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The definition and manipulation of Langevin equations with multiplicative white noise require special care (one has to specify the time discretisation and a stochastic chain rule has to be used to perform changes of variables). While discretisation-scheme transformations and non-linear changes of variable can be safely performed on the Langevin equation, these same transformations lead to inconsistencies in its path-integral representation. We identify their origin and we show how to extend the well-known Itō prescription (dB 2 = dt) in a way that defines a modified stochastic calculus to be used inside the path-integral representation of the process, in its Onsager-Machlup form.

Introduction

Physical phenomena are often non-deterministic, presenting a stochastic behaviour induced by the action of a large number of constituents or by more intrinsic sources of noise [START_REF] Stratonovich | Nonlinear Nonequilibrium Thermodynamics I[END_REF][START_REF] Gardiner | Handbook of stochastic methods for physics, chemistry, and the natural sciences[END_REF][START_REF] Van Kampen | Stochastic processes in physics and chemistry. North-Holland personal library[END_REF][START_REF]Stochastic differential equations: an introduction with applications[END_REF]. A paradigmatic example is the one of Brownian motion, the study of which is at the source of stochastic calculus. From a modelisation viewpoint, the evolution of such systems can be described by a Langevin-type equation or by the path probability of its trajectories. An important aspect of these descriptions is that the trajectories are not differentiable in general. This peculiarity implies that the definition of the evolution equation requires special care, namely, it demands the specification of a non-ambiguous time-discretisation scheme and, moreover, it induces a modification of the rules of calculus [START_REF] Stratonovich | Nonlinear Nonequilibrium Thermodynamics I[END_REF][START_REF] Gardiner | Handbook of stochastic methods for physics, chemistry, and the natural sciences[END_REF][START_REF] Van Kampen | Stochastic processes in physics and chemistry. North-Holland personal library[END_REF][START_REF]Stochastic differential equations: an introduction with applications[END_REF]. The important role of the time discretisation in the Langevin equation is now clearly elucidated [START_REF] Van Kampen | Itô versus Stratonovich[END_REF] and many results have been obtained for the construction of an associated path-integral formalism, whose functional action and Jacobian correctly take into account the choice of discretisation [START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF][START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF][START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF][START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF][START_REF] Itami | Universal Form of Stochastic Evolution for Slow Variables in Equilibrium Systems[END_REF][START_REF] Zochil | Functional integral approach for multiplicative stochastic processes[END_REF][START_REF] Vera Moreno | Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism[END_REF][START_REF] Daniel | Path integral approach to nonequilibrium potentials in multiplicative Langevin dynamics[END_REF].

An important point in the manipulation of Langevin equations is that the usual differential-calculus chain rule for changes of variables, d t u(x(t)) = u (x(t)) d t x(t), has to be modified. It is replaced by the Itō formula (or 'stochastic chain rule'), which is itself the consequence of the Itō substitution rule dB 2 = dt for an infinitesimal increment dB = B t+dt -B t of a Brownian motion B t of unit variance. Although such manipulations are well understood at the Langevin equation level, the situation is less clear for the transformation of fields performed inside the action functional corresponding to the Langevin equation. It is known, for instance, that the use of the stochastic chain rule in the action can yield unsolved inconsistencies, both in statistical field theory [START_REF] Langouche | Functional integration and semiclassical expansions[END_REF][START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] and in quantum field theory [START_REF] Gervais | Point canonical transformations in the path integral[END_REF][START_REF] Salomonson | When does a non-linear point transformation generate an extra O( 2 ) potential in the effective Lagrangian?[END_REF][START_REF] Langouche | Functional integrals and the Fokker-Planck equation[END_REF][START_REF] Langouche | Functional integration and semiclassical expansions[END_REF][START_REF] Alfaro | Field transformations, collective coordinates and BRST invariance[END_REF][START_REF] Apfeldorf | Coordinate redefinition invariance and "extra" terms[END_REF].

