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Time-dependent focusing Mean-Field Games:

the sub-critical case

Marco Cirant and Daniela Tonon

April 19, 2018

Abstract

We consider time-dependent viscous Mean-Field Games systems in the case of local,
decreasing and unbounded couplings. These systems arise in mean-field game theory, and
describe Nash equilibria of games with a large number of agents aiming at aggregation.
We prove the existence of weak solutions that are minimizers of an associated non-convex
functional, by rephrasing the problem in a convex framework. Under additional assumptions
involving the growth at infinity of the coupling, the Hamiltonian, and the space dimension,
we show that such minimizers are indeed classical solutions by a blow-up argument and
additional Sobolev regularity for the Fokker-Planck equation. We exhibit an example of
non-uniqueness of solutions. Finally, by means of a contraction principle, we observe that
classical solutions exist just by local regularity of the coupling if the time horizon is short.

AMS-Subject Classification. 35K55, 49N70.

Keywords. Variational formulation of Mean Field Games, local decreasing coupling, non-uniqueness.

1 Introduction

Mean Field Games (MFG) theory models the behavior of an infinite number of indistinguishable
rational agents aiming at minimizing a common cost. The theory was introduced in the seminal
papers by Lasry and Lions [19, 20, 21] and by Huang, Caines and Malhamé [16] to describe Nash
equilibria in differential games with infinitely many players. A large part of MFG literature is
devoted to the study of MFG systems with increasing coupling. Heuristically, this assumption
means that agents prefer sparsely populated areas (indeed concentration costs), and it is well-
suited to model competitive cases. The increasing monotonicity of the coupling ensures existence
and regularity of solutions in many circumstances (see, e.g., [13] and references therein, or the
courses at Collège de France by P.-L. Lions [22]); it is also a key assumption if one looks for
uniqueness of equilibria. Although those models have a wide range of applications, they rule out
the possibility to apply the MFG theory to analyse aggregation phenomena, that is when agents
aim at converging to a common state. To cite an example, in [14], Guéant considered simple
population models where individuals have preferences about resembling to each other. Very few
results exist in this direction and they only deal with very particular cases. See [12, 15] and
[5], for the quadratic and linear-quadratic case. Our goal is to better understand this class of
“focusing” MFG systems, where the coupling is monotone decreasing and it is a local function
of the distribution, so that no regularising effect can be expected. Actually, non-existence, non-
uniqueness of solutions, non-smoothness, and concentration are likely to arise, as shown by the
first author in [10], where the stationary focusing case is considered. In that paper, it is proven
that there exists a threshold for the growth of the coupling, after which solutions to the MFG
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system may not even exist. Indeed, the focusing character of the MFG induces solutions to
concentrate and develop singularities.

Let us enter into the details of the kind of MFG systems we deal with in this paper. In order
to avoid boundary issues and exploit the compactness of the state space, we set our problem on
the N -dimensional flat torus TN . Let Q = QT = TN × (0, T ). We consider MFG systems of the
form 

−ut −∆u+H(∇u) = −f(x,m(x, t)), in Q,

mt −∆m− div(∇H(∇u)m) = 0 in Q,

m(x, 0) = m0(x), u(x, T ) = uT (x) on TN .
(1)

where
∫
TN m0 dx = 1, m0 > 0, m0 ∈ C1(TN ) and uT ∈ C2(TN ). In the system above, the first

is the Hamilton-Jacobi-Bellman equation for the value function u of a single agent, the second
is the Kolmogorov-Fokker-Planck equation that governs the evolution of the distribution of the
population m.

Even more than in the competitive case, the assumptions on the Hamiltonian H, the growth
of the coupling f and the dimension of the state space will affect the qualitative behavior of the
system. Let us clearly state the assumptions we make throughout the article.

The Hamiltonian H : RN → R is convex, C1(RN ), and has super-linear growth: there exist
γ > 1, CH > 0 such that

C−1
H |p|

γ ≤ H(p) ≤ CH(|p|γ + 1), (2)

for all p ∈ RN . Its Legendre transform, L(q) := supp∈RN {p · q−H(p)} satisfies for some CL > 0,

C−1
L |q|

γ′ − CL ≤ L(q) ≤ CL(|q|γ
′
+ 1) (3)

for all q ∈ RN , where γ′ is the conjugate exponent of γ, i.e. 1
γ + 1

γ′ = 1. Note that L is strictly
convex.

The local coupling f : TN× [0,+∞)→ R, f ≥ 0 is continuous in both variables, differentiable
w.r.t. the second variable and satisfies, for α > 0,

|∂mf(x,m)| ≤ cf (m+ 1)α−1 (4)

for all (x,m) ∈ TN × [0,+∞). Note that (4) implies

0 ≤ f(x,m) ≤ cf
α

(m+ 1)α − cf
α

+ f(x, 0) ≤ Cf (mα + 1),

for all (x,m) ∈ TN × [0,+∞), but in general f is not bounded by above. Actually, what is
important here is to have a control on the behaviour of the coupling at infinity, rather than
requiring a restriction on the monotonicity of f , that need not be increasing with respect to m.
Note that f could also depend explicitly on time, without giving any additional difficulty. We
also mention that an additional regular dependence of H with respect to x could be easily added,
provided it preserves the growth requirement (2) and convexity (see in particular (H2) in [8]).
Let

F (x,m) =

∫ m

0

f(x, σ)dσ ∀(x,m) ∈ TN × [0,+∞), F (x,m) = 0 otherwise,

we then have, for all m ≥ 0 and a CF > 0,

0 ≤ F (x,m) ≤ CF (mα+1 + 1). (5)

Before stating our results, let us have a look at the ones obtained in [10] for the stationary
case. In this setting, scaling properties of the system and regularity of the Kolmogorov equation
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can be exploited to prove that: if α < γ′/N , there exists a classical solution basically by means of
a control of the “energy” associated to the system. In other words, the decaying of the coupling
is well compensated by the regularising properties of the diffusion. If γ′/N ≤ α < γ′/(N − γ′),
such a control turns out to be more delicate, as aggregation may become the leading effect.
Therefore, existence of classical solutions can be obtained only under additional assumptions on
the coupling. In both cases, existence is shown by a blow-up method, together with Schauder’s
fixed point theorem. If α > γ′/(N − γ′), it is shown that classical solutions may not exist, i.e.
concentration due to the fast decay of the coupling cannot be compensated by the diffusion.

In the evolutionary case, we expect a similar behaviour. Indeed, one of the tools that turns out
to be fundamental for understanding a MFG system of the form (1) is its variational formulation:
let Kγ′,α ⊂ Lα+1(Q)× L1(Q) be the pairs (m,w) satisfying |w|γ′m1−γ′ ∈ L1(Q), m ≥ 0 and∫

Q

(mϕt + w · ∇ϕ−∇m · ∇ϕ)dxdt+

∫
TN

m0(x)ϕ(x, 0)dx = 0 ∀ϕ ∈ C∞0 (TN × [0, T )). (6)

then the energy functional E associated with (1) is defined on Kγ′,α as1

E(m,w) :=

∫
Q

mL
(
−w
m

)
− F (x,m) dxdt+

∫
TN

uT (x)m(x, T ) dx. (7)

The functional E shares many features with its stationary analogue, associated with the station-
ary problems considered in [10]. On the other hand, some useful scaling properties are missing
in the parabolic case by the presence of time. Note that, due to the behaviour of f at infinity,
E is not convex and it may not be bounded from below in general. Hence, the usual variational
methods that link minimizers of this functional to solutions of the MFG system cannot be used
in general for this case. However, if we restrict to the regime α < γ′/N , the energy E becomes
bounded from below; this key fact is proven in Lemma 3.2. Let us comment upon this last
assumption. In the stationary case, using the rescaling properties of the Kolmogorov equation
(that acts as a constraint), it can be shown that it is a necessary and sufficient condition for
the stationary version of the energy functional E to be bounded from below. In particular, if
α ≥ γ′/N , by scaling a test competitor one observes that the term −

∫
F (x,m) prevails on∫

mL(−w/m), making the energy unbounded. In the evolutionary case, however, such a pro-
cedure does not apply directly, because any rescaling in the space variable changes the initial
datum and jeopardises the constraint K. Nevertheless, this hypothesis is crucial in Proposition
2.5, where we prove estimates for a superlinear power of the term∫

Q

mα+1 dxdt.

in terms of
∫
mL(−w/m). Such an estimate is based on the Gagliardo-Nirenberg inequality and

parabolic regularity applied to the Fokker-Planck equation.
In what follows we will always suppose

α <
γ′

N
,

so that E is bounded by below on K: for this reason, we will call this regime sub-critical. Under
this assumption, it can be shown through a convexification procedure that the energy functional
E possess a minimum that can be linked to a weak solution (in the sense of Definition 3.1) of the
MFG system. The idea is that variational techniques similar to the ones presented by the second

1The term mL(−w/m) has to be intended equal to zero if (m,w) = (0, 0) and +∞ if w 6= 0 and m ≤ 0.

3



author et al. in [8], can be applied to prove the existence of a weak solution to the convexified
MFG system. Then it is enough to prove that the solution of the convexified problem provides
a solution of the original one. Moreover, to have convergence of minimizing sequences in Lα+1

we also need (see Lemma 3.3)

α < min

{
γ′

N
,

γ′

N + 2− γ′

}
=

{
γ′

N when γ′ ≥ 2
γ′

N+2−γ′ when 1 < γ′ ≤ 2
. (8)

Note that existence of minimizers in the superquadratic case, i.e. γ > 2, is more delicate, and
requires additional restrictions on α.

When γ′ > N + 2, thanks to Corollary 2.7, more regularity can be proven for weak solutions,
that are indeed classical ones.

When 2 < γ′ ≤ N + 2, we are able to prove the existence of classical solutions only under the
additional hypothesis

α < min

{
γ′

N
,

γ′ − 2

N + 2− γ′

}
.

In this case a penalisation argument allows to obtain a sequence of solutions applying Theorem
1.1. Then a series of a priori estimates will show the convergence of the sequence to a classical
solution of the original problem. These estimates rely on some blow-up techniques for which the
hypothesis on α and the requirement γ′ > 2 (i.e. H is subquadratic) are necessary.

The main theorems are then the following. See Remark 2.1 and Definition 3.1 for the expected
regularity of (u,m).

Theorem 1.1. Suppose that (2), (4) hold, γ′ > N + 2 and

α <
γ′

N
.

Then, there exists a classical solution (u,m) of (1) such that (m,−m∇H(∇u)) is a minimizer
of E in Kγ′,α.

Theorem 1.2. Suppose that (2), (4) hold, 1 < γ′ ≤ N + 2 and

α < min

{
γ′

N
,

γ′

N + 2− γ′

}
.

Then, there exists a weak solution (u,m) of (1) such that (m,−m∇H(∇u)) is a minimizer of E
in Kγ′,α.

