆ Σ ∪ S of labels and s ∈ S, we let posL(t) = {w ∈ pos(t) | t(w) ∈ L}
and poss(t) = pos{s}(t). The expression t[u]w denotes the tree that is obtained
from t ∈ TΣ(S) by replacing the subtree t|w at position w by u ∈ T∆(S).

The following operations implicitly always use the fixed set X of variables.
We let var(t) = {x ∈ X | posx(t) 6= ∅}. The tree t is linear if every x ∈ X
occurs at most once in t. A substitution θ : X → TΣ(S) can be applied to a
tree t ∈ TΣ(S), and returns the tree tθ that is obtained by replacing (in parallel)
all occurrences of each variable x ∈ X by θ(x). Formally, (i) xθ = θ(x) for every
x ∈ X, (ii) sθ = s for every s ∈ S \ X, and (iii) σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ)
for every σ ∈ Σ and t1, . . . , tk ∈ TΣ(S).

A (commutative) semiring [25, 23] is an algebraic structure (A,+, ·, 0, 1) con-
sisting of two commutative monoids (A,+, 0) and (A, ·, 1) such that · distributes

3 These are actually unranked trees, but our operational tree transformation model
will only have finitely many rules that prescribe (and limit) the ranks of symbols,
so that we could have used a ranked alphabet as well.

4 A benefit of our approach without explicit ranks for symbols is that we can always
take the union of two alphabets.
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over finite sums (including the empty sum, which yields a · 0 = 0 for all a ∈ A).
The semiring A is idempotent if 1 + 1 = 1.5 Examples of semirings include

– the Boolean semiring ({0, 1},max,min, 0, 1), which is idempotent,
– the powerset6 semiring (P(S),∪,∩, ∅, S) for some set S, which is idempotent,
– the tropical semiring (IR ∪ {∞},min,+,∞, 0), which is also idempotent,
– the nonnegative integers (IN,+, ·, 0, 1), and
– the semiring of real numbers (IR,+, ·, 0, 1).

Let S and T be sets, and let (A,+, ·, 0, 1) be a semiring. A weighted relation r
from S to T is a mapping r : S×T → A. Moreover, for every mapping f : S → A,
we let supp(f) = {s ∈ S | f(s) 6= 0}. Thus, supp(r) ⊆ S × T .

From now on, let (A,+, ·, 0, 1) be an arbitrary semiring such that 0 6= 1.

Next, let us recall the weighted extended (top-down) tree transducer [11, 2,
26, 24]. We essentially follow the definitions of [35, 38], in which the corresponding
unweighted device is discussed in detail. An in-depth presentation of the weighted
device can be found in the first part [36] of this survey. A (weighted) extended
(top-down) tree transducer (xtt) is a tuple (Q,Σ,∆, I,R), where

– Q is a finite set of states,
– Σ and∆ are alphabets of input and output symbols such thatQ∩(Σ∪∆) = ∅,
– I ⊆ Q is a set of initial states, and
– R : Q(TΣ(X)) × T∆(Q(X)) → A assigns rule weights such that supp(R) is

finite and for every (l, r) ∈ supp(R) we have that {l, r} 6⊆ Q(X), l is linear,
and var(r) ⊆ var(l).7

For the following discussion, let M = (Q,Σ,∆, I,R) be an xtt. The elements
of supp(R) are called rules (of M), and we often write them as l→ r instead of
(l, r). We call l and r of a rule l → r the left- and right-hand side, respectively.
Moreover, we write l→ r ∈ R instead of (l, r) ∈ supp(R), and we write l a→ r ∈ R
instead of R(l, r) = a. A rule l→ r ∈ R is (i) linear if r is linear, (ii) nondeleting
if var(r) = var(l), and (iii) simple if |posΣ(l)| = 1. In addition, the rule l→ r is

– consuming if |posΣ(l)| ≥ 1, and an ε-rule otherwise, and
– producing if |pos∆(r)| ≥ 1, and erasing otherwise.8

The xtt M is (i) linear, (ii) nondeleting, and (iii) a top-down tree transducer [32,
14] (tdtt) if every rule l → r ∈ R is (i) linear, (ii) nondeleting, and (iii) simple,
respectively. Moreover, the xtt M is Boolean if R(l, r) = 1 for every l→ r ∈ R.

The semantics of the xtt M is given by term rewriting [13, 4, 38]. To simplify
our composition constructions later on, we immediately present a semantics that
5 By distributivity, this yields a+ a = a for all a ∈ A.
6 The powerset P(S) of a set S is the set of its subsets; i.e., P(S) = {U | U ⊆ S}.
7 The restriction {l, r} 6⊆ Q(X), which is not present in [36], disallows rules of the form

(q(xi), p(xi)). This additional restriction is necessary because we do require complete
semirings [25, 23], which yields that we have to avoid infinite summations.

8 The name ‘erasing’ is justified by the fact that each erasing rule is consuming.
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can handle “foreign” symbols, which are symbols that are not in Q∪Σ∪∆.9 Let
Σ′ and∆′ be such thatΣ ⊆ Σ′ and∆ ⊆ ∆′. The elements of T∆′(Q(TΣ′(X))) are
called sentential forms. A position w ∈ posQ(ξ) in a sentential form ξ is reducible
(for M) if there exists a rule l→ r ∈ R and a substitution θ : X→ TΣ′(X) such
that ξ|w = lθ. Let ξ, ζ ∈ T∆′(Q(TΣ′(X))) be sentential forms and l → r ∈ R be
a rule. We say that ξ rewrites to ζ using l → r, denoted by ξ ⇒(l,r)

M ζ, if there
exists a substitution θ : X → TΣ′(X) such that ξ|w = lθ and ζ = ξ[rθ]w where
w is the least reducible position in posQ(ξ) with respect to the lexicographic
total ordering on IN∗.10 As usual, we use ‘;’ for relation composition, thus for
example,

(⇒ρ1
M ;⇒ρ2

M ) = {(ξ, ζ) | ∃ξ′ : ξ ⇒ρ1
M ξ′ ⇒ρ2

M ζ} .

The (extended) weighted relation τ ′M (or weighted tree transformation) computed
by M is given by

τ ′M (ξ, ζ) =
∑

ρ1,...,ρk∈supp(R)

ξ⇒ρ1
M ;···;⇒ρk

M ζ

( k∏
i=1

R(ρi)
)

for every ξ, ζ ∈ T∆′(Q(TΣ′(X))). The semantics τM of the xtt M is the weighted
relation τM : TΣ × T∆ → A such that τM (t, u) =

∑
q∈I τ

′
M (q(t), u) for every

t ∈ TΣ and u ∈ T∆.11 Finally, the xtt M is deterministic12 (respectively, total)
if for all q ∈ Q and t ∈ TΣ there exists at most (respectively, at least) one u ∈ T∆
such that (q(t), u) ∈ supp(τ ′M ).13

3 An Example Composition

We start our investigation into compositions of xtt with an example to illustrate
the problem and the general principle used to solve it. Roughly speaking, given
two xtt M and N we want to construct a single xtt that behaves like the two xtt
M and N in sequence. Before we move to the formal definition of composition,
let us introduce two example xtt and demonstrate derivations (i.e., term rewrite
steps).

9 A definition of the semantics without this extension can be found in [36].
10 Given a sentential form ξ and a rule ρ ∈ R, there exists at most one sentential form ζ

such that ξ ⇒ρ
M ζ.

11 Since the xtt M cannot consume symbols from Σ′ \Σ and cannot produce symbols
from ∆′\∆, the semantics τM does not depend on the particular choice of Σ′ and ∆′.

12 This property should correctly be called ‘unambiguous’, but for historical reasons
we use ‘deterministic’ in the following.

13 For top-down tree transducers these properties are typically defined using syntactic
restrictions [12, 5], which imply our corresponding semantic conditions. It requires a
significant technical overhead to generalize the syntactic conditions faithfully to xtt,
so we chose to present only the semantic property.
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q0

σ

σ

x1 x2

α
2→

f

q1

x1

q0

x2

q0

σ

α x1
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q0

x1

q0

α
1→ b

q1

x1

2→

h

q0

x1

q1

x1

5→

h

q1

x1

Fig. 1. The rules of the xtt M (see Example 1).