In this article, we elucidate the source of this inconsistency, focusing on the case of the Onsager-Machlup action functional corresponding to a Langevin equation for one degree of freedom, with multiplicative white noise. We find that the sole Itō substitution rule dB 2 = dt proves to be insufficient to correctly perform non-linear changes of variables in the action. We identify the required generalised substitution rules and we determine that their use should be performed with extreme care, since they take different forms when applied inside the exponential of the time-discrete action, or in the prefactor of its Gaussian weight factor.

In continuous time, we show that, in general, the use of the usual stochastic chain rule inside the action yields wrong results -and this even for a Stratonovich-discretised additive-noise Langevin equation. We determine a modified stochastic chain rule that allows one to manipulate the action directly, even in continuous time.

The organisation of the article is the following. In Sec. 2, we review the nonambiguous construction of the Langevin equation, providing three detailed examples which illustrate the role of the Itō substitution rule. In Sec. 3, we recall inconsistencies that appear when one manipulates the action incorrectly, and we determine the valid substitution rules. We synthesise our results in Sec. 4. Appendices gather part of the technical details.

Langevin equation and stochastic calculus

In this Section, we briefly review the definition of multiplicative Langevin equations. For completeness, we first describe the standard construction of an unambiguous stochastic evolution equation through time discretisation, and we then provide three examples illustrating how differential calculus is generalised for stochastic variables, following this construction.

Discretisation convention of Langevin equations

Consider a time-dependent variable x(t) which verifies a Langevin equation with a force f (x) and a multiplicative noise g(x)η,

d t x(t) = f (x(t)) + g(x(t)) η(t) . (1) 
The function g(x), that depends in general on the value of the variable, describes the amplitude of the stochastic term of this equation. The noise η(t) is a centred Gaussian white noise of 2-point correlator equal to η(t)η(t ) = 2Dδ(t -t), where D plays the role of temperature. It is well known that the Langevin equation in its continuoustime writing ( 1) is ambiguous: one needs to specify a 'discretisation scheme' in order to give it a meaning (see [START_REF] Van Kampen | Itô versus Stratonovich[END_REF][START_REF] Van Kampen | Stochastic processes in physics and chemistry. North-Holland personal library[END_REF] for reviews). Such a scheme is defined in discrete time, in the zero time step limit. We denote by x t the time-discrete variable, with now t ∈ dt N. The central feature of the definition of the Langevin equation is the following. Upon the time step t t + dt, the righthand-side (r.h.s.) of ( 1) is evaluated at a value of x = xt chosen as a weighted average between x t and x t+dt as

x t+dt -x t dt = f (x t ) + g(x t )η t η t η t = 2D dt δ tt (2) 
where the α-discretised evaluation point is

xt = αx t+dt + (1 -α)x t = x t + α(x t+dt -x t ) . (3) 
In the time-discrete evolution (2), the noise η t is a centred Gaussian random variable (independent from those at other times, and thus independent of x t ). Its explicit distribution reads

∀t, P noise (η t ) = dt 4πD e -1 2 dt 2D η 2 t . (4) 
Its form implies that the stochastic term g(x t )η t in ( 2) is typically of order dt -1/2 , that is much larger than f (x t ), which is of order dt 0 . This difference is at the core of the ambiguity of the equation ( 1): as dt → 0, the deterministic contribution f (x t ) to ( 2) is independent of the choice of α-discretisation; however, different values of α lead to different behaviours of the stochastic term g(x t )η t . Indeed, making the discretisation explicit with a superscript we see, by Taylor expansion, that

g x(ᾱ) t -g x(α) t η t = g x(α) t + ( ᾱ -α)(x t+dt -x t ) -g x(α) t η t = (ᾱ -α)(x t+dt -x t )g (x (α) t )η t + O(dt -1 2 ) ( 5 
)
is typically of order dt 0 . This shows that, in general, g(x