Theorem 1.3. Suppose that (2), (4) hold, 2 < γ′ ≤ N + 2 and

α < min

{
γ′

N
,

γ′ − 2

N + 2− γ′

}
.

Then, there exists a classical solution (u,m) of (1) such that (m,−m∇H(∇u)) is a minimizer
of E in KN+3,α.

A convexification argument has already been used by Briani and Cardaliaguet in [7] to prove
the existence of classical solutions for the case of energy functionals where the coupling is a
regularising function of m. In their setting, the energy is not necessarily convex, but it is
bounded by below. Their result is part of a more general analysis on stability of solutions in
MFG having multiple equilibria.
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Up to our knowledge, the only examples of non-uniqueness of solutions available in the liter-
ature for the evolutionary problem are the ones presented in Briani and Cardaliaguet [7], Bardi
and Fischer [4], by the first author in [11], and in the recorded courses at Collège de France by
P.-L. Lions [22]. Here, we present a new example (see in particular Section 4) that involves a class
of MFG systems where f(x,m) = f(m), uT = 0 and m0 = 1. We show that the solution corre-
sponding to a minimum of E is not equal to the trivial solution (ū, m̄) = ((t−T )(f(1)+H(0)), 1).
This follows by construction of a suitable competitor (m,w) for which E(m,w) < E(1, 0). Note
that non-uniqueness is obtained in [7, 11] in cases where H ∈ C2 and T large enough (if H ∈ C2

uniqueness for small time horizon T holds, see [3, 4]), while in [4] an example with Lipschitz
Hamiltonian and T > 0 arbitrary is discussed. In our examples, Hamiltonians can be C1,β , with
0 < β < 1, and non-uniqueness of solutions shows up for all T > 0.

Finally, one should expect similar features for the stationary and non-stationary problems
when the time horizon T is large. Conversely, if T is small, the two settings may exhibit different
behaviours. As mentioned before, existence of solutions might be false in the stationary case when
the coupling is very strong. On the other hand, in the parabolic case a standard contraction
argument applies: we prove the existence of a classical solution of (1) for small T , without
requiring any assumption on the growth at infinity of f .

Theorem 1.4. Suppose that f,H ∈ C3, uT ∈ C2,β and m0 ∈ C2,ν for some 0 < ν < β < 1.
Then, there exists T ∗ > 0 such that for all T ∈ (0, T ∗], (1) has a classical solution.

The idea is to exploit the local regularity of f and H (note that in Theorem 1.4 f need not
be with controlled growth nor H to be convex); even if the coupling is very strong, during a
small time interval the distribution m remains close to the initial datum m0, without developing
singularities. Note that the contraction mapping principle ensures that solutions are unique in
a neighborhood of (uT ,m0), see in particular Remark A.1.

We mention that the contraction theorem has already been used by Ambrose [1, 2] in the
MFG setting, to prove the existence of small, locally unique, strong solutions over any finite
time interval in the case of general local couplings, if m0 is chosen sufficiently close to a uniform
density or if other “smallness” conditions are satisfied.

The paper is organized as follows: we first collect embedding theorems and estimates for
the Hamilton-Jacobi equation and Fokker-Planck equation. Section 3 is devoted to the proof
of Theorems 1.1, 1.2 and 1.3. A non-uniqueness example is shown in Section 4. Finally, the
appendix contains the proof of the existence of classical solutions for small T .

Acknowledgements. The first author is partially supported by the Fondazione CaRiPaRo
Project “Nonlinear Partial Differential Equations: Asymptotic Problems and Mean-Field Games”
and the INdAM-GNAMPA project “Fenomeni di segregazione in sistemi stazionari di tipo Mean
Field Games a più popolazioni”. The second author is partially supported by the ANR project
MFG ANR-16-CE40-0015-01, the PEPS-INSMI Jeunes project “SOME OPEN PROBLEMS IN
MEAN FIELD GAMES” for the years 2016 and 2017. This article benefited from the support
of the FMJH Program Gaspard Monge for optimization and operations research and their inter-
actions with data science and by a public grant as part of the Investissement d’avenir project,
reference ANR-11-LABX-0056-LMH, LabEx LMH, PGMO project VarPDEMFG. We warmly
thank the anonymous referee for his/her careful reading and valuable comments.

2 Notations and preliminaries

In the sequel, we will use the notation K = Kγ′,α, and write explicitly the subscript if does
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not coincide with γ′, α. P(TN ) will denote the space of probability measures, endowed with the
standard weak* topology.

We begin with the definition of some particular Banach spaces involving time and space weak
derivatives. Let Q = QT = TN × (0, T ) and r > 1. We denote by W 2,1

r (Q) the space of functions
u ∈ Lr(Q) having weak space derivatives Dβ

xu ∈ Lr(Q) for any integer multi-index β such that
|β| ≤ 2, and weak time derivative ut ∈ Lr(Q), equipped with the norm

‖u‖W 2,1
r (Q) = ‖u‖Lr(Q) + ‖ut‖Lr(Q) +

∑
1≤|β|≤2

‖Dβ
xu‖Lr(Q).

Similarly, W 1,0
r (Q) is endowed with the norm

‖u‖W 1,0
r (Q) = ‖u‖Lr(Q) +

∑
|β|=1

‖Dβ
xu‖Lr(Q).

Finally, we denote byHr,1(Q) the space of functions u ∈W 1,0
r (Q) with ut ∈ (W 1,0

r′ (Q))′, equipped
with the norm

‖u‖Hr,1(Q) = ‖u‖W 1,0
r (Q) + ‖ut‖(W 1,0

r′ (Q))′ .

For a given Banach space X, Lp((0, T ), X) and C0,θ([0, T ], X) will denote the usual Lebesgue
and Hölder parabolic spaces respectively.

Remark 2.1. Under the standing assumptions on the Hamiltonian (2), in particular if H ∈
C1(RN ), we will say that (u,m) is classical solution to (1) in the following sense (with a slight
abuse of terminology): first, u is (at least) C2 in the x-variable and C1 in the t-variable, and
solves the HJB equation in the classical sense. Second, m is a weak solution of the Fokker-Planck
equation. Since ∇H(∇u) is just bounded a priori, one expects m to be in L2((0, T ), H1(TN )) ∩
L∞((0, T )×TN ) and Hölder continuous, while mt ∈ L2((0, T ), H−1(TN )) (see, e.g. [17, Chapter
3]). Note that scarce regularity of ∇H is the only obstruction for m to be a classical solution:
if H ∈ C2,a, a ∈ (0, 1), by Schauder estimates m is indeed classical (for example, as in Theorem
1.4). In this way, we can deal with model power-like Hamiltonians of the form

H(p) = CH |p|γ , γ > 1.

We recall here some embedding properties enjoyed by Hr,1(Q).

Proposition 2.2. The following embeddings hold.

(i) If 1 < r < N + 2, then Hr,1(Q) is continuously embedded in L`(Q), for all 1 ≤ ` ≤ (N+2)r
N+2−r .

(ii) If r ≥ N + 2, then Hr,1(Q) is continuously embedded in L`(Q), for all 1 ≤ ` <∞.

(iii) If r > N + 2, then there exist ν, θ ∈ (0, 1) such that Hr,1(Q) is continuously embedded in
C0,ν([0, T ], C0,θ(TN )).

(iv) If 1 < r < N + 2, then Hr,1(Q) is compactly embedded in L`(Q), for all 1 ≤ ` < (N+2)r
N+2−r .

Proof. A proof of the continuous embeddings (i) and (ii) can be found in [24, Theorem 7.1]
(see also [6, Theorem 6.2.2 (i), and refs. therein]), in the case Q = RN × (0, T ), that is, for all
ũ ∈ Hr,1(RN × (0, T )) it holds

‖ũ‖L`(RN×(0,T )) ≤ C‖ũ‖Hr,1(RN×(0,T )) (9)
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for some C > 0 not depending on ũ. To derive the same embeddings for Q = TN × (0, T ), it is
sufficient to construct by standard methods a linear operator extending continuously Hr,1(TN ×
(0, T )) to Hr,1(RN × (0, T )). In particular, fix any χ ∈ C∞0 (RN ) such that χ ≡ 1 on [0, 1]N .
Then, any u ∈ Hr,1(TN × (0, T )) can be extended naturally to a function on RN × (0, T ) that is
periodic in the x variable, i.e. u(x, t) = u(x+ k, t) for all k ∈ ZN and a.e. (x, t) ∈ RN × (0, T ).
Let ũ(x, t) = χ(x)u(x, t), then one has

‖ũ‖Hr,1(RN×(0,T )) ≤ C1‖u‖Hr,1(TN×(0,T )) (10)

for some positive constant C1 that depends only on the choice of χ. It is then sufficient to
combine (9), (10) and the fact that u ≡ ũ on [0, 1]N to conclude (i) and (ii).

As for (iii), see [6, Theorem 6.2.2 (ii)].
Finally, the proof of (iv) of relies on the so-called Aubin-Lions-Simon Lemma. Let 1 < r <

N + 2. Note first that W 1,r′(TN ) is reflexive and separable. Therefore, Lr((0, T ), (W 1,r′(TN )′)
is isomorphic to (Lr

′
((0, T ),W 1,r′(TN )))′, and the latter space coincides with (W 1,0

r′ (Q))′. Since
W 1,0
r (Q) coincides with Lr((0, T ),W 1,r(TN )), we have that the space Hr,1(Q) is isomorphic to

E = {u ∈ Lr((0, T ),W 1,r(TN )), ut ∈ Lr((0, T ), (W 1,r′(TN )′)}.

As W 1,r(TN ) is compactly embedded in Lr(TN ), and Lr(TN ) is continuously embedded in
(W 1,r′(TN ))′, the Aubin-Lions-Simon lemma (see in particular [27, Corollary 5]) states that E is
compactly embedded in Lr(Q). Hence, Hr,1(Q) is compactly embedded in Lr(Q) and the result
follows for 1 ≤ ` ≤ r.

Let now un be a bounded sequence in Hr,1(Q); we may extract a subsequence unk that

converges to u strongly in Lr(Q). For any r < ` < (N+2)r
N+2−r , by interpolation, there exists

0 < θ < 1 such that

‖unk − unj‖L`(Q) ≤ ‖unk − unj‖θLr(Q)‖unk − unj‖
1−θ

L
(N+2)r
N+2−r (Q)

→ 0,

as j, k → ∞, being unk bounded in Hr,1(Q) and hence in L
(N+2)r
N+2−r (Q) by (i). Therefore, unk

converges strongly in L`(Q) also.

The following is a classical Hölder regularity result for Hamilton-Jacobi equations with
quadratic or sub-quadratic Hamiltonians.

Proposition 2.3. Let Ω be a bounded domain of RN and H̃ ∈ C(RN ). Suppose that v is a
classical solution to

−vt −∆v + H̃(∇v) = W (x, t) in Q̃ = Ω× (0, τ), τ > 0

and that for some K > 0,

i) ‖v‖L∞(Q̃), ‖W‖L∞(Q̃), ‖v(·, τ)‖C2(Ω) ≤ K,

ii) |H̃(p)| ≤ K(|p|2 + 1) for all p ∈ RN .