Example 1. We assume that the used semiring is the semiring (IR,+, ·, 0, 1) of
real numbers. Let M = ({q0, q1}, Σ, Γ, {q0}, R) be the xtt with input alphabet
Σ = {σ, α}, output alphabet Γ = {f, h, b}, and the following rules:

ρ1 : q0(σ(σ(x1, x2), α)) 2−→ f(q1(x1), q0(x2)) ρ4 : q1(x1) 2−→ h(q0(x1))

ρ2 : q0(σ(α, x1)) 3−→ q0(x1) ρ5 : q1(x1) 5−→ h(q1(x1))

ρ3 : q0(α) 1−→ b .

We illustrate these rules in Fig. 1 and demonstrate their properties in the fol-
lowing table. Since all rules are linear and nondeleting, the xtt M is linear and
nondeleting.

ε-rule consuming erasing producing linear nondeleting
ρ4, ρ5 ρ1–ρ3 ρ2 ρ1, ρ3–ρ5 ρ1–ρ5 ρ1–ρ5

Next, let us demonstrate a derivation using M . As input and output tree we
consider

s = σ(σ(α, σ(α, σ(α, α))), α) and t = f(h(h(b)), b) .

Figure 2 shows a derivation from q0(s) to t. Its weight is

R(ρ1) ·R(ρ5) ·R(ρ4) ·R(ρ3) ·R(ρ2) ·R(ρ2) ·R(ρ3) = 2 · 5 · 2 · 1 · 3 · 3 · 1 = 180

It is easy to verify that this is the only possible derivation from q0(s) to t. Since
q0 is the only initial state, we can conclude that τM (s, t) = 180. ut

Example 2. We keep the semiring of real numbers as our used semiring. A second
xtt is given by N = ({p}, Γ,∆, {p}, R′), where Γ = {f, h, b}, ∆ = {λ, γ, δ, β},
and R′ contains the rules:

µ1 : p(x1) 2−→ γ(p(x1)) µ4 : p(h(x1)) 8−→ δ(p(x1))

µ2 : p(f(x1, x2)) 5−→ λ(p(x1), p(x2)) µ5 : p(b) 1−→ β

µ3 : p(f(x1, x2)) 5−→ λ(β, λ(p(x1), p(x2))) .

Again, the properties of the rules are documented in the following table. We
observe that the xtt N is linear and nondeleting.
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α σ
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b
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α σ
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⇒ρ2
M

f

h

h

b

q0

σ

α α

⇒ρ2
M

f

h

h

b

q0

α
⇒ρ3
M

f

h

h

b

b

Fig. 2. A derivation from q0(s) to t in M (see Example 1).

ε-rule consuming erasing producing linear nondeleting
µ1 µ2–µ5 µ1–µ5 µ1–µ5 µ1–µ5

This time we illustrate a derivation for the input and output tree

t = f(h(h(b)), b) and u = λ(β, λ(δ(δ(β)), β)) .

Figure 3 shows the unique derivation from p(t) to u. It has the weight

R′(µ3) ·R′(µ4) ·R′(µ4) ·R′(µ5) ·R′(µ5) = 5 · 8 · 8 · 1 · 1 = 320 . ut

p

f

h

h

b

b ⇒µ3
N

λ

β λ

p

h

h

b

p

b
⇒µ4
N

λ

β λ

δ

p

h

b

p

b

⇒µ4
N

λ

β λ

δ

δ

p

b

p

b

⇒µ5
N

λ

β λ

δ

δ

β

p

b

⇒µ5
N

λ

β λ

δ

δ

β

β

Fig. 3. A derivation from p(t) to u in N (see Example 2).

Composition is the process of running two xtt one after the other. In this
way, the output tree of the first xtt becomes the input tree of the second xtt.
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For example, the output tree t generated by the xtt M in Example 1 can be
processed by the xtt N of Example 2, which is demonstrated in Example 2.
Thus, in a composition of M and N (see Examples 1 and 2) we can transform
the input tree s of Example 1 immediately to the output tree u of Example 2 by
first running the xtt M on s to produce the intermediate tree t, which can then
be transformed into u by N .

Formally, two weighted tree relations (of suitable type) are composed as
follows. Let τ1 : TΣ×TΓ → A and τ2 : TΓ ×T∆ → A be weighted relations. Their
composition (τ1 ; τ2) : TΣ × T∆ → A is the weighted relation such that

(τ1 ; τ2)(s, u) =
∑
t∈TΓ

τ1(s, t) · τ2(t, u) (2)

for every s ∈ TΣ and u ∈ T∆. Clearly, this definition generalizes the classical
definition of composition for relations. Whereas the infinite sum is not a problem
in the unweighted case (where it is an infinite disjunction that becomes true
once one element is true), we have to address it in the weighted case. There are
essentially two options:

(i) to permit infinite sums and require that the semiring is suitably rich to
handle infinite sums [25, 23], which was done in [14, 18, 19, 33, 34, 20] and
also in the first part [36] of this survey, or

(ii) to avoid the infinite sums by restricting the weighted relations (and thus the
xtt) that we allow in compositions.

In this part, we will follow the second approach by requiring that in a composi-
tion τ1 ; τ2 we have that

{t | (s, t) ∈ supp(τ1)} or {t | (t, u) ∈ supp(τ2)} (3)

is finite for every s ∈ TΣ and u ∈ T∆. It is clear that in both cases the sum (2)
in the definition of the composition τ1 ; τ2 is finite.

Let us illustrate the general approach that is used in most composition con-
structions. To construct an xtt that computes the composition τM ; τN of the
weighted relations computed by two xtt M and N , we need to make sure that
the intermediate tree t (in Examples 1 and 2) is never constructed explicitly.
To achieve this, the second xtt has to immediately consume every intermediate
symbol that is produced by the first xtt M . Let us illustrate this approach by
combining the two derivations of Figs. 2 and 3 such that intermediate symbols
(from Γ ) are consumed as soon as possible. The obtained derivation that now
uses rules of both M and N is displayed in Fig. 4.

Once we have reordered the rule applications as indicated in the previous
paragraph, we “glue” all rule applications that produce intermediate symbols
together with the rule applications that consume these symbols. In this step,
we also interpret two adjacent states (one of M and one of N) as in p(q(s))
as a single state 〈p, q〉. For example, based on Fig. 4 we glue the first two rule
applications (of the rules ρ1 and µ3) together to obtain a single rule application
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α σ

α α

⇒µ4
N

λ

β λ

δ

p

q1

α

p

q0

σ

α σ

α α

⇒ρ4
M

λ

β λ

δ

p

h

q0

α

p

q0

σ

α σ

α α

⇒µ4
N

λ

β λ

δ

δ
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q0
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q0
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α σ

α α

⇒ρ3
M
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δ

δ

p

b

p

q0

σ
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⇒µ5
N

λ

β λ
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δ

β

p
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⇒ρ2
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λ
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δ

δ
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α α
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δ

δ
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p
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α

⇒ρ3
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δ

δ

β

p

b

⇒µ5
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β λ

δ

δ

β

β

Fig. 4. Intertwined derivation from p(q0(s)) to u in M and N (see Examples 1 and 2).
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of the rule

〈p, q0〉(σ(σ(x1, x2), α)) 2·5−−→ λ(β, λ(〈p, q1〉(x1), 〈p, q0〉(x2))) ,

which is displayed in Fig. 5. For the rest of the discussion, we drop the distinction
between rule applications and rules. In general, several rules of the first xtt need
to be “glued” with several rules of the second xtt. However, it was already shown
in [3] (and in the second part [37] of this survey) that this strategy does not work
in general (even if both xtt M and N are linear and nondeleting). In the rest of
this survey, we will thus focus on simpler cases, in which the left-hand sides of
the rules of the second xtt N contain at most one input symbol. In Sect. 5 we
consider compositions of an xtt M with a top-down tree transducer N . Thus, in
Sect. 5 the second xtt N is such that every rule has exactly one input symbol
in its left-hand side. We relax this requirement slightly in Sect. 6, where we
investigate compositions of an xtt M with a top-down tree transducer N with
ε-rules [39], which is an xtt in which each rule contains at most one input symbol
in its left-hand side. However, before we proceed with the mentioned composition
constructions we first introduce a modification of our xtt model that will prove
to be useful in Sections 5 and 6.

〈p, q0〉

σ

σ

x1 x2

α

2·5−→

λ

β λ

〈p, q1〉

x1

〈p, q0〉

x2

Fig. 5. Composed rule constructed from ρ1 and µ3 of Examples 1 and 2.