(α)
t )η t and g(x

( ᾱ) t )η t are not equivalent in (2) when α = ᾱ.
Standard discretisation choices are α = 1 2 (known as 'mid-point' or Stratonovich convention) and α = 0 (Itō convention). The Stratonovich choice is invariant by time reversal but, as other choices of 0 < α ≤ 1, yields an implicit equation (2) for x t+dt at each time step. The Itō convention, yielding independent increments for x(t), is often chosen in mathematics, where the construction of the corresponding "stochastic calculus" [START_REF]Stochastic differential equations: an introduction with applications[END_REF] is done by defining a stochastic integral for the integral equation corresponding to [START_REF] Stratonovich | Nonlinear Nonequilibrium Thermodynamics I[END_REF].

In general, we will denote the α-discretised Langevin equation (1) as

d t x α = f (x) + g(x) η . (6) 

Three examples

In this Section, we review three archetypal situations illustrating the role played by the choice of α-discretisation. We explain the computations in detail, so as to start off on the right footing for understanding the origin of the apparent contradictions discussed in Sec. 3.

The stochastic chain rule (or Itō formula)

A first consequence of the presence of a term of order dt -1/2 in the discrete-time Langevin equation ( 2) is that the usual formulae of differential calculus have to be altered. For instance, the chain rule describing the time derivative of a function of x(t) is modified as [START_REF] Van Kampen | Stochastic processes in physics and chemistry. North-Holland personal library[END_REF][START_REF] Gardiner | Handbook of stochastic methods for physics, chemistry, and the natural sciences[END_REF] 

d t u(x) α = u (x)d t x + (1 -2α)D g(x) 2 u (x) , (7) 
where x = x(t) verifies the Langevin equation [START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF]. It is only for the Stratonovich discretisation that one recovers the chain rule of differentiable functions. For α = 0, the relation [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] is known as the "Itō formula". The stochastic chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] is understood as follows. Coming back to the discrete-time definition of d t [u(x)], one performs a Taylor expansion in powers of ∆x ≡ x t+dt -x dt , keeping in mind that, as seen from ( 2), ∆x is of order dt 1/2 ; this yields

u(x t+dt ) -u(x t ) dt = u xt + (1 -α)∆x -u xt -α∆x dt = ∆x dt u (x t ) + 1 2 (1 -2α) ∆x 2 dt u (x t ) + O(dt 1 2 ) . ( 8 
)
For a differentiable function x(t), the term ∝ ∆x 2 /dt would be negligible in the dt → 0 limit but this is not the case for a stochastic x(t). The next step is to understand the continuous-time limit dt → 0 of (8): the so-called "Itō prescription" amounts to replacing ∆x 2 /dt in this expression by its quadratic variation

∆x 2 dt → 2Dg(x t ) 2 as dt → 0 ( 9 
)
(which is not equal to the expectation value of ∆x 2 /dt, as occasionally read in the literature, since g(x t ) depends on the value of xt without averaging). Note that in Eq. ( 8), one could as well replace ∆x 2 /dt by the Itō-discretised 2Dg(x t ) 2 (or any other discretisation point) instead of the α-discretised one in [START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF] since this would only add terms of order dt 1/2 to (8) -hence the name "Itō prescription". In this article, we will rather use the name "substitution rule" for two reasons: one is that we work in a generic α-discretisation scheme; another one is that we will introduce generalisations of (9) at a later stage.

We emphasise that the substitution rule [START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF] has to be used with care, as will be illustrated many times in this article. The validity of its use relies on the precise definition of the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF]: this identity has to be understood in an "L 2 -norm" sense, i.e. it corresponds to having [ t f 0 dt {l.h.s.-r.h.s.}] 2 = 0 (∀t f ) and not to having a point-wise equality. The precise formulation and the demonstration of ( 7) and [START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF] are given in Sec. B.1 of App. B, along the lines of Øksendal's reference textbook [START_REF]Stochastic differential equations: an introduction with applications[END_REF].