Then, for all Ω′ ⊂⊂ Ω, there exists C > 0, β > 0 (depending on K,Ω′, but not on τ), such
that

‖∇v‖C0,β(Ω′×(0,τ)) ≤ C.

Proof. See [17, Theorem V.3.1].
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2.1 Regularity of the Fokker-Planck equation

In what follows, let m ∈ L1(Q) and A be a measurable vector field such that m is a weak solution
of the Fokker-Planck equation{

mt −∆m+ div(Am) = 0 in Q,

m(x, 0) = m0(x) on TN .
(11)

Suppose |A|γ′m ∈ L1(Q), for a γ′ > 1, and set E to be the quantity

E :=

∫
Q

|A|γ
′
mdxdt.

In this section we will state some regularity results and a priori estimates for m, depending on
E, that will be used in the sequel. We stress that our aim here is to obtain regularity of m in
terms of |A|m1/γ′ , rather than in terms of |A| itself. The former quantity is indeed associated to
the energy of the system. The exponent γ′ and α used in this section are not necessarily linked
with the ones given by the hypotheses on H and f (unless otherwise specified).

Note that, by setting w := Am on the set {m > 0}, and w ≡ 0 where m vanishes, the couple
(m,w) solves {

mt −∆m+ div(w) = 0 in Q,

m(x, 0) = m0(x) on TN ,

and E can be rewritten as E =
∫
Q
|w/m|γ′mdxdt. Recall that E < +∞, since we assumed

|A|γ′m ∈ L1(Q). The proof of the following result follows the lines of [24, Proposition 3.2].

Proposition 2.4. Let m ∈ L`(Q), for some ` > 1, be a weak solution of (11), and r be such
that

1

r
:=

1

γ′
+

(
1− 1

γ′

)
1

`
. (12)

Then, there exists C > 0, depending on T, `,N, γ′ and ‖∇m0‖Lr(TN ), such that

‖m‖Hr,1(Q) ≤ C(E1/γ′‖m‖1/γ
L`(Q)

+ 1), (13)

where γ is the conjugate exponent of γ′.

Proof. We first assume that m is a smooth function; we will remove this requirement at the end
of the proof. Let ϕ ∈ C2,1(Q) be a test function such that ϕ(·, T ) = 0. Then, being m a weak
solution, ∫

Q

m(−ϕt −∆ϕ−A · ∇ϕ) dxdt =

∫
TN

m0(x)ϕ(x, 0)dx.

Hence, ∣∣∣∣∫
Q

m(−ϕt −∆ϕ) dxdt

∣∣∣∣ ≤ ∣∣∣∣∫
TN

m0(x)ϕ(x, 0)dx

∣∣∣∣+

∫
Q

|A|m1/γ′m1−1/γ′ |∇ϕ| dxdt,

and, applying twice Hölder inequality in the last term, we have∣∣∣∣∫
Q

m(−ϕt −∆ϕ) dxdt

∣∣∣∣ ≤ ∣∣∣∣∫
TN

m0(x)ϕ(x, 0)dx

∣∣∣∣+ E1/γ′‖m‖1/γ
L`(Q)

‖∇ϕ‖Lr′ (Q), (14)
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where, r is as in (12).
Let now i = 1, . . . , N be fixed, and ψ ∈ C2,1(Q) be the solution of{

−ψt −∆ψ = |∂xim|r−2∂xim in Q,

ψ(x, T ) = 0 on TN .
(15)

Note that, by standard parabolic regularity (see, e. g., [17, Theorem IV.9.1]),

‖ψ‖W 2,1

r′ (Q) ≤ C‖ |∂xim|
r−1 ‖Lr′ (Q) = C‖∂xim‖r−1

Lr(Q), (16)

where r′ is the conjugate exponent of r. Moreover, ψ(x, 0) = −
∫ T

0
ψt(x, s) ds on TN , therefore,

using Hölder inequality,∣∣∣∣∫
TN

∂xim0(x)ψ(x, 0) dx

∣∣∣∣ ≤ ∫
Q

|∂xim0(x)ψt(x, s)| dxds ≤ T 1/r‖∂xim0‖Lr(TN )‖ψt‖Lr′ (Q)

≤ C‖ψ‖W 2,1

r′ (Q). (17)

If we now let ϕ = ∂xiψ in (14), integrating by parts, we obtain∣∣∣∣∫
Q

∂xim(−ψt −∆ψ) dxdt

∣∣∣∣ ≤ ∣∣∣∣∫
TN

∂xim0(x)ψ(x, 0)dx

∣∣∣∣+ E1/γ′‖m‖1/γ
L`(Q)

‖∇(∂xiψ)‖Lr′ (Q),

and by (17) and the fact that ψ solves (15),∫
Q

|∂xim|r dxdt =

∣∣∣∣∫
Q

∂xim(−ψt −∆ψ) dxdt

∣∣∣∣ ≤ C‖ψ‖W 2,1

r′ (Q)(1 + E1/γ′‖m‖1/γ
L`(Q)

).

Hence, using again (16),

‖∇m‖rLr(Q) =

∫
Q

|∇m|r dxdt ≤ C(E1/γ′‖m‖1/γ
L`(Q)

+ 1)r. (18)

By Poincaré inequality and (16), since 1
|Q|
∫
Q
mdxdt = 1, we infer

‖m‖Lr(Q) ≤ ‖m− 1‖Lr(Q) + T ≤ C(E1/γ′‖m‖1/γ
L`(Q)

+ 1). (19)

Finally, we multiply the Fokker-Planck equation by any test function (that may not vanish
at time T ) ϕ ∈ C2,1(Q) to get∣∣∣∣∫

Q

mtϕdxdt

∣∣∣∣ ≤ ∣∣∣∣∫
Q

∇m · ∇ϕdxdt
∣∣∣∣+ E1/γ′‖m‖1/γ

L`(Q)
‖∇ϕ‖Lr′ (Q)

≤ (‖∇m‖Lr(Q) + E1/γ′‖m‖1/γ
L`(Q)

)‖∇ϕ‖Lr′ (Q),

where Hölder inequality has been used for the integral of A · ∇ϕm as in (14). Hence

‖mt‖(W 1,r′ (Q))′ ≤ C(E1/γ′‖m‖1/γ
L`(Q)

+ 1),

and by (18) and (19) we conclude.
If m is not smooth, consider a regularised sequence (mn, wn) := (m ? ξn, w ? ξn), where ξn is

a (space-time) smoothing kernel. Then, (mn)t −∆mn + div(wn) = 0 holds, and (13) is verified
with En =

∫
Q
|wn/mn|γ

′
mn dxdt. Since En → E as n → ∞, see [9], eq. (2.19) in Lemma 2.7,

we obtain (13) in the general case (actually, it is enough to invoke weak lower semicontinuity of
the functional

∫
Q
|w/m|γ′mdx, ensured by convexity, to conclude).
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The following is a crucial estimate that links the energy term
(∫

Q
mα+1 dxdt

)δ
, for a δ > 1,

with the quantity E. The assumption α < γ′/N basically allows to apply the Gagliardo-Nirenberg
and interpolation inequalities.

Proposition 2.5. Let m ∈ Lα+1(Q) for some 0 ≤ α < γ′/N , be a weak solution of (11). Then,
there exist C > 0 and δ > 1, depending on T, α,N, γ and ‖∇m0‖

L
γ′(α+1)
γ′+α (TN )

, such that

(∫
Q

mα+1 dxdt

)δ
≤ C (E + 1) . (20)

Proof. Since ‖m‖L1(Q) = T , if α = 0, we are done. Suppose then α > 0. Proposition 2.4 applies
with ` = α + 1, so m ∈ Hr,1(Q), where r = γ′(α+ 1)/(γ′ + α). Hence, m(·, t) ∈ W 1,r(TN ) for
a. e. t ∈ (0, T ). Let η := r(N + 1)/N . By the Gagliardo-Nirenberg inequality (see in particular
[25, p. 125-126]), there exists C > 0 such that for a.e. t,

‖m(·, t)‖Lη(TN ) ≤ C
(
‖∇m(·, t)‖

r
η

Lr(TN )
‖m(·, t)‖

1
N+1

L1(TN )
+ ‖m(·, t)‖L1(TN )

)
,

thus, by the fact that
∫
TN m(·, t)dx = 1 for a. e. t ∈ (0, T ),∫

TN
mη(x, t) dx ≤ C

(∫
TN
|∇m(x, t)|r dx+ 1

)
.

If we now integrate the previous equality over (0, T ), in view of (13), it follows that

‖m‖(N+1)/N
Lη(Q) ≤ C(‖m‖1/γLα+1(Q)E

1/γ′ + 1).

It is now crucial to observe that α < γ′/N implies 1 < α+ 1 < η. Indeed,

η = r
N + 1

N
= (α+ 1)

γ′N + γ′

γ′N + αN
> α+ 1.

Arguing by interpolation, there exists some 0 < θ < 1 such that ‖m‖Lα+1(Q) ≤ C‖m‖θLη(Q), so

‖m‖(N+1)/(θN)
Lα+1(Q) ≤ C(‖m‖1/γLα+1(Q)E

1/γ′ + 1),

which implies

‖m‖1+γ′(N+1)/(θN)−γ′
Lα+1(Q) ≤ C(E + 1).

The inequality (20) then follows setting δ := 1+γ′(N+1)/(θN)−γ′
α+1 . Note that δ > 1 since γ′(N +

1)/(θN)− γ′ ≥ γ′/N > α.

We next state a proposition that gives a bound on the Hr,1(Q) norm of the solution of the
Fokker-Planck equation in terms of E, for certain values of r that depends on γ′ and N .

Proposition 2.6. Suppose that E ≤ K and ‖m‖L`0 (Q) ≤ K, for some K > 0,{
`0 ∈

(
1, N+2

N+2−γ′

)
if γ′ < N + 2,

`0 ∈ (1,+∞) if γ′ ≥ N + 2.
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Let r be such that {
r ∈

(
1, N+2

N+3−γ′

)
if γ′ < N + 2,

r ∈ (1, γ′) if γ′ ≥ N + 2.
(21)

Then, there exists C > 0 depending on K, r, T,N, γ′ such that

‖m‖Hr,1(Q) ≤ C.

Proof. Let the sequences `n, rn be defined by induction as follows: for a given `n, let rn be such
that

1

rn
:=

1

γ′
+

(
1− 1

γ′

)
1

`n
>

1

γ′
.

Moreover, `n+1 := (N+2)rn
N+2−rn , i.e.

1

`n+1
=

1

rn
− 1

N + 2
=

1

γ′
− 1

N + 2
+

(
1− 1

γ′

)
1

`n
.