4 An Equivalent Model

In this section, we introduce an alternative description for weighted extended
top-down tree transducers that will be useful for our composition constructions.
Essentially, we introduce explicit rule identifiers (like ρ1–ρ5 used in Example 1)
that stand for a specific rule. A mapping that becomes part of the specification
assigns weighted rules to identifiers. This indirection allows us to use multiple
rules with the same left- and right-hand side and even the same weight. In our
composition constructions we use this facility to establish a more concise and
simpler relation between the constructed rules of the composed xtt and the
original rules of the input xtt.

Definition 3. A weighted extended (top-down) tree transducer with rule iden-
tifiers is a system (Q,Σ,∆, I,R, χ), where
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– Q, Σ, ∆, and I are the same as the corresponding elements of an xtt,
– R is a finite set of rule identifiers, and
– χ : R → Q(TΣ(X))×A×T∆(Q(X)) is a rule assignment that maps each rule

identifier ρ ∈ R to its content χ(ρ) = (l, a, r) such that {l, r} 6⊆ Q(X), l is
linear, and var(r) ⊆ var(l).

In accordance with our notation for rules, we often write l a−→ r for elements
(l, a, r) ∈ Q(TΣ(X))×A×T∆(Q(X)). Moreover, we let wt: R → A be such that
wt(ρ) = a for all ρ ∈ R with χ(ρ) = l

a−→ r. Intuitively, ‘wt’ maps a rule identifier
to the weight of its identified rule.

The semantics of the xtt M = (Q,Σ,∆, I,R, χ) with rule identifiers R is
given by rewriting in essentially the same way as before. Let Σ′ and ∆′ be two
alphabets such that Σ ⊆ Σ′ and ∆ ⊆ ∆′ and Q ∩ (Σ′ ∪ ∆′) = ∅. Again, we
call a position w ∈ posQ(ξ) in a sentential form ξ ∈ T∆′(Q(TΣ′(X))) reducible
(for M) if there exists a rule ρ ∈ R with χ(ρ) = l

a−→ r and a substitution
θ : X→ TΣ′(X) such that ξ|w = lθ. Now, let ξ, ζ ∈ T∆′(Q(TΣ′(X))), ρ ∈ R, and
χ(ρ) = l

a−→ r. We say that ξ rewrites to ζ using ρ, denoted by ξ ⇒ρ
M ζ, if there

exists a substitution θ : X → TΣ′(X) such that ξ|w = lθ and ζ = ξ[rθ]w where
w is the least reducible position in posQ(ξ) with respect to the lexicographic
total order on IN∗. The (extended) weighted relation τ ′M computed by M is given
by

τ ′M (ξ, ζ) =
∑

ρ1,...,ρk∈R
ξ⇒ρ1

M ;···;⇒ρk
M ζ

( k∏
i=1

wt(ρi)
)

for every ξ, ζ ∈ T∆′(Q(TΣ′(X))). As for xtt, the semantics τM of the xtt M
with rule identifiers is the weighted relation τM : TΣ × T∆ → A such that
τM (t, u) =

∑
q∈I τ

′
M (q(t), u) for every t ∈ TΣ and u ∈ T∆. The properties of

rules and xtt defined in Sect. 2 generalize straightforwardly to xtt with rule
identifiers.

Example 4. Let N = ({p}, Γ,∆, {p},R, χ) be the xtt with rule identifiers such
that

– Γ = {f, h, b} and ∆ = {λ, γ, δ, β},
– R = {µ1, . . . , µ7}, and
– the rule assignment χ is given by

χ(µ1) = p(x1) 2−→ γ(p(x1)) χ(µ5) = p(h(x1)) 4−→ δ(p(x1))

χ(µ2) = p(f(x1, x2)) 2−→ λ(p(x1), p(x2)) χ(µ6) = p(h(x1)) 4−→ δ(p(x1))

χ(µ3) = p(f(x1, x2)) 3−→ λ(p(x1), p(x2)) χ(µ7) = p(b) 1−→ β

χ(µ4) = p(f(x1, x2)) 5−→ λ(β, λ(p(x1), p(x2))) .

ε-rule consuming erasing producing linear nondeleting
µ1 µ2–µ7 µ1–µ7 µ1–µ7 µ1–µ7
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Let t = f(h(h(b)), b) and u = λ(β, λ(δ(δ(β)), β)) as in Example 2. Figure 6
shows a derivation from p(t) to u with weight

wt(µ4) · wt(µ5) · wt(µ5) · wt(µ7) · wt(µ7) = 5 · 4 · 4 · 1 · 1 = 80 .

We can construct exactly three other derivations from p(t) to u using the rule
sequences µ4µ5µ6µ7µ7, µ4µ6µ5µ7µ7, and µ4µ6µ6µ7µ7. All of these derivations
have the same weight. Consequently, τN (t, u) = 80 + 80 + 80 + 80 = 320. ut

p

f

h

h

b

b ⇒µ4
N

λ

β λ

p

h

h

b

p

b
⇒µ5
N

λ

β λ

δ

p

h

b

p

b

⇒µ5
N

λ

β λ

δ

δ

p

b

p

b

⇒µ7
N

λ

β λ

δ

δ

β

p

b

⇒µ7
N

λ

β λ

δ

δ

β

β

Fig. 6. One possible derivation from p(t) to u in N of Example 4.

We can easily see that the two models of xtt are equally expressive. For every
xtt (Q,Σ,∆, I,R) we can construct an equivalent xtt (Q,Σ,∆, I,R, χ) with rule
identifiers by setting χ = idR, where idR is the identity on R. Conversely, given
an xtt M = (Q,Σ,∆, I,R, χ) with rule identifiers we can obtain an equivalent
xtt (Q,Σ,∆, I,R) by setting

R(l, r) =
∑

ρ∈R : χ(ρ)=(l,a,r)

wt(ρ) (4)

for all l ∈ Q(TΣ(X)) and r ∈ T∆(Q(X)).14 The construction is illustrated in
Example 5.

Example 5. Let N be the xtt with rule identifiers of Example 4. To obtain an
equivalent xtt N ′ = (Q,Γ,∆, I,R), we

– merge the rules µ2 and µ3 to form the rule p(f(x1, x2)) 2+3−−→ λ(p(x1), p(x2)),
– merge the rules µ5 and µ6 to form the rule p(h(x1)) 4+4−−→ δ(p(x1)), and
– keep the rules µ1, µ4, and µ7 with their original weight.

In this manner, we obtain exactly the xtt of Example 2, for which we only have
one derivation from p(t) to u, which is shown in Fig. 3. Naturally, its weight
is 320. ut
14 The sum (4) returns 0, as desired, if M has no rules with left-hand side l and right-

hand side r.
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5 Composition with a Top-down Tree Transducer

In this section, we will discuss compositions τM ;τN for xtt M = (Q,Σ, Γ, I1, R1)
and N = (P, Γ,∆, I2, R2), in which the xtt N is actually a top-down tree trans-
ducer (tdtt). Moreover, we require that the xtt M does not have any ε-rules.
This restriction ensures that the set {t | (s, t) ∈ supp(τM )} is finite for ev-
ery s ∈ TΣ [see (3)] because each rule application consumes at least one input
symbol. Hence there can only be finitely many rule applications to q(s) given a
state q ∈ Q and an input tree s, which yields an upper bound on the number of
potential derivations, which in turn limits the number of output symbols in each
output tree. We already demonstrated in Sect. 3 that this restriction is sufficient
to ensure that the sum over all intermediate trees t occurring in (2):

(τM ; τN )(s, u) =
∑
t∈TΓ

τM (s, t) · τN (t, u)

is finite for all s ∈ TΣ and u ∈ T∆. Thus, composition is well-defined in all cases
discussed in this section.

5.1 Construction

Now we are ready to present the generic composition construction. For the sake
of uniformity, we will construct more rules than strictly necessary. As already
indicated in Fig. 4, the states of the composed xtt will be pairs of states with
one state from each input xtt. Next, let us fix an important constant m.

– Let c ≥ |posx(r)| for all l → r ∈ R2 and x ∈ X. Roughly speaking, c is
larger than the maximal copying degree of N , which is the maximal number
of times a variable occurs on some right-hand side of a rule of N . To keep
the presentation simple, we assume that c ≥ 1.

– Let s ≥ |posΓ (r)| for all l → r ∈ R1. Consequently, s is larger than the
maximal number of output symbols in a right-hand side of a rule of M .

– Finally, let m ≥ cs. The constant m provides an upper bound to the number
of steps required by N to process a right-hand side of a rule of M .