As this sort of issues is often overlooked in the theoretical physics literature, we now explain why an argument that is regularly proposed to justify [START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF] is in fact invalid. One could argue that the distribution of ∆x 2 in (8) is sharply peaked around its most probable value 2Dg(x t ) 2 dt, because its variance ∆x 4 -∆x 2 2 is of order dt 2 as read from ( 2) and (4); this would allow one to replace ∆x 2 /dt by 2Dg(x t ) 2 as dt → 0 in [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF], hence justifying [START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF]. However, this argument is incorrect because the variance of ∆x 2 /dt is of the same order dt 0 as some other terms in the time-discrete Langevin equation [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF]. To understand this point in detail, it is convenient to rephrase the argument as follows. First, one notes that according to (2) and ( 4), the quantity ∆x/dt is dominated by its most singular contribution g(x t )η t in the dt → 0 limit

∆x dt = g(x t )η t + O(dt 0 ) . (10) 
In this expression, we have chosen to evaluate g(x) at x = x t instead of xt , the difference being gathered with other terms of order O(dt 0 ) (see [START_REF] Van Kampen | Itô versus Stratonovich[END_REF] for a proof). This allows one to use the fact that η t is independent of x t in order to compute the variance of ∆x 2 /dt by Gaussian integration over η t as

∆x 2 dt 2 - ∆x 2 dt 2 = g(x t )η t 4 -g(x t )η t 2 2 dt 2 + O(dt) = 4D 2 3 g(x t ) 4 -g(x t ) 2 2 + O(dt) (11) 
and one observes that it does not vanish as dt → 0 (even for a constant noise amplitude g(x) = g). The variance of ∆x 2 /dt is thus of the same order dt 0 as other terms in Eq. [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF]; this means that the properties of the distribution of ∆x 2 /dt cannot be invoked to justify the substitution rule [START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF]. This rule has to be understood in an L 2 sense that we explain in App. B.1. As will prove to be essential, it means that the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] is not true "point-wise" but only in a weaker sense -which has to be taken care of meticulously in the path integral action, as we discuss thoroughly in Sec. 3.2. Finally, we note that the substitution rule ( 9) is equivalently written as follows ‡

η 2 t dt → 2D (12) 
for the discrete time white noise η t .

Changing discretisation while keeping the same evolution

Since the solution x(t) of the Langevin equation (1) depends crucially on the choice of α-discretisation, although this choice seems to be arbitrary, one can wonder whether x(t) can also be described as the solution of another Langevin equation, ‡ Another writing is dB 2 t → dt for a Brownian motion Bt of unit variance -the relation with our discrete white noise being ηt dt = (2D) 1/2 (B t+dt -Bt).

with a different ᾱ-discretisation and a modified force. To answer this question, one comes back to the discrete-time evolution (2)- [START_REF] Van Kampen | Stochastic processes in physics and chemistry. North-Holland personal library[END_REF] x t+dt -

x t dt = f x(α) t + g x(α) t η t ( 13 
)
where we wrote explicitly the discretisation convention in superscript. Then, writing

x(α)

t = x(ᾱ) t + (α -ᾱ)(x t+dt -x t ) (14) 
and expanding in powers of ∆x = x t+dt -x t = O(dt 1/2 ) one obtains

x t+dt -x t dt = f x(ᾱ) t + g x(ᾱ) t η t + (α -ᾱ)g x(ᾱ) t ∆x η t + O(dt 1 2 ) = f x(ᾱ) t + g x(ᾱ) t η t + (α -ᾱ)g x(ᾱ) t g x(ᾱ) t η 2 t dt + O(dt 1 2 ) ( 15 
)
where we used (2) for the last line.