We use here the convention N+2−γ′
(N+2) = 0, when γ′ ≥ N + 2. Since 1 < `0 <

N+2
N+2−γ′ , rn, `n

are increasing sequences. Indeed, we have

`n
`n+1

=
N + 2− γ′

γ′(N + 2)
`n −

1

γ′
+ 1 < 1

as soon as γ′ ≥ N + 2, or as `n <
N+2

N+2−γ′ .

In the case γ′ < N+2, `n converges to N+2
N+2−γ′ , while rn converges to N+2

N+3−γ′ . By Proposition

2.2 (i), (ii) and Proposition 2.4, we have that

‖m‖L`n+1 (Q) ≤ C‖m‖Hrn,1(Q) ≤ C1(E1/γ′‖m‖1/γ
L`n (Q)

+ 1),

so we obtain the assertion by iterating the last inequality a finite number of times.
As for the case γ′ ≥ N + 2, one argues in a similar way, with the difference that `n → +∞

and rn → γ′.

Together with the embedding results of Proposition 2.2, Proposition 2.6 allows to prove the
strong convergence of a (sub)sequence of weak solutions mn, as shown in the following corollary.

Corollary 2.7. Let (mn, An) be a sequence solving the Fokker-Planck equation (11) in the weak
sense. Suppose that

En :=

∫
Q

|An|γ
′
mn dxdt ≤ K

and ‖mn‖L`0 (Q) ≤ K for some K > 0,{
`0 ∈

(
1, N+2

N+2−γ′

)
if γ′ < N + 2,

`0 ∈ (1,+∞) if γ′ ≥ N + 2.

Then, up to subsequences, mn converges:

• strongly in L`(Q) for any ` ∈ [1, N+2
N+2−γ′ ), if γ′ < N + 2,
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• strongly in L`(Q) for any ` ∈ [1,+∞), if γ′ ≥ N + 2,

• in C0,θ(Q) for some θ > 0, if γ′ > N + 2.

Proof. By Proposition 2.6, mn is bounded in Hr,1(Q), for all r defined as in (21).

If γ′ < N+2, for any ` ∈ [1, N+2
N+2−γ′ ), we can find r̄ ∈

(
1, N+2

N+3−γ′

)
, r̄ < N+2

N+3−γ′ < N+2, such

that ` ∈ [1, (N+2)r̄
N+2−r̄ ) and mn is bounded in Hr̄,1(Q). Hence it is sufficient to apply Proposition

2.2 (iv) to obtain that mn converges strongly (up to subsequences) in L`(Q).
If γ′ ≥ N + 2 then for any ` ∈ [1,+∞) we can find r̄ ∈ (1, γ′), r̄ < N + 2, such that

` ∈ [1, (N+2)r̄
N+2−r̄ ) and mn is bounded in Hr̄,1(Q). Therefore we can apply Proposition 2.2 (iv) to

obtain that mn converges strongly (up to subsequences) in L`(Q).
If γ′ > N + 2, we can find r̄ ∈ (1, γ′), r̄ > N + 2, such that mn is bounded in Hr̄,1(Q). Hence

by Proposition 2.2 (iii), mn is bounded in some C0,ν([0, T ], C0,θ′(TN )) (compactness follows by
choosing θ < min{θ′, ν}).

2.2 Known results on convex MFG

For the reader’s convenience, we rephrase here some of the results from [8] that will be used in
Section 3, in the setting of this paper. We consider a MFG system of the form

−ut −∆u+H(∇u) = ρ(x, t,m(x, t)), in Q,

mt −∆m− div(∇H(∇u)m) = 0 in Q,

m(x, 0) = m0(x), u(x, T ) = uT (x) on TN ,
(22)

where the Hamiltonian, m0(·) and uT (·) satisfy the same hypotheses as before and the coupling
ρ : Q × [0,+∞) → R is continuous in all variables, strictly increasing with respect to the third
variable m, and there exist α > 0 and C1 such that

1

C1
mα − C1 ≤ ρ(x, t,m) ≤ C1m

α + C1 ∀m ≥ 0 . (23)

As noted in [8], ρ can depend explicitly on time. Moreover, we ask the following normalization
condition to hold:

ρ(x, t, 0) = 0 ∀(x, t) ∈ Q . (24)

Let α, γ be the exponents defined by the hypotheses on H and ρ, and define

ϑ :=

{
γ(α+1)(1+N)

αN−γ if α > γ
N

+∞ if α≤ γ
N

, ϑ̄ :=

{
N(γ+α)
αN−γ if α > γ

N

+∞ if α≤ γ
N

.

The following theorem corresponds to Theorem 3.3 in [8].

Theorem 2.8. Assume that (2) holds true and let u satisfy in the weak sense{
(i) −ut −∆u+H(∇u) ≤ β(x, t)
(ii) u(x, T ) ≤ uT (x),

with β ∈ L(α+1)′(Q), uT ∈ L∞(TN ). (Here (α + 1)′ is the conjugate exponent of α + 1). Then,
if u is bounded below, we have

‖u‖L∞((0,T ),Lϑ̄(TN )) + ‖u‖Lϑ(Q) ≤ C,

with a constant C depending on T, α,N, γ, CH (appearing in (2)) and on ‖β‖L(α+1)′ (Q), ‖uT ‖Lϑ̄(TN ).
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This Lebesgue estimate holds typically for sub-solutions of Hamilton-Jacobi equations and is
a consequence of the divergence structure of the second order term.

Thanks to the above regularity for u and estimate (4) on f , we look for weak solutions
(u,m) ∈ Lϑ(Q)× Lα+1(Q).

Definition 2.9. We say that a pair (u,m) ∈ Lϑ(Q)× Lα+1(Q) is a weak solution to (22), if

(i) the following integrability conditions hold:

∇u ∈ Lγ(Q), mL(∇H(∇u)) ∈ L1(Q) and m∇H(∇u) ∈ L1(Q).

(ii) Equation (1)-(i) holds in the following sense: inequality

−ut −∆u+H(∇u) ≤ ρ(x, t,m) in Q, (25)

with u(·, T ) ≤ uT , holds in the sense of distributions,

(iii) Equation (1)-(ii) holds:

mt −∆m− div(m∇H(∇u))) = 0 in Q, m(0) = m0 (26)

in the sense of distributions,

(iv) The following equality holds:∫
Q

m(x, t)(ρ(x, t,m(x, t)) + L(∇H(∇u)(x, t)))dxdt (27)

+

∫
TN

(m(x, T )uT (x)−m0(x)u(x, 0))dx = 0.

The following theorems correspond to Theorem 6.2 and to a part of Theorem 6.4 in [8].

Theorem 2.10. There exists a unique weak solution (u,m) to the MFG system (22). By unique-
ness, we mean that m is indeed unique and u is uniquely defined in {m > 0}. Finally, there
exists a solution which is bounded below by a constant depending on ‖uT ‖C2(TN ).

Theorem 2.11. Let (u,m) be the unique solution to the MFG system (22) and define w :=
−m∇H(∇u). Then the couple (m,w) is a minimizer for∫

Q

mL
(
−w
m

)
+ Ψ(x, t,m) dxdt+

∫
TN

uT (x)m(x, T ) dx,

over the set K, where

Ψ(x, t,m) =

∫ m

0

ρ(x, t, σ)dσ ∀(x,m) ∈ TN × [0,+∞), Ψ(x, t,m) = +∞ otherwise.

3 Existence of solutions

In this section we discuss the existence of solution for the MFG system (1). We begin giving the
definition of weak solution.

Let α, γ be the exponents defined by the hypotheses on H and f , and α < min
{
γ′

N ,
γ′

N+2−γ′

}
.

Let ϑ be defined as in Section 2.2:

ϑ :=

{
γ(α+1)(1+N)

αN−γ if α > γ
N

+∞ if α≤ γ
N

.
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Definition 3.1. We say that a pair (u,m) ∈ Lϑ(Q) × Lα+1(Q) is a weak solution to (1), if it
satisfies Definition 2.9 with ρ replaced by the coupling −f .

Using the estimates obtained for the solution of the Fokker-Planck equation, we are able to
prove that the energy functional E , defined as in (7), is bounded from below over the set K.

Lemma 3.2. There exists c ∈ R such that

c = inf
(m,w)∈K

E(m,w).

Moreover, suppose that for a sequence (mn, wn) ∈ K, there exists e ∈ R such that E(mn, wn) ≤
e for all n ∈ N. Then, for some c1 (depending on e), and for all n ∈ N∫

Q

(mn)α+1dxdt+

∫
Q

|wn|γ′

(mn)γ′−1
dxdt ≤ c1.

Proof. Let (m,w) ∈ K, hence m ∈ Lα+1(Q), w ∈ L1(Q). Since m is a weak solution of the
Fokker-Planck equation with drift A = w/m, we may apply Proposition 2.5 to infer the existence
of C > 0 and δ > 1 (depending on the data), such that(∫

Q

mα+1dxdt

)δ
≤ C

(∫
Q

|w|γ′

mγ′−1
dxdt+ 1

)
. (28)

Moreover, by (3) and (5), we have that

E(m,w) ≥ C−1
L

∫
Q

|w|γ′

mγ′−1
dxdt− CF

∫
Q

mα+1dxdt− ‖uT ‖L∞(TN ) − CFT (29)

≥ C
(∫

Q

mα+1dxdt

)δ
− CF

∫
Q

mα+1dxdt− ‖uT ‖L∞(TN ) − C,

which has a finite infimum, since δ > 1.
In order to prove the second assertion, it suffices to use (28) for the sequence (mn, wn),

rewriting (29) as

C−1
L

∫
Q

|wn|γ′

(mn)γ′−1
dxdt ≤ E(mn, wn) + CF

∫
Q

(mn)α+1dxdt+ ‖uT ‖L∞(TN ) + CFT

≤ C + C

(∫
Q

|wn|γ′

(mn)γ′−1
dxdt+ 1

)1/δ

,

and by (28) we conclude.

We prove now that, up to subsequences, a minimizing sequence of E converges (in different
spaces, according to the value of γ′) to a minimizer.
A key point here is that, thanks to the convexity ofmL(w/m), lower semicontinuity of

∫
Q
mL(w/m)

in a strong topology will immediately imply weak lower semicontinuity w.r.t the corresponding
weak topology. In turn, (strong) lower semicontinuity can be easily verified in L1(Q) × L1(Q).
This result will be used several times in the following. We also refer to [26, Chapter 5] for a
proof of lower semicontinuity in a more general setting.
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Lemma 3.3. Let (mn, wn) ∈ K be a minimizing sequence, that is

E(mn, wn)
n→∞−−−−→ c := inf

(m,w)∈K
E(m,w). (30)

Then, up to subsequences, mn → m̄ strongly in L`(Q) and wn ⇀ w̄ weakly in L
γ′`

γ′+`−1 (Q), where:

• ` ∈ [1, N+2
N+2−γ′ ), if 1 < γ′ ≤ N + 2;

• ` ∈ [1,+∞), if γ′ ≥ N + 2.