Recall that given a sentential form ξ ∈ T∆(P (TΓ (Q(TΣ(X))))) and a rule ρ ∈ R1

there exists at most one ζ ∈ T∆(P (TΓ (Q(TΣ(X))))) such that ξ ⇒ρ
M ζ.15 Nat-

urally, the same property holds for the tdtt N . To avoid an explicit conversion,
we identify elements of T∆(P (Q(TΣ(X)))) with elements of T∆((P ×Q)(TΣ(X)))
in the obvious manner. Finally, we let

⇒w
N = (⇒µ1

N ; · · · ;⇒µk
N )

if w = µ1 · · ·µk with µ1, . . . , µk ∈ R2.

15 To match this statement to the earlier one, we have to set ∆′ = ∆ ∪ P ∪ Γ .
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Definition 6. The composed xtt M ; N is the xtt (P × Q,Σ,∆, I2 × I1,R, χ)
with rule identifiers

R = {〈ρ, p, w〉 | ρ ∈ R1, p ∈ P,w ∈ R∗2, |w| ≤ m}

such that χ(〈l → r, p, µ1 · · ·µk〉) = (p(l), a, r′) for every l → r ∈ R1, p ∈ P , and
rule sequence µ1, . . . , µk ∈ R2 with k ≤ m, where r′ ∈ T∆(P (Q(X))) and

a =

{
R1(l→ r) ·

∏k
i=1R2(µi) if p(l)⇒(l,r)

M ;⇒µ1···µk
N r′

0 otherwise.

Clearly, the construction might return a lot of rule identifiers whose asso-
ciated rules have weight 0. These rules are useless, and we typically will not
report them in our examples. Moreover, we can easily see that the constructed
rules never have the forbidden shape l → r with {l, r} ⊆ P (Q(X)) because the
left-hand side l equals p(l′) for some left-hand side l′ of a rule of M , which does
not have ε-rules. Let us illustrate the construction on two example xtt, which
we will use throughout this section.

Example 7. We again use the semiring of real numbers in this example. More-
over, let us consider the xtt M and N , which are given as follows:

M = ({q}, Σ,Σ, {q}, R1) and N = ({p0, p}, Σ,∆, {p0}, R2) ,

where

– Σ = {γ, α} and ∆ = {σ} ∪Σ,
– R1 contains the rules

ρ1 : q(γ(x1)) 2−→ γ(γ(q(x1))) ρ2 : q(α) 2−→ α ,

– and R2 contains the rules

µ1 : p0(γ(x1)) 4−→ σ(p0(x1), p0(x1)) µ6 : p(γ(x1)) 1−→ γ(p(x1))

µ2 : p0(γ(x1)) 2−→ σ(p0(x1), p(x1)) µ7 : p(γ(x1)) 3−→ α

µ3 : p0(γ(x1)) 2−→ σ(p(x1), p0(x1)) µ8 : p(α) 1−→ α

µ4 : p0(γ(x1)) 1−→ σ(p(x1), p(x1))

µ5 : p0(α) 1−→ α .

ε-rule consuming erasing producing linear nondeleting
ρ1, ρ2 ρ1, ρ2 ρ1, ρ2 ρ1, ρ2

µ1–µ8 µ1–µ8 µ5–µ8 µ1–µ6, µ8

Both M and N are tdtt, M is linear and nondeleting, whereas N is neither
linear nor nondeleting. Additionally, the xtt M is deterministic and total. We
can set c = 2 and s = 2, and thus, we can select m = 4. To increase readability,
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p

q

γ

x1

⇒ρ1
M

p

γ

γ

q

x1

⇒µ6
N

γ

p

γ

q

x1

⇒µ7
N

γ

α

Fig. 7. Derivation for rule 〈ρ1, p, µ6µ7〉 (see Example 7).

let Rγp0 = {µ1, µ2, µ3, µ4} and Rγp = {µ6, µ7}. Intuitively, Rγp0 and Rγp are the
sets of rules that consume the input symbol γ in state p0 and p, respectively.
Now let us construct the composition M ;N . It is the xtt

M ;N = (Q′, Σ,∆, I ′,R, χ)

with rule identifiers such that

– Q′ = {〈p0, q〉, 〈p, q〉} and I ′ = {〈p0, q〉},
– R = {〈ρ2, p0, µ5〉, 〈ρ2, p, µ8〉, 〈ρ1, p, µ6µ6〉, 〈ρ1, p, µ6µ7〉, 〈ρ1, p, µ7〉} ∪ R′ with

R′ = {〈ρ1, p0, µ1µµ
′〉 | µ, µ′ ∈ Rγp0} ∪

∪ {〈ρ1, p0, µ2µµ
′〉 | µ ∈ Rγp0 , µ

′ ∈ Rγp} ∪
∪ {〈ρ1, p0, µ3µµ

′〉 | µ ∈ Rγp , µ′ ∈ Rγp0} ∪
∪ {〈ρ1, p0, µ4µµ

′〉 | µ, µ′ ∈ Rγp} .

In total we have 5 + 16 + 8 + 8 + 4 = 41 (meaningful) rule identifiers. We will
not present all 41 corresponding rules, but we will show two example rules to
demonstrate the construction. Let us first construct the rule for the identifier
〈ρ1, p, µ6µ7〉. To this end, we need to build a derivation starting at p(q(γ(x1)))
using the rule sequence ρ1µ6µ7. This derivation is illustrated in Fig. 7. We obtain
the rule

χ(〈ρ1, p, µ6µ7〉) =
(
〈p, q〉(γ(x1)), 2 · 1 · 3, γ(α)

)
.

Secondly, let us construct the rule for the identifier 〈ρ1, p0, µ3µ7µ2〉. This time
we need to build a derivation that starts with p0(q(γ(x1))) and uses the rule
sequence ρ1µ3µ7µ2. We illustrate the derivation in Fig. 8. Consequently, we
obtain the rule

χ(〈ρ1, p0, µ3µ7µ2〉) =
(
〈p0, q〉(γ(x1)), 2 · 2 · 3 · 2, σ(α, σ(〈p0, q〉(x1), 〈p, q〉(x1)))

)
.

ut

Our general composition construction allows us to compose an xtt with a
tdtt. As we have seen, it closely follows the intuition provided in Sect. 3 and uses
the xtt with rule identifiers that we introduced in Sect. 4. This has the benefit
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Fig. 8. Derivation for rule 〈ρ1, p0, µ3µ7µ2〉 (see Example 7).

that we can obtain a direct correspondence between rule sequences of the xtt
M and N and a rule in the composed xtt M ; N . In the standard xtt (without
rule identifiers) this direct correspondence is lost since several derivations might
create the same rule.16

Naturally, we would expect that the composed xtt M ; N computes the
weighted tree transformation τM ; τN ; i.e., the composition of the weighted
tree transformations computed by M and N . In other words, we hope that
τM ;N = τM ; τN . Although the rule aggregation and intertwining approach fol-
lowed in the construction (and shown in Sect. 3) is reasonable, it fails to produce
a correct xtt (i.e., an xtt that computes τM ; τN ) in a number of cases. This is
already true in the unweighted case [12, 5] and the presence of weights adds a
few more problematic cases, which we will discuss in the next section.

5.2 Correctness

In this section, we will investigate in which cases the composition construction
(see Definition 6) actually produces an xtt that computes the composition τM ;τN .
In principle, the xtt M need not be a tdtt, but for the following discussion we
assume that it is. The generalization to the general case is simple in almost
all cases (see [38, 16] for a few notable differences). Consequently, let us look
at compositions of tdtt. Top-down tree transducers have been studied quite
extensively in the unweighted case (see [21, 22, 10] for an overview). The following
two slogans are known to represent properties that are unavailable in a single
tdtt [12, 5]:

– Nondeterminism followed by copying (non-linearity), and
– Checking (non-totality) followed by deletion.

A composition τM ; τN of two tdtt M and N can implement both properties
mentioned in the slogans. Thus, these properties already restrict the potential
successful compositions of tdtt. In fact, in all remaining cases shown in Table 1
the composition of the tdtt M and N is possible in the unweighted case [5,
Theorem 1]. A detailed explanation of those restrictions on compositions is pre-
sented in [12, 5]. Here we will focus on the particular problems that occur in
16 The interested reader can compare our construction to [33, 34].
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Table 1. Cases for unweighted tdtt composition.