Finally, using the substitution rule [START_REF] Vera Moreno | Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism[END_REF] and sending dt to zero, one finds that the process x(t), solution of the Langevin equation ( 6) in the α-discretisation, is also verifying another Langevin equation

d t x ᾱ = f α→ ᾱ(x) + g(x) η (16) 
f α→ ᾱ(x) = f (x) + 2(α -ᾱ)D g(x)g (x) (17) 
which is understood in ᾱ-discretisation and presents a modified force f α→ ᾱ(x). One checks directly that the Fokker-Planck equations corresponding to the two Langevin equations ( 1) and ( 16)-( 17) are identical, illustrating the equivalence of the two corresponding processes (see for instance [START_REF] Van Kampen | Itô versus Stratonovich[END_REF] for the special case α = 0 and ᾱ = 1/2). However, we emphasise that, since we used the substitution rule [START_REF] Vera Moreno | Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism[END_REF], we have to keep in mind that the equivalence between ( 6) and ( 16)-( 17) is not true pointwise and this can be the source of unexpected problems, as discussed in Sec. 3.1.

Infinitesimal propagator for a path integral formulation

The trajectory probability of stochastic processes described by a Langevin equation has been the focus of many studies in statistical mechanics, either from the Onsager-Machlup approach [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF][START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] or from the Martin-Siggia-Rose-Janssen-De Dominicis (MSRJD) one [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF][START_REF] Dominicis | Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques[END_REF][START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF][START_REF] Bausch | Renormalized field theory of critical dynamics[END_REF][START_REF] Janssen | Field Theoretical Methods Applied to Critical Dynamics[END_REF][START_REF] Dominicis | Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems[END_REF]. The idea in the Onsager-Machlup approach (to which we restrict our present analysis) is to write the probability of a trajectory

[x(t)] 0≤t≤t f as Prob x(t) = J [x(t)] e -S[x(t)] , (18) 
where S[x(t)] is the "action", which takes a Lagrangian form S[x(t)] = t f 0 dt L(x, d t x), and J [x(t)] is a "normalisation prefactor" §. As can be expected from the discussion at the beginning of subsec. 2.1, the form of the action and of the normalisation prefactor will depend not only on the α-discretization of the underlying Langevin equation, but also on the discretisation convention which is used to write them. The average of a functional F of the trajectory can then be written in a path integral form as

F x(t) = Dx F x(t) J [x(t)] Prob x(t) P i x(0)) . ( 19 
) § The prefactor J [x(t)
] can be included in the measure Dx on trajectories, but is not exponentiated in the action in general because it does not take a Lagrangian form.

The path integral is understood in the Feynman sense [START_REF] Feynman | Space-Time Approach to Non-Relativistic Quantum Mechanics[END_REF]: a sum over possible trajectories which start from an initial condition sampled by a distribution P i (x). It is best depicted in a time-discrete setup in the limit of zero time step, where one integrates over the set of possible values x t of the trajectory at discrete times t ∈ dt N separated by a time step dt, yielding

t f /dt-1 t=0 dx t P(x t+dt , t + dt|x t , t) dt→0 -→ Dx J [x(t)] e -S[x(t)] (20) 
where P(x t+dt , t + dt|x t , t) is a conditional probability (or "infinitesimal propagator").

In this subsection, we focus our attention on the infinitesimal propagator between two successive time steps, that for simplicity we take at the first time step. Our goal is to compute P(x dt |x 0 ) ≡ P(x dt , dt|x 0 , 0) and to understand how the full action and normalisation prefactor are reconstituted through [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF]. We note that the correct form of this propagator, taking into account the α-discretisation is well-known [START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF][START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF][START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF][START_REF] Itami | Universal Form of Stochastic Evolution for Slow Variables in Equilibrium Systems[END_REF]. Still, we derive it again by taking a pedestrian approach that illustrates the role played by the substitution rules ( 9) or ( 12) -a role that proves essential to understand in order to later find the correct rules of stochastic calculus in the action.