Moreover, if γ′ > N + 2, then mn → m̄ in C0,θ(Q) for some θ > 0.
In particular, we can always take ` = α+ 1 in the above statement, and, up to subsequences,

mn → m̄ a.e. in Q. Then, the couple (m̄, w̄) is a minimizer of E in K.

Proof. Let (mn, wn) ∈ K be a minimizing sequence. By choosing n large enough, E(mn, wn) ≤
c+ 1, and Lemma 3.2 implies that ∫

Q

|wn|γ′

(mn)γ′−1
dxdt ≤ c1

for some c1 > 0. Note that since mn is a weak solution to the Fokker-Planck equation with drift
An = wn/mn, ∫

Q

|An|γ
′
mn dxdt =

∫
Q

|wn|γ′

(mn)γ′−1
dxdt ≤ c1. (31)

The thesis formn follows applying Corollary 2.7. In all cases, m̄ ∈ Lα+1(Q) (since α+1 < N+2
N+2−γ′

by (8)) and, up to subsequences, mn → m̄ a.e. in Q.
Concerning wn, for all ` such that mn → m̄ strongly in L`(Q), by Hölder inequality

∫
Q

|wn|
γ′`

γ′+`−1 =

∫
{mn>0}

|wn|
γ′`

γ′+`−1 ≤ ‖mn‖
γ′−1
γ′+`−1

L`(Q)

(∫
Q

|wn|γ′

(mn)γ′−1
dxdt

) `
γ′+`−1

≤ C.

Hence, wn converges weakly to w̄ in L
γ′`

γ′+`−1 (Q) and we can take in particular ` = α + 1. The
fact that the limit (m̄, w̄) is a minimizer readily follows by weak lower semicontinuity of E , that
is ensured by convexity, and strong convergence of mn.

3.1 A convex problem

In order to find a link between the minimizer of E and the solution of (1), being the energy E not
convex in (m,w) due to the presence of the term −

∫
Q
F (x,m)dxdt, we convexify it by adding a

term that vanishes in m̄, the limit of the minimizing sequence mn. Therefore, let us define

E(m,w) = E(m,w) +

∫
Q

G(x, t,m)dxdt,

where for (x, t,m) ∈ Q× [0,+∞)

G(x, t,m) :=
cf + 1

α(α+ 1)

[
(m+ 1)α+1 − (m̄(x, t) + 1)α+1

]
− cf + 1

α
(m̄(x, t) + 1)α(m− m̄(x, t))
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and G(x, t,m) = +∞ otherwise. Then, for (x, t,m) ∈ Q× [0,+∞)

g(x, t,m) := ∂mG(x, t,m) =
cf + 1

α
(m+ 1)α − cf + 1

α
(m̄(x, t) + 1)α,

∂mg(x, t,m) = ∂mmG(x, t,m) = (cf + 1)(m+ 1)α−1.

Note that G(x, t, m̄(t, x)) = ∂mG(x, t, m̄(t, x)) = 0 for all (x, t) ∈ Q, and ∂mmG(x, t,m) ≥ 0 for
all m ≥ 0, so that G(x,m) ≥ 0 everywhere. Moreover,

cf
α
− f(x, 0) +

1

α
(m+ 1)α − cf + 1

α
(m̄(x, t) + 1)α ≤

(−f + g)(x, t,m) ≤ cf + 1

α
(m+ 1)α − cf + 1

α
(m̄(x, t) + 1)α. (32)

Lemma 3.4. E is convex on K, and it is strictly convex with respect to m, that is

E(τm+ (1− τ)µ, τw + (1− τ)v) ≤ τE(m,w) + (1− τ)E(µ, v)− 1

2
τ(1− τ)

∫
Q

ψ(m,µ) dxdt

for all τ ∈ [0, 1], (m,w), (µ, v) ∈ K, where ψ(x, y) = min{(x+ 1)α−1, (y + 1)α−1}(x− y)2.

Note that if m,µ ∈ Lα+1(TN ) satisfy
∫
Q
ψ(m,µ) dxdt ≤ 0, then m = µ a. e. in Q.

Proof. It is standard to show that (m,w) 7→
∫
Q
mL

(
− w
m

)
dxdt+

∫
TN uT (x)m(x, T ) dx is convex.

It is then sufficient to note that ∂mm(−F + G)(x,m) = −∂mf(x,m) + (cf + 1)(m + 1)α−1 ≥
(m+ 1)α−1, because of (4).

We consider now the MFG system associated to E :
−ut −∆u+H(∇u) = −f(x,m) + g(x, t,m),

mt −∆m− div(∇H(∇u)m) = 0 in Q,

m(x, 0) = m0(x), u(x, T ) = uT (x) on TN .
(33)

Proposition 3.5. If γ′ > 1, there exists a weak solution (ũ, m̃) to the MFG system (33),
such that the couple (m̃, m̃∇H(∇ũ)) is a minimizer of the (convex) energy functional E in K.
Moreover, if γ′ > N + 2, such a solution is classical.

Proof. 1. We consider first the case 1 < γ′ ≤ N + 2.
In order to apply the standard variational theory for convex systems, see [8] and Section 2.2,

we need to truncate m̄ because estimate (32) has left and right bounds which depend on (x, t),
while this is not the case for (23).

1.1 Let us, therefore, consider the truncated function m̄M defined for M > 0, as

m̄M (x, t) :=

{
m̄(x, t) ∀(x, t) ∈ Q s.t 0 ≤ m̄(x, t) ≤M,
M otherwise

and the truncated energy functional

EM (m,w) := E(m,w) +

∫
Q

GM (x, t,m)dxdt,

where for (x, t,m) ∈ Q× [0,+∞)

GM (x, t,m) :=
cf + 1

α(α+ 1)

[
(m+ 1)α+1 − (m̄M (x, t) + 1)α+1

]
−cf + 1

α
(m̄M (x, t)+1)α(m−m̄M (x, t)).
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and GM (x, t,m) = +∞ otherwise. Then, defining for (x, t,m) ∈ Q× [0,+∞)

gM (x, t,m) := ∂mGM (x, t,m) =
cf + 1

α
(m(x, t) + 1)α − cf + 1

α
(m̄M (x, t) + 1)α,

we have, in particular, that for (x, t,m) ∈ Q× [0,+∞)

cf
α
−f(x,0)+

1

α
(m+1)α−cf + 1

α
(M+1)α ≤ (−f+gM )(x, t,m) ≤ cf + 1

α
(m+1)α−cf + 1

α
(M+1)α.

Thus EM (m,w) is strictly convex w.r.t. m and it is precisely a functional of the type studied in
[8]. Indeed the coupling −f + gM is strictly increasing and continuous w.r.t. m and satisfies
(23). Note that it should also verify the normalization condition (24). This condition is satisfied
modifying GM with GM + (f(x, 0)− gM (x, t, 0))m. Since

0 ≤ f(x, 0)− gM (x, t, 0) ≤ Cf −
cf + 1

α
+
cf + 1

α
(M + 1)α,

this will only modify the constants in the right hand side of the previous inequality for −f + gM .
Therefore, for all M > 0, Theorem 2.10 gives us a weak solution (uM ,mM ) such that uM is

bounded below by a constant depending on ‖uT ‖C2 and on ‖H(∇uT )‖∞.
1.2. We have now to show the stability of solutions with respect to this approximation. We

follow Section 6.4 in [8]. Note that it is enough to set A = Id in their second order MFG system
in order to obtain our truncated convex problem. On the one side, we are in a simpler case than
the one in [8], since we are only approximating the coupling function −f + g with the sequence
−f+gM , while all the other data are not approximated. On the other, even if −f+gM converges
locally uniformly to −f + g, the limit −f + g satisfies the more general inequality (32), where
the right and left bounds depend also on (x, t) (not only in m). However, we have the additional

information that they are bounded in L1+ 1
α (Q), since m̄ ∈ Lα+1(Q). Note that the fact that the

sequence −f + gM depends also on time does not add any difficulty as stated in the introduction
of [8].

Let wM := −mM∇H(∇uM ). By Theorem 2.11, the couple (mM , wM ) is a minimizer for EM .
Proceeding as in [8] (or as we did for the minimizing sequence (mn, wn) in Lemma 3.3), we can
prove that

‖mM‖Lα+1(Q) + ‖wM‖
L
γ′(α+1)
γ′+α (Q)

+

∥∥∥∥∥ |wM |γ
′

(mM )γ′−1

∥∥∥∥∥
L1(Q)

≤ C

and for all M > 0, t → mM (t) are uniformly Hölder continuous with respect to the stan-
dard weak* topology in P(TN ), see Lemma 4.1 in [8]. Hence, up to a subsequence, (mM , wM )

converges weakly in Lα+1(Q) × L
γ′(α+1)

γ′+α (Q) to some (m̃, w̃) and mM (t) converges to m̃(t) in
C0([0, T ],P(TN )) as M → +∞. It follows that (m̃, w̃) satisfy w̃γ

′
m̃1−γ′ ∈ L1(Q) and for all

ϕ ∈ C∞0 (TN × [0, T ))

0 = lim
M→+∞

∫
Q

(mMϕt + wM · ∇ϕ+mM∆ϕ)dxdt+

∫
TN

m0(x)ϕ(x, 0)dx

=

∫
Q

(m̃ϕt + w̃ · ∇ϕ+ m̃∆ϕ)dxdt+

∫
TN

m0(x)ϕ(x, 0)dx.

Hence (m̃, w̃) satisfies (6) and belongs to K.
We claim that

lim sup
M→+∞

inf
(m,w)∈K

EM (m,w) ≤ inf
(m,w)∈K

E(m,w). (34)

17



Indeed,

lim sup
M→+∞

inf
(m,w)∈K

EM (m,w)

≤ lim sup
M→+∞

∫
Q

mL
(
−w
m

)
− F (x,m) +GM (x, t,m) dxdt+

∫
TN

uT (x)m(x, T ) dx,

for all (m,w) ∈ K. Now, the locally uniform convergence of GM to G gives, by dominated
convergence theorem,

lim sup
M→+∞

∫
Q

GM (x, t,m) dxdt = lim
M→+∞

∫
Q

GM (x, t,m) dxdt =

∫
Q

G(x, t,m) dxdt.

Hence,

lim sup
M→+∞

∫
Q

mL
(
−w
m

)
− F (x,m) +GM (x, t,m) dxdt+

∫
TN

uT (x)m(x, T ) dx = E(m,w)

for all (m,w) ∈ K. Thus,
lim sup
M→+∞

inf
(m,w)∈K

EM (m,w) ≤ E(m,w)

for all (m,w) ∈ K and (34) holds.
Let us now show that

lim inf
M→+∞

EM (mM , wM ) ≥ E(m̃, w̃).

Recall that, by convexity, we have that (m,w) 7→ mL(−w/m) is weakly lower semicontinuous,
hence

lim inf
M→+∞

∫
Q

mML

(
−wM
mM

)
dxdt ≥

∫
Q

m̃L

(
− w̃
m̃

)
dxdt,

moreover by the definition of F and GM we have that

−F (x,m) +GM (x, t,m) =

∫ m

0

−f(x, σ) + gM (x, t, σ)dσ ∀(x, t,m) ∈ Q× [0,+∞),

−F (x,m) +GM (x, t,m) = +∞ otherwise.