Case M N

(a) linear and nondeleting
(b) total linear
(c) deterministic nondeleting
(d) deterministic and total

the generalization of those results to the weighted case because the limitations
on compositions in the unweighted case transfer immediately to our setting.17

Thus, we will not investigate compositions that do not fulfill the requirements
in Table 1.18

Case (a) has been partially generalized in [31, Theorem 2.4] to weighted tdtt.
More precisely, it was shown that the composition succeeds if both M and N are
linear and nondeleting.19 This result was further (partially) generalized in [14,
Theorem 5.18], which covers the case in which M and N are deterministic and
only N is linear and nondeleting. Finally, [33, Theorem 26] presents the full
generality and matches Case (a) of the unweighted setting exactly.

Theorem 8 (see [33, Theorem 26]). If the tdtt N is linear and nondeleting,
then τM ;N = τM ; τN .

Case (b) is slightly problematic in the weighted setting, and the only known
generalizations are actually instances of Case (d). Let us illustrate the problem.
The tdtt N can delete an intermediate subtree t′ that was output by M as the
result of processing an input subtree s′. In the composed tdtt, the input sub-
tree s′ is deleted right away without processing it. This phenomenon is abstractly
illustrated in Fig. 9. In addition, we showcase a derivation using our example
xtt of Example 7 in Fig. 10 (note that only linear rules of N are used in this
derivation). Thus, the actual input subtree s′ and the intermediate subtree t′

are not relevant in the composed tdtt. In the unweighted setting, this indepen-
dence is guaranteed by the totality of M , which yields that for each input tree s
there exists a translation t of it. In other words, for each input tree s ∈ TΣ and
state q ∈ Q, we have

∑
t∈TΓ

( ∑
ρ1,...,ρk∈R1

q(s)⇒ρ1
M ;···;⇒ρk

M t

( k∏
i=1

R1(ρi)
))

= 1 .

17 More precisely, the restrictions only transfer to xtt over non-rings due to a result
by Wang [44, 45]. A ring is a semiring that has additive inverses; i.e., there exists
an element −1 such that 1 + (−1) = 0.

18 Although such compositions can, in principle, succeed. Mind that the counter-
examples of [12, 5] only generalize to non-rings. In fact, given a suitably strong ring,
any composition becomes possible.

19 In fact, [31] proves closure under composition for a slightly more general class, but
the mentioned result can be obtained easily by instantiating the more general con-
struction to our weighted tdtt model.
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Composition:

s s′

a·b==⇒M

t t′

c=⇒N

u

Composed tdtt:

s s′

a·c==⇒M ;N

u

Fig. 9. Difference between composition and the composed tdtt. Atop the arrows we
mark the weight and next to it the tdtt, in which the derivation happens. More precisely,
weight a is charged for processing s (without s′), weight b is charged for processing s′,
and weight c is charged for processing t (without t′).
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Fig. 10. Difference between composition and the composed tdtt on the tdtt M and N
of Example 7. The composition charges weight R1(ρ1)·R1(ρ1)·R1(ρ2)·R2(µ7) = 22 ·2·3,
whereas the composed tdtt only charges 2 ·3, which is the weight of the rule 〈ρ1, p, µ7〉.
The charge R1(ρ1) ·R1(ρ2) = 2 · 2 for processing the input subtree γ(α) is lost.
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Clearly, in the Boolean semiring, the previous equation is fulfilled if there is
at least one derivation from q(s) to some t. To obtain a generalization of the
requirement for the weighted setting, we observe that the composed tdtt also
ignores the input subtree s.

Definition 9. A state q ∈ Q is constant if there exists a semiring element a ∈ A
such that for every s ∈ TΣ we have

∑
t∈TΓ

( ∑
ρ1,...,ρk∈R1

q(s)⇒ρ1
M ;···;⇒ρk

M t

( k∏
i=1

R1(ρi)
))

= a . (5)

We also say that q is a-constant if q is constant using the semiring element a.
The xtt M is constant if all its states q ∈ Q are constant.

Note that the sums in (5) are always finite, which we already showed at the
beginning of Sect. 5. Let us demonstrate some constant tdtt, in which all states
are 1-constant. In general, different states of a constant tdtt can have different
semiring elements for which they are constant.

Example 10. All of the following tdtt have only 1-constant states:

– every total tdtt over the Boolean semiring,
– every Boolean and total tdtt over an idempotent semiring, and
– every deterministic, total, and Boolean tdtt over any semiring.

Clearly, the total tdtt M of Example 7 is not constant, which is also shows
that a total tdtt is not necessarily constant. If the tdtt M is constant, then we
can perfectly predict the missing weight b in the derivation of the composed tdtt
in Fig. 9 and charge it for the rule that actually performs the deletion.20 Note
that our presented composition construction (see Definition 6) might fail, but
the authors believe that it can be modified as indicated to obtain the following
result.

Conjecture 11. If the xtt M is constant and the tdtt N is linear, then τM ; τN
can be computed by an xtt.

Note that Conjecture 11 covers all the cases (for M) mentioned in Exam-
ple 10. It remains to be determined whether the indicated adjustment actually
works. Moreover, depending on the semiring, it might be difficult to determine
whether a state is constant, so additional syntactic requirements that lead to
constant states (potentially with a weight different from 0 and 1) would be de-
sirable.

Case (c) is also problematic and has not been addressed in the literature.
This is due to the fact that an intermediate output tree t′ can be copied by N .
20 In fact, we can only predict the aggregated weight (as opposed to the weights of

single deleted derivations), but that is sufficient.
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Composition:

s s′

a·b==⇒M

t t′

c·d·e===⇒N

u u′′u′

Composed tdtt:

s s′

a·b2·c·d·e======⇒M ;N

u u′′u′

Fig. 11. Another difference between composition and the composed tdtt. Atop the
arrow we mark the weight and next to it the tdtt, in which the derivation happens.
More precisely, weight a is charged for processing s (without s′), weight b is charged
for processing s′, weight c is charged for processing t (without t′), and weights d and e
are charged for processing t′ (producing u′ and u′′, respectively).

In the composition, the weight charged for generating the tree t′ from an input
subtree s′ is charged once, but in the composed tdtt this weight is charged
twice since the input subtree s′ will be copied and processed twice. The process
is illustrated in Fig. 11. In addition, we provide derivations using the xtt of
Example 7 that demonstrate the phenomenon in Fig. 12 (note that the tdtt M
of Example 7 is deterministic and we only used nondeleting rules of N in these
derivations).

So again our generic composition construction (see Definition 6) might fail,
but contrary to the previous case, the authors believe that this can be addressed
without any further requirement. Instead of using the original state of M in all
copies, the authors propose to use the corresponding state from an unweighted
copy of M in all but one copies. Thus, the weight that M charges for processing
the input tree would only be charged in the single copy and the other copies,
which run using the unweighted copy of M , do not cause additional charges for
processing the input. Since the input tdtt M is deterministic, we know that the
copies will behave equally in all aspects besides the weight that they charge. Let
us provide some detail.

Definition 12. An unweighted copy of M is a Boolean xtt (Q,Σ, Γ, I1, R′1)
such that

l→ r ∈ R′1 ⇐⇒ l→ r ∈ R1 .

We will not formalize the modified construction, but we will present the
essential steps. First, we take the (disjoint) union of M and an unweighted
copy M ′ of M (by renaming all states of the copy from q to q). Let us assume
that a state q ∈ Q corresponds to a state q in M ′, and similarly, a rule ρ ∈ R1

corresponds to a rule ρ in M ′. When processing a rule in which the tdtt N
copies, we modify all but one copies to use the corresponding state from M ′. Let
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Composition:
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Composed tdtt:

〈p0, q〉

γ

α

⇒〈ρ1,p0,µ1µ1µ1〉
M ;N

σ

σ

〈p0, q〉

α

〈p0, q〉

α

σ

〈p0, q〉

α

〈p0, q〉

α

⇒〈ρ2,p0,µ5〉
M ;N

σ

σ

α 〈p0, q〉
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⇒〈ρ2,p0,µ5〉
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Fig. 12. Difference between composition and the composed tdtt on the tdtt
M and N of Example 7. The composition (upper display) charges the weight
R1(ρ1) ·R1(ρ2) ·R2(µ1)3 ·R2(µ5)4 = 2 · 2 · 43 · 14, whereas the composed tdtt charges
2 · 43 · (2 · 1)4. The additional weight R1(ρ2)3 = 23 is charged by M ;N for processing
the input subtree α (using ρ2) three more times.
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us illustrate this adjustment on an example rule of Example 7. Figure 13 shows
the original and the modified derivation that lead to the rule ν = 〈ρ1, p0, µ3µ6µ1〉
of M ;N and our new rule

χ(ν) =
(
〈p0, q〉(γ(x1)), 16, σ(γ(〈p, q〉(x1)), σ(〈p0, q〉(x1), 〈p0, q〉(x1)))

)
χ′(ν) =

(
〈p0, q〉(γ(x1)), 16, σ(γ(〈p, q〉(x1)), σ(〈p0, q〉(x1), 〈p0, q〉(x1)))

)
.

Figure 14 shows the modified derivation corresponding to the derivation of the
composed tdtt, which is displayed in Fig. 12.

Original derivation:
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Modified derivation:
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Fig. 13. Two derivations that yield rules. The upper one follows our composition con-
struction, whereas the lower one is adjusted to address the problem of Case (c). We
boxed the states that are adjusted due to copying of N . We selected to mark the left
copies, but the choice is arbitrary.

Conjecture 13. If the xtt M is deterministic and the tdtt N is nondeleting, then
τM ; τN can be computed by an xtt.

Finally, Case (d) is essentially a combination of Cases (b) and (c). This
case was first addressed by [14, Theorem 5.18], in which it was shown that a
Boolean, deterministic, and total tdtt M can be composed with a deterministic
tdtt N . A similar statement was obtained in [33, Theorem 30], where (i) the same
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Fig. 14. Derivation using the new rules (see Fig. 12). The derivation now correctly
charges the weight R′

1(ρ1) ·R′
2(µ1)3 ·R2(µ5)4 ·R′

1(ρ2) ·R′
1(ρ2)3 = 2 ·43 ·14 ·2 ·13 because

overlined rules charge weight 1.

restrictions are placed on M and (ii) N is required to be linear. The result of [33]
clearly avoids the problematic Case (c) by requiring N to be linear. The result
of [14] allows non-linear tdtt N , and it could thus be reasoned that they also had
to handle the problematic Case (c). However, the requirement that the tdtt M
is Boolean already enforces that the additional weights (see Figs. 11 and 12)
charged by the composed tdtt (constructed according to the general composition
construction of Definition 6) are all 1. Thus, no modification was necessary
under their assumptions. Using the indicated improvements suggested in Cases
(b) and (c), the authors conjecture the following result, which covers both known
results. Essentially, the authors believe that a constant and deterministic xtt M
can be composed with any tdtt N .

Conjecture 14. If the xtt M is constant and deterministic and N is a tdtt, then
τM ; τN can be computed by an xtt.

This concludes our investigation of compositions of tdtt. Table 2 shows the
various results obtained in the weighted case. It is interesting that if Conjectures
11, 13, and 14 were true, then we would recover the beautiful symmetry that is
present in the composition results [12, 5] for unweighted top-down and bottom-
up tree transducers [43] also in the weighted case. A summary of the composition
results for weighted bottom-up tree transducers [14] can be found in Table 3,
but the reader is refered to [14, 33, 34] for the detailed results.

6 Allowing ε-rules

This section is devoted to compositions of tree transformations computed by xtt
M and N , of which the xtt N is a top-down tree transducer with ε-rules [39].
Roughly speaking, a top-down tree transducer with ε-rules is an xtt, in which
simple and ε-rules are allowed. In other words, this section investigates the effect
of ε-rules in N to the results of Sect. 5. In the unweighted setting, this scenario
was investigated in [39], and we essentially report the results of [39], which we
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Table 2. Composition results for weighted tdtt (‘nondel.’ abbreviates ‘nondeleting’
and ‘det.’ abbreviates ‘deterministic’).

Case M N Reference

(a) linear and nondel. linear and nondel. [31, Theorem 2.4]
deterministic det., linear, nondel. [14, Theorem 5.18]

linear and nondel. [33, Theorem 26]

(b) constant linear Conjecture 11

(c) deterministic nondeleting Conjecture 13

(d) Boolean, det., total deterministic [14, Theorem 5.18]
Boolean, det., total linear [33, Theorem 30]

constant and det. Conjecture 14

adjusted to our weighted setting. Let us start with the formal definition of the
requirements of this section. For the rest of this section, let M = (Q,Σ, Γ, I1, R1)
and N = (P, Γ,∆, I2, R2) be the xtt that we want to compose.

Definition 15 (cf. [15, Definition 4] and [39, Definition 1]).

– The xtt M is shallow if |posΓ (r)| ≤ 1 for every l→ r ∈ R1.
– The xtt N is a tdtt with ε-rules if |posΓ (l)| ≤ 1 for every l→ r ∈ R2.

Clearly, each tdtt is a tdtt with ε-rules, but a tdtt need not be shallow. Let
us examine these properties for the xtt in our examples.

xtt tdtt with ε-rules shallow
M of Example 1 no (due to rule ρ1) yes
N of Example 2 yes no (due to rule µ3)
M of Example 7 yes (because it is a tdtt) no (due to rule ρ1)
N of Example 7 yes (because it is a tdtt) yes

Now we can formally define the goal of this section. We will investigate
compositions of xtt M and N such that M is shallow and N is a tdtt with

Table 3. Composition results for weighted bottom-up tree transducers [14] (‘nondel.’
abbreviates ‘nondeleting’ and ‘det.’ abbreviates ‘deterministic’) for comparison. Note
that every weighted bottom-up tree transducer can be made total.

Case M N Reference

(a) linear, nondel. linear and nondel. [31, Theorem 2.4]
linear, nondel. homomorphism [14, Corollary 5.5]
linear, nondel. [33, Theorem 13]

(b) linear [total] [33, Theorem 20]

(c) nondeleting Boolean, deterministic [33, Theorem 24]
nondeleting constant, deterministic conjectured

(d) Boolean, homomorphism [14, Corollary 5.5]
Boolean, det., [total] [33, Theorem 24]
constant, det., [total] conjectured
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ε-rules. To show that the condition that ensures well-definedness of the sum
in the definition (2) of composition does not influence the results much, we
additionally assume here that N does only have producing rules. In this case,
there can only be finitely many rule applications generating the output tree u,
which limits the size of the intermediate tree [see (3)]. Thus, all compositions
are well-defined in the cases of this section.

6.1 Construction

Before we present an adaptation of the generic construction in Sect. 5.1, let
us demonstrate that the generic construction fails to handle ε-rules of N in a
meaningful manner.

Example 16. Let M and N be the xtt of Examples 1 and 2. Using the notions of
Sect. 5, we can select c = 1 and s = 1. Consequently, we consider m = 1, which
yields that all rule identifiers constructed in Definition 6 use at most one rule
of N .21 A derivation like the one depicted in Fig. 15, which starts with a rule
of N , cannot be simulated by M ; N because the rules constructed for M ; N
always trigger a rule of M first. ut

p

q0

α

⇒µ1
N

γ

p

q0

α

⇒µ1
N

γ

γ

p

q0

α

⇒ρ3
M

γ

γ

p

b

⇒µ5
N

γ

γ

β

p

q0

α

⇒ρ3
M

p

b
⇒µ1
N

γ

p

b

⇒µ1
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⇒µ5
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Fig. 15. Two derivations using the xtt M and N of Examples 1 and 2. The upper
derivation cannot be simulated by M ;N since it starts with a rule of N . In principle, an
unbounded number of rule applications of rule µ1 could happen before the intermediate
symbol b is consumed in the lower derivation. Thus, such derivations can, in general,
also not be simulated by M ;N .

21 We could not avoid the problem, even if we would consider larger values for m.
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Thus, we need to adjust our construction. To avoid the problem in the lower
derivation of Fig. 15, we restrict the rules of N that can be used when pro-
cessing the right-hand side r of a rule ρ ∈ R1. As in [39] we require that r is
processed only with consuming rules of N . The ε-rules of N need to fire either
before ρ or after all intermediate symbols of r are fully consumed by N . This
creates a problem, if the rule ρ creates 2 intermediate symbols at the same time,
and the original derivation uses ε-rules after consuming one intermediate symbol
but before consuming the second intermediate symbol. To avoid this problem,
we already assumed in this section that M is shallow. Consequently, m = 1
provides an upper bound to the number of consuming rules required by N to
process the right-hand side of a rule of M . This is due to the fact that there
is at most one intermediate symbol in any right-hand side of a rule of M , and
we can only use consuming rules of N to process it. As before, for any senten-
tial form ξ ∈ T∆(P (TΓ (Q(TΣ(X))))) and rule ρ ∈ R there exists at most one
ζ ∈ T∆(P (TΓ (Q(TΣ(X))))) such that ξ ⇒ρ

M ζ, which also holds for the xtt N .
Similarly, we recall that we identify elements of T∆(P (Q(TΣ(X)))) with elements
of T∆((P ×Q)(TΣ(X))) in the obvious manner.