Hence −F+GM is lower semicontinuous and by convexity of −F+GM , weak lower semicontinuity
follows. Thus, by strong convergence of m̄M to m̄ in Lα+1(Q), we have the convergence of∫
Q
GM dxdt to

∫
Q
Gdxdt, hence

lim inf
M→+∞

∫
Q

(−F (x,mM ) +GM (x, t,mM )) dxdt ≥
∫
Q

(−F (x, m̃) +G(x, t, m̃)) dxdt.

Finally, by the weak* convergence of mM (T ) in P(TN ) we have

lim
M→+∞

∫
TN

uT (x)mM (x, T ) dx =

∫
TN

uT (x)m̃(x, T ) dx.

Hence,

lim inf
M→+∞

EM (mM , wM ) =

lim inf
M→+∞

∫
Q

mML

(
−wM
mM

)
− F (x,mM ) +GM (x, t,mM ) dxdt+

∫
TN

uT (x)mM (x, T ) dx

≥
∫
Q

m̃L

(
− w̃
m̃

)
− F (x, m̃) +G(x, t, m̃) dxdt+

∫
TN

uT (x)m̃(x, T ) dx

= E(m̃, w̃).
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Therefore, thanks to (34),

E(m̃, w̃) ≤ lim inf
M→+∞

EM (mM , wM ) ≤ lim sup
M→+∞

inf
(m,w)∈K

EM (m,w) ≤ inf
(m,w)∈K

E(m,w).

thus

E(m̃, w̃) = lim
M→+∞

EM (mM , wM ) = lim
M→+∞

min
(m,w)∈K

EM (m,w) = min
(m,w)∈K

E(m,w).

In particular (m̃, w̃) minimizes E , and

lim
M→+∞

∫
Q

mML

(
−wM
mM

)
dxdt =

∫
Q

m̃L

(
− w̃
m̃

)
dxdt

and

lim
M→+∞

∫
Q

(−F (x,mM ) +GM (x, t,mM )) dxdt =

∫
Q

(−F (x, m̃) +G(x, t, m̃)) dxdt.

Since −F + GM are bounded below and −F + G is strictly convex, an argument using Young
measures as the one in [8], gives us the strong convergence of every subsequence of (mM , wM ) to

a minimizer (m̃, w̃) of E , in Lα+1(Q)× L
γ′(α+1)

γ′+α (Q). Due to strict convexity of Ē w.r.t. m, the
minimizer m̃ is unique, and by strict convexity of L, we have uniqueness of w̃/m̃ where m̃ > 0.
By optimality, w̃ = 0 when m̃ = 0 (otherwise m̃L(− w̃

m̃ ) = +∞), hence uniqueness follows also
for w̃. Being the minimizer unique, the full sequence (mM , wM ) strongly converges to (m̃, w̃).

1.3 We are left to prove that we can find a weak solution for (33) from the minimizer (m̃, w̃).
Let βM (x, t) := (−f +gM )(x, t,mM (x, t)) on Q. Thanks to the growth condition on −f +gM

and the uniform bound of mM in Lα+1(Q), the sequence βM weakly converges in L1+ 1
α (Q) to β̃.

Being uM uniformly bounded by below, Theorem 2.8 gives

‖uM‖L∞((0,T ),Lϑ̄(TN )) + ‖uM‖Lϑ(Q) ≤ C,

where

ϑ̄ :=

{
N(γ+α)
αN−γ if α > γ

N

+∞ if α≤ γ
N

.

Hence, up to a subsequence, uM weakly converges to ũ in Lϑ(Q). Moreover, proceeding as in
[8] we can prove that ∇uM converges weakly to ∇ũ in Lγ(Q). Hence by convexity of H we have
that (ũ, β̃) satisfies

−ũt −∆ũ+H(∇ũ) ≤ β̃ in Q,

in the sense of distributions.
By Lemma 5.3 in [8] (which does not involve the coupling function hence it holds even for

our limit functions), we have[∫
TN

m̃ũ

]T
0

+

∫
Q

m̃

(
β̃ + L

(
− w̃
m̃

))
≥ 0. (35)

Moreover, for all M > 0, being (uM ,mM ) a weak solution of (1) with coupling function −f+gM ,
we have that (27) is satisfied. For a.e. (x, t) ∈ Q,

(−F+GM )∗(x, t, βM )+(−F+GM )(x, t,mM ) = βM (x, t)mM (x, t) = (−f+gM )(x, t,mM )mM (x, t),
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(here, (−F + GM )∗ is the Legendre transform of −F + GM with respect to m), hence, by the
definition of wM and βM ,∫

Q

(−F +GM )∗(x, t, βM ) + (−F +GM )(x, t,mM ) +mML

(
−wM
mM

)
dxdt

+

∫
TN

uTmM (T )− uM (0)m0dx = 0.

Following Step 3 of the proof of Proposition 5.4 in [8] we can prove that

lim sup
M→+∞

∫
TN

uM (0)m0dx ≤
∫
TN

ũ(0)m0.

Hence passing to the limit in the previous identity, due to the convexity of the functionals
involved, which implies weak lower semicontinuity, we have∫
Q

(−F +G)∗(x, t, β̃) + (−F +G)(x, t, m̃) + m̃L

(
− w̃
m̃

)
dxdt+

∫
TN

uT m̃(T )− ũ(0)m0dx ≤ 0.

Using the convexity of −F +G, one obtains

(−F +G)∗(x, t, β̃) + (−F +G)(x, t, m̃)− β̃(x, t)m̃(x, t) ≥ 0. (36)

Therefore (35) is an equality, hence by Lemma 5.3 in [8], we have w̃ = −m̃∇H(∇ũ). Moreover
(36) holds a.e., hence β̃ = (−f + g)(·, ·, m̃). This proves that (ũ, m̃) is a weak solution for (33).
Note that this also implies that∫
Q

(−F +G)∗(x, t, β̃) + (−F +G)(x, t, m̃) + m̃L

(
− w̃
m̃

)
dxdt+

∫
TN

uT m̃(T )− ũ(0)m0dx = 0.

2. Suppose now that γ′ > N + 2, so that, by Lemma 3.3, m̄ ∈ C0,θ(Q), for a θ > 0. Then,
Theorem 6.4 in [8] applies directly giving a weak solution (ũ, m̃) to our convex MFG problem
(33), with no need to truncate m̄, since there exists M such that 0 ≤ m̄(x, t) ≤ M for all
(x, t) ∈ Q.

We just have to show that the weak solution (ũ, m̃) enjoys more regularity and it is indeed a
classical solution of (33). Indeed, by Corollary 2.7, also m̃ ∈ C0,θ(Q), hence β̃ := (−f+g)(·, ·, m̃)
is Hölder continuous on Q; moreover, we know by [8] that the pair (ũ, β̃) is a minimizer of

inf
(u,β)∈K

∫
Q

(−F +G)∗(x, β(x, t)) dxdt−
∫
TN

u(0, x)m0(x) dx, (37)

where K is the set of pairs (u, β) satisfying (u, β) ∈ Lϑ(Q) × L(α+1)′(Q), (where (α + 1)′ is the
conjugate exponent of α+ 1 and ϑ is as in Definition 2.9), and

−ut −∆u+H(∇u) ≤ β in Q,

and u(T, ·) ≤ uT (·) in the sense of distributions. We may then consider the classical solution u1

to
−(u1)t −∆u1 +H(∇u1) = β̃(x, t) in Q,

u(T, ·) = uT (·). Then, by comparison, the couple (ũ1, β̃) is still a minimizer of (37), so (u1, m̃)
is also a solution to (33) (again by Theorem 6.4 in [8]). Since u1 ∈ C2(Q), m̃ is a weak solution
of the Fokker-Planck equation in the sense of Remark 2.1.
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Since the existence of a solution of the convexified problem has been established, we are now
ready to conclude the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1 and Theorem 1.2. We just need to show that the solution (ũ, m̃) of (33)
given by Proposition 3.5 is such that m̃ = m̄ and w̃ = w̄, where (m̄, w̄) is given by Lemma
3.3. This will immediately imply that (ũ, m̃) = (ũ, m̄) is not only a solution of (33), but also a
solution of (1), and the couple (m̄,−m̄∇H(∇ũ)) is a minimizer of E in K.

We observe that E(m,w) ≥ E(m,w) (since G ≥ 0), so

E(m̃, w̃) = inf
(m,w)∈K

E(m,w) ≥ inf
(m,w)∈K

E(m,w) = E(m̄, w̄) = E(m̄, w̄).

Hence (m̄, w̄) is also a minimizer of E . By strict convexity of E with respect to m, m̄ = m̃, and
by strict convexity of L we have that w̄

m̄ = w̃
m̃ on the set where m̃ = m̄ > 0. Being w̄ = 0 when

m̄ = 0, we also have w̄ = w̃, as wanted.

3.2 2 < γ′ ≤ N + 2: smooth solutions

We show in this section that, when 2 < γ′ ≤ N + 2, we can find smooth solutions through a
penalisation argument under additional hypothesis on α.

We consider the approximated (or penalised) Lagrangian

Lη(q) := L(q) +
η

N + 3
|q|N+3, ∀q ∈ RN , η > 0,

and the associated functional

Eη(m,w) =

∫
Q

mLη

(
−w
m

)
− F (x,m) dxdt+

∫
TN

uT (x)m(x, T ) dx.

Note that the minimization of Eη has to be performed on KN+3,α ⊂ Kγ′,α. We are basically
increasing the growth of L in order to gain regularity for minimizers of the energy. In particular, if
L grows faster that |q|N+2, a solution of the Fokker-Planck equation, that enters in the constraint
K, enjoys automatically Hölder regularity (see Corollary 2.7). Note that a similar penalisation
argument has been implemented in [23] in the stationary setting. For any fixed η > 0, Lη(q)
behaves like |q|N+3 as |q| → +∞, namely

c−1
η |q|N+3 − cη ≤ Lη(q) ≤ cη(|q|N+3 + 1),

for all q ∈ RN and some positive cη (depending on η). The corresponding family of Hamiltonians
Hη satisfy

h−1
η |p|

N+3
N+2 − hη ≤ Hη(p) ≤ hη(|p|

N+3
N+2 + 1),

together with additional bounds independent of η. In particular, we have by (3) that

−CL ≤ −L(0) ≤ Hη(p) = sup
q∈RN

[p · q − Lη(q)] ≤ sup
q∈RN

[p · q − L(q)] = H(p) ≤ CH(|p|γ + 1), (38)

where C does not depend on η. Moreover,

|∇Hη(p)| ≤ C(|p|γ−1 + 1). (39)
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Indeed, by the definition of the Legendre transform,

Lη(∇Hη(p)) = ∇Hη(p) · p−Hη(p) ∀p ∈ RN .