Definition 17 (cf. [39, Definition 9]). The ε-composition M ;εN of M and N
is the xtt (P ×Q,Σ,∆, I2 × I1,R, χ) with rule identifiers

R = {〈ρ, p, ε〉 | erasing ρ ∈ R1, p ∈ P} ∪
∪ {〈ρ, p, µ〉 | producing ρ ∈ R1, p ∈ P, consuming µ ∈ R2} ∪
∪ {〈ε, q, µ〉 | q ∈ Q, ε-rule µ ∈ R2}

such that

– χ(〈l → r, p, ε〉) = (p(l), R1(l → r), p(r)) for every erasing rule l → r ∈ R1

and p ∈ P ,
– χ(〈l→ r, p, µ〉) = (p(l), a, r′), where

a =

{
R1(l→ r) ·R2(µ) if p(l)⇒(l,r)

M ;⇒µ
N r′

0 otherwise

for every producing l→ r ∈ R1, p ∈ P , and consuming µ ∈ R2, and
– χ(〈ε, q, l → r〉) = (lθ, R2(l → r), rθ), where θ(x) = q(x) for every x ∈ X,
q ∈ Q, and ε-rule l→ r ∈ R2.

Note that the only differences to the construction of [39] are the presence of
(i) non-simple left-hand sides in rules of M and (ii) weights. Let us discuss the
three sets of rule identifiers mentioned in Definition 17. Rule identifiers of the
form 〈ρ, p, ε〉 refer to variants of an erasing rule ρ of R1. For each state p ∈ P ,
we obtain a variant by annotating the two states (in the left- and right-hand
side) by p. In other words, we perform a step using M , but since no intermediate
symbol is produced, we do not perform a step usingN . Second, the rule identifiers
of the form 〈ρ, p, µ〉 contain rules that are obtained in the usual way by processing
the right-hand side of a producing rule of M by consuming rules of N . Since M is
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shallow and N is a tdtt with ε-rules, each producing rule of M contains exactly
one intermediate symbol and each consuming rule of N contains exactly one
intermediate symbol. Thus, the derivation only succeeds if the producing rule
of M produces exactly the symbol that the consuming rule of N consumes. These
two types of rules were also present in the generic composition construction of
Sect. 5.1. Finally, rule identifiers of the form 〈ε, q, µ〉 refer to a variant of an
ε-rule µ of N that is annotated with the state q ∈ Q.

Let us quickly check whether the obtained rules l → r are admissable; i.e.,
whether {l, r} 6⊆ P (Q(X)). Clearly, identifiers of the form 〈ρ, p, ε〉 yield admiss-
able rules because they contain just copies of rules of M . The same reasoning
applies to rules with identifiers of the form 〈ε, q, µ〉, which are copies of rules
of N . Finally, rules with identifiers like 〈ρ, p, µ〉 are always producing because
each rule µ ∈ R2 is producing. Clearly, producing rules are admissable. Next, let
us illustrate the construction.

Example 18. Let M = ({q0, q1}, Σ, Γ, {q0}, R) and N = ({p}, Γ,∆, {p}, R′) be
the xtt of Examples 1 and 2, respectively. The composition construction of Defi-
nition 17 yields the xtt M ;εN = (P×Q,Σ,∆, {〈p, q0〉},R, χ) with rule identifiers

R = {〈ρ2, p, ε〉, 〈ρ1, p, µ2〉, 〈ρ1, p, µ3〉, 〈ρ3, p, µ5〉, 〈ρ4, p, µ4〉, 〈ρ5, p, µ4〉,
〈ε, q0, µ1〉, 〈ε, q1, µ1〉}

such that

χ(〈ρ2, p, ε〉) = 〈p, q0〉(σ(α, x1)) 3−→ 〈p, q0〉(x1)

χ(〈ρ1, p, µ2〉) = 〈p, q0〉(σ(σ(x1, x2), α)) 2·5−→ λ(〈p, q1〉(x1), 〈p, q0〉(x2))

χ(〈ρ1, p, µ3〉) = 〈p, q0〉(σ(σ(x1, x2), α)) 2·5−→ λ(β, λ(〈p, q1〉(x1), 〈p, q0〉(x2)))

χ(〈ρ3, p, µ5〉) = 〈p, q0〉(α) 1·1−→ β

χ(〈ρ4, p, µ4〉) = 〈p, q1〉(x1) 2·8−→ δ(〈p, q0〉(x1))

χ(〈ρ5, p, µ4〉) = 〈p, q1〉(x1) 5·8−→ δ(〈p, q1〉(x1))

χ(〈ε, q0, µ1〉) = 〈p, q0〉(x1) 2−→ γ(〈p, q0〉(x1))

χ(〈ε, q1, µ1〉) = 〈p, q1〉(x1) 2−→ γ(〈p, q1〉(x1)) .

The construction of the rule corresponding to the rule identifier 〈ρ1, p, µ2〉 is
illustrated in Fig. 16. ut

6.2 Correctness

Let us start by recalling the two cases, in which the composition construction
of [39], of which our construction in Definition 17 is an adaptation, is successful
in the unweighted setting. Recall that M is shallow and N is a tdtt with ε-rules.
If
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Fig. 16. Construction of the rule with identifier 〈ρ1, p, µ2〉 in Example 18.

Table 4. Cases for unweighted xtt composition of M and N , where M is shallow and
N is a tdtt with ε-rules.

Case M N Reference

(a) linear and nondeleting [39, Theorem 17]
(b) total linear [39, Theorem 17]

– N is linear, and
– M is total or N is nondeleting,

then τM ; τN can be computed by an xtt [39, Theorem 17]. Table 4 shows these
two cases, which correspond to the equally named cases in Sect. 5.

Let us start with Case (a). As in the previous section, this case does not cause
further problems in the weighted setting, and we will sketch the correctness proof
for our composition construction of Definition 17.

Theorem 19. If M is shallow and N is a linear and nondeleting tdtt with
ε-rules, then τM ;εN = τM ; τN .

Proof (sketch). Let ξ ∈ P (Q(TΣ)) and u ∈ T∆. We claim that there is a weight-
preserving bijection between the derivations of the form

ξ (⇒ρ1
M ; · · · ;⇒ρk

M ) ; (⇒µ1
N ; · · · ;⇒µn

N ) u ,

and the derivations of the form ξ ⇒ν1
M ;εN

; · · · ;⇒ν`
M ;εN

u.
We construct the bijection by induction on k. Let s ∈ TΣ , p ∈ P , and q ∈ Q

be such that ξ = p(q(s)). Next, we distinguish whether the first applied rule ρ1 is
erasing. If it is, then we start the derivation using M ;εN with the rule 〈ρ1, p, ε〉,
which has the same weight as ρ1. Otherwise, the rule ρ1 produces exactly one
intermediate symbol γ ∈ Γ that will be consumed by exactly one rule µi for some
i ∈ IN. The symbol γ is consumed by exactly one rule because N is linear and
nondeleting. Clearly, all rules µ1, . . . , µi−1 before µi must be ε-rules because oth-
erwise they would consume the symbol γ. In M ;εN we simulate this derivation
by starting with the ε-rules 〈ε, q, µ1〉, . . . , 〈ε, q, µi−1〉 followed by the consuming
rule 〈ρ1, p

′, µi〉, where p′ is the (unique) state that occurs in the right-hand side
of the rule µi−1.22 Clearly, this part of the derivation has the same weight as the
22 If i = 1, then we let p′ = p.
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product of the weight of rule ρ1 and the weights of the rules µ1, . . . , µi. Now we
covered all three cases and shortened the derivation using M . The remainder of
the derivation can then be processed using the induction hypothesis. Thus, our
construction relates derivations bijectively and preserves the weight. Given this
bijective and weight-preserving relation, the main statement follows trivially. ut

Let us illustrate the construction used in the proof of Theorem 19.

Example 20. Let M and N be the xtt of Examples 1 and 2, and recall that
M ;ε N is shown in Example 18. Moreover, let

s = σ(σ(α, σ(α, σ(α, α))), α) and t = f(h(h(b)), b)

be an input and output tree for M as in Example 1. Figure 2 shows a deriva-
tion dM with weight 180 from q0(s) to t using M . Moreover, let

u = λ(β, λ(δ(δ(β)), γ(γ(β)))) .

Figure 17 shows a derivation dN with weight 5 · 82 · 1 · 22 · 1 = 1 280 from p(t)
to u using N . The concatenation of the two derivations gives us a derivation d
from p(q0(s)) to u using rules of M and N . Clearly, the weight of this derivation
is 180 · 1 280 = 230 400.

The image of the derivations dM and dN by the bijection constructed in
the proof of Theorem 19 is shown in Fig. 18. The first four rules in the deriva-
tion dM are producing, and the produced symbol is immediately consumed in the
corresponding step in the derivation dN . The fifth and sixth rules in the deriva-
tion dM are erasing rules, which are simulated by the corresponding erasing rules
in the derivation d. The last rule in the derivation dM is another producing rule,
whose produced symbol b is not immediately consumed in the current step of the
derivation dN . Rather the ε-rule µ1 is applied twice before rule µ5 consumes the
symbol b. Consequently, we have to defer the application of the rule 〈ρ3, p, µ5〉
to first allow the applications of the rule 〈ε, q0, µ1〉. The following table lists the
rule applications for all three derivations and shows the correspondence.

Step 1 2 3 4 5 6 7
dM : ρ1 ρ5 ρ4 ρ3 ρ2 ρ2 ρ3

dN : µ3 µ4 µ4 µ5 µ1 µ1 µ5

d: 〈ρ1, p, µ3〉 〈ρ5, p, µ4〉 〈ρ4, p, µ4〉 〈ρ3, p, µ5〉 〈ρ2, p, ε〉 〈ρ2, p, ε〉 〈ε, q0, µ1〉 〈ε, q0, µ1〉 〈ρ3, p, µ5〉

The weight of the derivation d is

(2 · 5) · (5 · 8) · (2 · 8) · (1 · 1) · 3 · 3 · 2 · 2 · (1 · 1) = 230 400 ,

which coincides with the expected result. ut

Let us move on to Case (b), in which we experience the same problem with
deleted subtrees as in Sect. 5. We refer the reader to the discussion of Case (b)
in Sect. 5 for an illustration of the problem and examples. Here, we avoid the
problem by requiring (i) that the xtt M is Boolean and (ii) that the semi-
ring A is idempotent (i.e., 1 + 1 = 1). This yields that the xtt M is essentially
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Fig. 17. A derivation from p(t) to u using N (see Example 20).

unweighted and constant (with weight 1). We observe that τM (s, t) = 1 for all
(s, t) ∈ supp(τM ) because M is Boolean and A is idempotent, and for every
s ∈ TΣ there exists t ∈ TΓ such that (s, t) ∈ supp(τM ) due to the totality of M .

Theorem 21. If the shallow xtt M is total and Boolean, the tdtt N with
ε-rules is linear, and the semiring A is idempotent, then τM ;εN = τM ; τN .

Proof (sketch). Let ξ ∈ P (Q(TΣ)) and u ∈ T∆. We claim that there is a weight-
preserving surjective mapping f from the derivations of the form

ξ (⇒ρ1
M ; · · · ;⇒ρk

M ) ; (⇒µ1
N ; · · · ;⇒µn

N ) u ,

and the derivations of the form ξ ⇒ν1
M ;εN

; · · · ;⇒ν`
M ;εN

u.
Clearly, the derivation sequence ρ1 · · · ρkµ1 · · ·µn is successful. Let ⊥ be a

fresh symbol, and let l→ r ∈ R1 be a rule of M . The mutilated copy of l→ r is
the rule l→ ⊥(r). We denote the mutilated copy of ρ ∈ R1 by ρ. Next, we obtain
a rule sequence ρ′1 · · · ρ′k from ρ1 · · · ρk by replacing maximally many rules ρi by
their mutilated copy ρi such that

ξ (⇒ρ′1
M ; · · · ;⇒ρ′k

M ) ; (⇒µ1
N ; · · · ;⇒µn

N ) u .

In order words, the new rule sequence is still a successful derivation from ξ to u.
Clearly, this derivation can only be successful if N ignores (i.e., deletes) the sub-
trees created by mutilated rules because N cannot process the symbol ⊥. In the
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Fig. 18. The matching derivation from 〈p, q0〉(s) to u using M ;ε N (see Example 20).



Compositions of Weighted Extended Top-down Tree Transducers 33

next step we drop all mutilated rules from the rule sequence ρ′1 · · · ρ′k and relate
the obtained rule sequence in the same way as in the proof of Theorem 19 to the
derivation of the composed xtt. The obtained derivation using the composed xtt
has the same weight as the original derivation because we only dropped rules
of R1, which have weight 1 because M is Boolean. It is not difficult to see that
this mapping is surjective because we can always recover one subderivation for
parts that we dropped due to the totality of M . This approach is illustrated in
an example following the proof.

Now we complete the proof as follows:

(τ ′M ; τ ′N )(ξ, u) =
∑

ρ1,...,ρk∈R1
µ1,...,µn∈R2

ξ(⇒ρ1
M ;···;⇒ρk

M );(⇒µ1
N ;···;⇒µn

N )u

( k∏
i=1

R1(ρi) ·
n∏
i=1

R2(µi)
)

=
∑

ν1,...,ν`∈R
d : ξ⇒ν1

M;εN
;···;⇒ν`

M;εN
u

( ∑
d′∈f−1(d)

(∏̀
i=1

wt(νi)
))

(because the second sum is never empty due to surjectivity of f)

=
∑

ν1,...,ν`∈R
ξ⇒ν1

M;εN
;···;⇒ν`

M;εN
u

(∏̀
i=1

wt(νi)
)

= τ ′M ;εN (ξ, u)

because A is idempotent and f−1(d) 6= ∅. Thus, we conclude that M ;ε N com-
putes τM ; τN . ut

Let us illustrate the construction in the proof of Theorem 21 on an example.

Example 22. Let us consider Fig. 19, which is a minor variation of Fig. 10.
Figure 19 displays two derivations that we want to relate. Obviously, the rule
sequence of M is ρ1ρ1ρ2. Now we need to mutilate the rules in the rule se-
quence. We start with the most aggressive attempt and mutilate every rule in
the sequence to obtain ρ1ρ1ρ2. Figure 20 shows that the derivation is no longer
successful for this rule sequence. Thus, we try the sequence ρ1ρ1ρ2, which indeed
still delivers a successful derivation as depicted in Fig. 20. Next, we reduce the
sequence by taking out all mutilated rules. We obtain just ρ1. Now we combine
the producing rule ρ1 as usual with the consuming rule µ7 of the second rule
sequence and relate them to the rule 〈ρ1, p, µ7〉 of the composed tdtt. ut

Following the ideas of Sect. 5, the authors suspect that instead of idempotence
and a total and Boolean xtt M , we can simply require that M is constant. This
leads to our final conjecture, which would generalize Theorem 21. We collect all
obtained results of this section in Table 5.

Conjecture 23. If the shallow xtt M is constant and the tdtt N with ε-rules is
linear, then τM ; τN can be computed by an xtt.
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Fig. 19. Relating rule sequences.
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Fig. 20. Testing two mutilated sequences. The upper one is too aggressive and the
rule µ7 of N is not applicable anymore. The lower sequence represents the sought
sequence because the derivation is still successful. After the deletion of the mutilated
rules, we thus obtain just ρ1.
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Table 5. Cases for weighted xtt composition, where M is a shallow xtt and N is a
tdtt with ε-rules. In the second line (which uses Theorem 21), we additionally need to
require that the semiring is idempotent.

Case M N Reference

(a) linear and nondeleting Theorem 19

(b) total and Boolean linear Theorem 21
constant linear Conjecture 23
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22. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 3, chap. 1, pp. 1–68. Springer, Heidelberg
(1997)

23. Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)
24. Graehl, J., Knight, K., May, J.: Training tree transducers. Comput. Linguist. 34(3),

391–427 (2008)
25. Hebisch, U., Weinert, H.J.: Semirings — Algebraic Theory and Applications in

Computer Science. No. 5 in Series in Algebra, World Scientific, Singapore (1998)
26. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural

language processing. In: Gelbukh, A.F. (ed.) CICLing 2005. LNCS, vol. 3406, pp.
1–24. Springer, Heidelberg (2005)

27. Koehn, P.: Statistical Machine Translation. Cambridge University Press (2010)
28. Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: NAACL

2003. pp. 48–54. Association for Computational Linguistics (2003)
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