Therefore, by (38),

C−1
L |∇Hη(p))|γ

′
− CL ≤ Lη(∇Hη(p)) ≤ |∇Hη(p)| · |p|+ CL ≤

C−1
L

2
|∇Hη(p))|γ

′
+ C|p|γ + CL,

which implies (39), as γ/γ′ = γ − 1.
When η > 0 is fixed, Hη satisfies (2) with γ = N+3

N+2 , hence its conjugate γ′ = N + 3 > N + 2,
so Theorem 1.1 applies. In particular, there exists a classical solution (uη,mη) of

−ut −∆u+Hη(∇u) = −f(x,m(x, t)),

mt −∆m− div(∇Hη(∇u)m) = 0 in Q,

m(x, 0) = m0(x), u(x, T ) = uT (x) on TN .
(40)

such that, setting wη := −mη∇H(∇uη), then (mη, wη) is a minimizer of Eη in KN+3,α. We will
show that (uη,mη) converges as η → 0 to a solution of the original problem. Before proving
Theorem 1.3 we state some a priori estimates that will be crucial to pass to the limit.

Lemma 3.6. For all ` ∈ [1, N+2
N+2−γ′ ), there exists C` > 0 such that

‖mη‖L`(Q) ≤ C`. (41)

Proof. We observe that Eη(m,w) ≤ E1(m,w) for all η ≤ 1 and (m,w) ∈ KN+3,α. Hence,
Eη(mη, wη) = min Eη ≤ min E1 for all η ≤ 1. Since

Lη(q) = L(q) +
η

N + 3
|q|N+3 ≥ C−1

L |q|
γ′ − CL,

arguing as in Lemma 3.2 and recalling that mη solves the Fokker-Planck equation with drift
Aη = ∇Hη(∇uη), we get∫

Q

mα+1
η dxdt+

∫
Q

|∇Hη(∇uη))|γ
′
mη dxdt ≤ C.

Then we can apply Corollary 2.7 to conclude.

Lemma 3.7. Suppose that

α < min

{
γ′

N
,

γ′ − 2

N + 2− γ′

}
.

Then, there exists C > 0 such that

‖mη‖L∞(Q) ≤ C (42)

for all η > 0.

Proof. By contradiction, let Mη > 0, xη ∈ TN be such that

0 < Mη := mη(xη, tη) = max
(x,t)∈Q

mη(x, t)→∞, as η → 0.
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1. Let us define the following blow-up sequences

vη(x, t) := aγ
′−2
η uη(xη+aηx, tη+a2

ηt), µη(x, t) :=
1

Mη
mη(xη+aηx, tη+a2

ηt), aη = M−α/(γ
′−2)

η ,

(43)
for all (x, t) ∈ Qη := {(x, t) ∈ RN+1 : (xη + aηx, tη + a2

ηt) ∈ Q}. Then, (vη, µη) solves
−(vη)t −∆vη + Ĥη(∇vη) = −fη(x, µη)

(µη)t −∆µη(x)− div(∇Ĥη(∇vη(x))µη(x)) = 0 in Qη,

µη
(
x,−tη/a2

η

)
= 1

Mη
m0(xη + aηx),

vη
(
x, (T − tη)/a2

η

)
= aγ

′−2
η uT (xη + aηx) on Tη ,

(44)

where Tη = {x : xη + aηx ∈ TN}, Ĥη(p) = aγ
′

η Hη(a1−γ′
η p), fη(x, µ) = aγ

′

η f(xη + aηx,Mηµη).
Note that

aη → 0 as η → 0,

and Ĥη satisfies for some C1 > 0

−aγ
′

η C1 ≤ Ĥη(p) ≤ CH(|p|γ + aγ
′

η ) ≤ C1(|p|2 + 1) (45)

for all η > 0 and p ∈ RN , by (38). Similarly,

|∇Ĥη(p)| ≤ C(|p|γ−1 + 1), (46)

by (39).
Moreover, µη ≤ 1 on Qη and

0 ≤ fη(x, µη) ≤ Cfaγ
′

η (Mα
η + 1) ≤ Cf (a2

η + aγ
′

η ) (47)

for all η, by (4). Moreover, since γ′ ≥ 2, µη and vη are bounded (uniformly in η) in W 2,∞(Tη)
at initial and final time respectively.

2. We show that vη and its gradient are bounded on Qη. It suffices to observe that

v̄η(x, t) := aγ
′−2
η sup

x∈TN
uT (x) + C1a

γ′

η

(
T − tη
a2
η

− t
)
,

vη(x, t) := aγ
′−2
η inf

x∈TN
uT (x)− (CHa

γ′

η + Cfa
γ′

η + Cfa
2
η)

(
T − tη
a2
η

− t
)

are supersolutions and subsolutions respectively of the (backward) Cauchy problem for the HJB
equation in (44). Hence,

−C ≤ vη(x, t) ≤ vη(x, t) ≤ v̄η(x, t) ≤ C on Qη (48)

by the Comparison Principle. Proposition 2.3 applies with an arbitrary choice of a ball Ω′ =
B1(x0), as (45), (47), (48) hold with constants that do not depend on x0, thus

‖∇vη‖L∞(B1(x0)×(−tη/a2
η,(T−tη)/a2

η)) ≤ C.

Therefore, ‖∇vη‖L∞(Qη) ≤ C.
3. The rescaled distribution µη is a solution of the following linear equation

(µη)t −∆µη = div(Φη(x, t)) in Qη,
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where Φη(x, t) = ∇Ĥη(∇vη(x, t))µη(x, t) is bounded in L∞(Qη) uniformly with respect to η, by
the previous step and (46). Note that |µη| itself is bounded by one. Thus, by classical parabolic
regularity (see, for example, [17, Theorem V.1.1]), we conclude that ‖µη‖C0,θ/2([0,T ],C0,θ(TN )) ≤ C
for some θ > 0. It follows that µη is bounded away from zero in a neighbourhood of zero, as
µη(0, 0) = 1. Therefore, for any fixed ` > 0, there exists some neighbourhood U of (x, t) = (0, 0)
and δ > 0, depending on ` but not on η, such that∫

U

(µη)` dxdt ≥ δ. (49)

We may choose ` so that

α
N + 2

γ′ − 2
< ` <

N + 2

N + 2− γ′
,

by the assumptions on α. Thus, in view of (41),∫
Qη

(µη)` dxdt =
1

M `
η

∫
Qη

(mη(xη + aηx, tη + a2
ηt))

` dxdt = M
α

(N+2)

γ′−2
−`

η ‖mη‖`L`(Q) → 0

as η → 0, by the assumptions on α and the fact that Mη →∞, but this contradicts (49).

Proof of Theorem 1.3. Once L∞(Q) estimates on mη are in force, we just have to improve the
bounds on (uη,mη) to pass to (classical) limits in (40). The Maximum Principle and (42)
guarantee that uη is bounded in L∞(Q). Then, by Proposition 2.3, (38) and (42), ∇uη is
bounded in some Hölder space, independently on η. Note that such a bound can be extended
to (0, T ] by the regularity of the final datum uT . Standard parabolic estimates then provide
classical regularity of uη: indeed, one may apply first [17, Theorem V.1.1 or Theorem III.10.1] to
the Fokker-Planck equation to obtain Hölder continuity of mη and use Schauder estimates [17,
Section IV.5] to the HJB equation to conclude. Finally, note that also −wη/mη = ∇H(∇uη) is
bounded in L∞(Q) independently on η. Therefore, the penalisation term η

N+3

∫
Q
mη|wη/mη|N+3

in Eη vanishes, implying
min
KN+3,α

Eη → min
KN+3,α

E as η → 0.

Remark 3.8. Note that the penalization procedure leads to a minimizer of E in KN+3,α, rather
than in the natural and larger constraint set Kγ′,α.

Remark 3.9. In Lemma 3.7, the rescaling is designed so that (vη, µη) solves the Hamilton-Jacobi-
Bellman equation

−(vη)t −∆vη + Ĥη(∇vη) = −fη(x, µη),

where |fη| ≤ 1 on Q for all η. Then, gradient bounds ‖∇vη‖L∞(Qη) ≤ C are used to run
an argument by contradiction; those bounds are obtained by first estimating ‖vη‖L∞(Qη) ≤ C
through a comparison principle. Lipschitz estimates then follow.

Note that gradient estimates available in the literature usually depend on bounds on the
solution itself. On the other hand, for stationary HJB equations, namely

λ−∆v(x) +H(∇v(x)) = F (x),

it is possible to prove Lipschitz estimates that do not depend a priori on ‖v‖L∞(Q), for example
by means of the Bernstein method (see [18]). This key fact has been used in [10] to prove
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existence of classical solutions to (1) in the stationary case, for a wider range of couplings f . If
similar estimates were available also in the time dependent case, i.e. ‖∇vη‖L∞(Qη) ≤ C, with C
depending on ‖fη‖L∞(Qη), ‖vη(·, T )‖L∞(Qη) but not on ‖v‖L∞(Q) and the time horizon T , then
it would have been possible to have Lemma 3.7 in the whole range α ∈ (0, γ′/N), and hence
the existence of classical solutions. Note that our vη and fη are space-periodic, but the period
a−1
η →∞ as η → 0, so periodicity disappears in the blow-up limit.

4 A non-uniqueness example

The aim of this section is to prove that, under additional assumptions, (1) has multiple solutions.
Consider f(x,m) = f(m), uT ≡ 0 and m0 ≡ 1. Note that the corresponding system

−ut −∆u+H(∇u) = −f(m(x, t)) in Q,

mt −∆m− div(∇H(∇u)m) = 0 in Q,

m(x, 0) = 1, u(x, T ) = 0 on TN .
(50)

has always a trivial solution (ū, m̄) = ((t − T )(f(1)+H(0)), 1). We look for a solution to (50)
that is not the trivial one.

We will require that for some b > 2, c > 0,

• 0 ≤ L(q) ≤ c|q|b for all |q| ≤ 1,

• f ′(m) ≥ c for all |m| ≤ 2.
(51)

Note that (51) implies that H cannot be of class C2 in a neighborhood of p = 0. As an example,

if L(q) = 1
b |q|

b with b > 2, then H(p) = b−1
b |p|

b
b−1 ∈ C1, 1

b−1 (RN ).

Proposition 4.1. Under the assumptions of Theorem 1.1 and (51), for any T > 0 there exist
at least two (different) classical solutions to (50).

Proof. In view of Theorem 1.1, there exists a classical solution (ũ, m̃) of (1) such that the couple
(m̃, w̃) = (m̃,−m̃∇H(∇ũ)) is a minimizer of E . By adding a constant to E , we may assume that
F (1) = 0, hence E(1, 0) = 0. Our aim is to show that (ũ, m̃) cannot be the trivial solution; this
will be achieved by proving that E(m̃,−m̃∇H(∇ũ)) = minK E(m,w) < E(1, 0) = 0.

In order to build a suitable competitor (m,w), let us consider µ(x) := 1 + εϕ(x), where ε > 0
will be chosen later and ϕ ∈ C2(TN ) is a non-trivial eigenfunction of the Laplacian, i.e.

−∆ϕ = λϕ on TN

for some λ > 0. Note that
∫
TN ϕdx = 0. Set v(x) := ∇µ(x) = ε∇ϕ(x). In order to connect the

initial datum m0 ≡ 1 to µ at t = T/2, we define on Q

m(x, t) := 1 + ζ(t)(µ(x)− 1) = 1 + εζ(t)ϕ(x),

w(x, t) := ζ(t)v(x) +
ε

λ
ζ ′(t)∇ϕ(x) = ε∇ϕ(x)[ζ(t) + λ−1ζ ′(t)],

where ζ : [0, T ]→ R is a smooth function which is zero at t = 0 and equal to one in the interval
[T/2, T ]. One easily verifies that (u,m) ∈ K. Moreover, there exist constants C1, C2 depending
on T , but not on ε ≤ ε0, such that by (51)∫ T

0

∫
TN

mL
(
−w
m

)
dxdt ≤ c

∫ T

0

∫
TN

εb|1 + εζϕ|1−b|∇ϕ(ζ + λ−1ζ ′)|b dxdt ≤ C1Tε
b, (52)∫ T

0

∫
TN

F (m)dxdt ≥
∫ T

0

∫
TN

F (1) + εf(1)ζϕ+
c

2
ε2ζ2ϕ2dxdt ≥ C2Tε

2. (53)
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Therefore, by choosing ε small enough,

E(m,w) =

∫ T

0

∫
TN

mL
(
−w
m

)
− F (m) dxdt ≤ T (C1ε

b − C2ε
2) < 0 = E(1, 0)

Hence, the minimum of E is not achieved by (1, 0), and (ũ, m̃) cannot be the trivial solution.

Remark 4.2. The conclusion of Proposition 4.1 holds if one replaces the assumptions of Theorem
1.1 with the assumptions of Theorem 1.3 or Theorem 1.2. In the latter case, the non-trivial
solution minimizing the energy E has to be intended in the weak sense.

Also condition (51) can be weakened: the construction of a minimum of E that is not the
trivial solution can be achieved by means of a couple (µ, v) satisfying the constraint

∆µ+ div(v) = 0 on TN ,

∫
TN

µdx = 1, µ ≥ 0,

such that

ES(µ, v) :=

∫
TN

µL

(
− v
µ

)
− F (µ) dx < L(0)− F (1).

In other words, this can be seen as requiring that the energy functional ES associated to the
stationary version of (50) is not minimized by the couple (1, 0). Such a µ has to be “connected”
to the initial datum in order to serve as a competitor for the time-dependent problem (as in the
proof of Proposition 4.1). If H ∈ C2, one will be able to produce (m,w) so that E(m,w) < E(1, 0)
only if T is large enough by the aforementioned uniqueness results.

A Existence for small T

To prove existence in the small time-horizon regime, we implement a standard contraction map-
ping principle (see, for example, [28, Chapter 15]). This tool has already been used in [1, 2] in
the MFG framework to prove existence of solutions to (1), but with a different spirit: existence
for arbitrarily large T but initial data close to m̄ ≡ 1, or other “smallness” conditions (in the
mentioned works, the functional space setting is indeed different).

Let us rewrite (1) in integral form; set v(·, t) := u(·, T − t) for all t ∈ [0, T ], then, by the
classical Duhamel formula{

v(x, t) = et∆uT (x)−
∫ t

0
e(t−s)∆Φv[v,m](s)(x)ds,

m(x, t) = et∆m0(x) +
∫ t

0
e(t−s)∆Φm[v,m](s)(x)ds,

(54)

where

Φv[v,m](s)(·) := f(m(·, T − s))−H(∇v(·, s)),
Φm[v,m](s)(·) := div(∇H(∇v(·, T − s))m(s)) ∀s ∈ [0, T ],

and et∆ is the (strongly continuous) semigroup associated with the parabolic equation ϕt = ∆ϕ,
defined on suitable Hölder spaces (see iii) below). Note that (54) has the form of a forward-
forward system for v,m. Here, the local regularity of H, f plays a role, rather than the time
direction in the two equations or the behaviour of f at infinity: we just assume f,H ∈ C3 and do
not require (2) and (4) to hold. We stress that this argument could be adapted to more general
MFG systems (congestion problems, uT depending on m, ...).

Let us define Xk,ν := C([0, T ], Ck,ν(TN )) for all integers k and ν ∈ (0, 1). We will need the
following facts: let 0 < ν < β < 1, then
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i) If h ∈ C2(RN ) and ‖g1‖C1,ν(TN ), ‖g2‖C1,ν(TN ) ≤ K, then ‖h(g1)− h(g2)‖C1,ν(TN ) ≤ C‖g1−
g2‖C1,ν(TN ), for some C = C(h,K, ν) > 0.

ii) ‖g1g2‖Cν(TN ) ≤ C‖g1‖Cν(TN )‖g2‖Cβ(TN ) for all g1 ∈ Cν(TN ), g2 ∈ Cβ(TN ).

iii) ‖et∆u‖C2,ν(TN ) ≤ Ct−
2+ν−β

2 ‖u‖C0,β(TN ), ‖et∆u‖C2,β(TN ) ≤ Ct−
1
2 ‖u‖C1,β(TN ) for all t ∈

(0, 1].

Items i) and ii) follows by computation; as for iii) see, for example, [28, p. 274]. Recall also that
C2,ν(TN ) is continuously embedded into C1,β(TN ).

Remark A.1. Note that the contraction mapping principle implies also uniqueness of solutions
in the set Za (see (55) below), that is, there is only one equilibrium (u,m) that is close to the
final-initial data (uT ,m0).

Proof of Theorem 1.4. Fix 0 < ν < β < 1 so that uT ∈ C2,β(T ) and m0 ∈ C2,ν(T ). Then,
Φv : X2,β ×X2,ν → X1,β and Φm : X2,β ×X2,ν → X0,β . Let a > 0 and

Za := {(v,m) ∈ X2,β ×X2,ν : v(0) = uT , m(0) = m0,

‖v(t)− uT ‖C2,β(TN ) ≤ a, ‖m(t)−m0‖C2,ν(TN ) ≤ a for all t ∈ [0, T ]}. (55)

Let (v,m) 7→ (v̂, m̂) := Ψ(v,m), where{
v̂(t) = et∆uT −

∫ t
0
e(t−s)∆Φv[v,m](s)ds,

m̂(t) = et∆m0 +
∫ t

0
e(t−s)∆Φm[v,m](s)ds.

Our aim is to prove that Ψ has a fixed point, by means of the contraction mapping theorem.
First, we claim that Ψ maps Za into itself when T = T (a) is small. Indeed,

‖et∆uT − uT ‖C2,β(TN ) ≤ a/2, ‖et∆m0 −m0‖C2,ν(TN ) ≤ a/2

if t is small, by continuity of the semigroup et∆. Moreover,∥∥∥∥∫ t

0

e(t−s)∆Φv[v,m](s)ds

∥∥∥∥
C2,β(TN )

≤
∫ t

0

‖e(t−s)∆Φv[v,m](s)‖C2,β(TN )ds

≤ C
∫ t

0

(t− s)−1/2‖Φv[v,m](s)‖C1,β(TN )ds ≤ C1T
1/2 ≤ a/2

whenever T is small (here, C, C1, ..., are positive constants depending on a, but not on T ).
Similarly, ∥∥∥∥∫ t

0

e(t−s)∆Φm[v,m](s)ds

∥∥∥∥
C2,ν(TN )

≤ CT (β−ν)/2 ≤ a/2,

so Ψ : Za → Za.
To show that Ψ is a contraction, note that for all s ∈ [0, T ],

‖Φm[v1,m1](s)− Φm[v2,m2](s)‖C0,β(TN ) ≤
≤ ‖∇H(∇v1(T − s))(m1 −m2)‖C1,β(TN ) + ‖m2 [∇H(∇v1(T − s))−∇H(∇v2(T − s))]‖C1,β(TN )

≤ C‖∇H(∇v1(T − s))‖C1,β(TN )‖m1 −m2‖C1,β(TN ) + ‖m2‖C1,β(TN )‖(∇v1 −∇v2)(T − s)‖C1,β(TN )

≤ C1(‖m1 −m2‖C2,ν(TN ) + ‖v1(T − s)− v2(T − s)‖C2,β(TN )).
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Therefore,∥∥∥∥∫ t

0

e(t−s)∆ (Φm[v1,m1](s)− Φm[v2,m2](s)) ds

∥∥∥∥
C2,ν(TN )

≤

≤ C
∫ t

0

(t− s)−
2+ν−β

2 (‖m1 −m2‖C2,ν(TN ) + ‖v1(T − s)− v2(T − s)‖C2,β(TN ))ds

≤ CT (β−ν)/2 sup
s∈[0,T ]

(‖m1 −m2‖C2,ν(TN ) + ‖v1(T − s)− v2(T − s)‖C2,β(TN ))

≤ ‖m1 −m2‖X2,ν + ‖v1 − v2‖X2,β .

by eventually reducing T . In a similar way, one shows that∥∥∥∥∫ t

0

e(t−s)∆Φv[v1,m1](s)− Φv[v2,m2](s)ds

∥∥∥∥
C2,β(TN )

≤ ‖m1 −m2‖X2,ν + ‖v1 − v2‖X2,β ,

hence Ψ is a contraction; its fixed point in Za is a solution to (54), and hence a classical solution
to (1) by classical Schauder regularity results.
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[6] V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov. Fokker-Planck-Kolmogorov
equations, volume 207 of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 2015.

[7] A. Briani and P. Cardaliaguet. Stable solutions in potential mean field game systems. NoDEA
Nonlinear Differential Equations Appl., 25(1):Art. 1, 26, 2018.

[8] P. Cardaliaguet, J. Graber, A. Porretta, and D. Tonon. Second order mean field games with
degenerate diffusion and local coupling. NoDEA, 22(5):1287–1317, 2015.

[9] P. Cardaliaguet and P. J. Graber. Mean field games systems of first order. ESAIM Control Optim.
Calc. Var., 21(3):690–722, 2015.

[10] M. Cirant. Stationary focusing mean-field games. Comm. Partial Differential Equations, 41(8):1324–
1346, 2016.

[11] M. Cirant. On the existence of oscillating solutions in non-monotone mean-field games. arXiv
preprint, https://arxiv.org/abs/1711.08047, 2017.

[12] D. A. Gomes, L. Nurbekyan, and M. Prazeres. One-Dimensional Stationary Mean-Field Games
with Local Coupling. Dyn. Games Appl., 8(2):315–351, 2018.

28



[13] D. A. Gomes, E. A. Pimentel, and V. Voskanyan. Regularity theory for mean-field game systems.
SpringerBriefs in Mathematics. Springer, 2016.
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