2.2.3.a First time step: changing from the distribution of η 0 to that of x dt . Let us fix the initial condition x 0 and determine the distribution of x dt obtained from the discrete Langevin equation ( 2). This equation is an implicit equation on x dt , the solution of which takes the form

x dt = X 1 (x 0 , η 0 ) . (21) 
Therefore, the distribution of x dt reads

P(x dt |x 0 ) = dη 0 δ(x dt -X 1 (x 0 , η 0 )) P noise (η 0 ) , (22) 
with the noise distribution given in Eq. ( 4). In order to integrate over η 0 , we would like to read the Dirac as a δ on the variable η 0 . Cancelling the argument of the Dirac distribution in [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF] defines a function H 0 (x 0 , x dt ) such that

x dt -X 1 (x 0 , η 0 ) η0=H0(x0,x dt ) = 0 . (23) 
Then, the relation [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF] yields

P(x dt |x 0 ) = dη 0 δ(η 0 -H 0 (x 0 , x dt )) ∂ η0 x dt -X 1 (x 0 , η 0 ) η0=H0(x0,x dt ) P noise (η 0 ) = P noise H 0 (x 0 , x dt ) ∂ η0 X 1 x 0 , H 0 (x 0 , x dt ) . ( 24 
)
Note that this relation can be derived by performing a change of variables in the probability distribution P noise of η 0 , to obtain the distribution of x dt seen as a function of η 0 through [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF]. (Two ways of evaluating the denominator are recalled in App. A.2 [START_REF] Itami | Universal Form of Stochastic Evolution for Slow Variables in Equilibrium Systems[END_REF] and App. A.3 [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF]; we follow here a different route that is better adapted for our purposes.)

2.2.3.b Expansions in the limit dt → 0. The discrete Langevin equation ( 2) relating (at t = 0) x 0 and x dt is a non-linear equation for which there is no explicit solution in general. As discussed previously, in the dt → 0 limit, one has x dt -x 0 = O(dt 1/2 ) (which is true for instance for a Brownian motion when f (x) = 0 and g(x) = 1, and is checked self-consistently in general). Writing x0 = x 0 +α(x dt -x 0 ), we then expand (2) in order to obtain x 0 -x dt up to order O(dt) included. One deduces

x dt -x 0 = f (x 0 ) + η 0 g(x 0 ) dt + αdt(x dt -x 0 ) f (x 0 ) + η 0 g (x 0 ) + 1 2 αη 0 (x dt -x 0 )g (x 0 ) (25) 
where we used η 0 = O(dt -1/2 ). Solving for x dt , one obtains, after expansion,

X 1 (x 0 , η 0 ) = x 0 + dt f (x 0 ) + dt η 0 g(x 0 ) + αdt 2 f (x 0 ) + η 0 g(x 0 ) f (x 0 ) + η 0 g (x 0 ) + 1 2 α 2 dt 3 η 2 0 2f (x 0 )g (x 0 ) 2 + η 0 g(x 0 ) 2 g (x 0 ) + 2g(x 0 ) 2f (x 0 )g (x 0 ) + f (x 0 )g (x 0 ) + η 0 g (x 0 ) 2 , ( 26 
)
where we kept terms of high enough order in η 0 so as to ensure that the derivative w.r.t. η 0 used in [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF] contains terms up to order O(dt 2 ) included. This derivative reads

∂ η0 X 1 (x 0 , η 0 ) = dt g(x 0 ) 1 + 2αdtη 0 g (x 0 ) + αdtf (x 0 ) + αdtf (x 0 ) g (x0) g(x0) + 3 2 dt 2 α 2 η 2 0 2g (x 0 ) 2 + g(x 0 )g (x 0 ) . (27) Inverting, we have 1 ∂ η0 X 1 x 0 , η 0 = 1 |g(x 0 )dt| 1 -2αdtη 0 g (x 0 ) -αdtf (x 0 ) -αdtf (x 0 ) g (x0) g(x0) + 1 2 dt 2 α 2 η 2 0 2g (x 0 ) 2 -3g(x 0 )g (x 0 ) . ( 28 
)
In this expression, one can now use the substitution rule [START_REF] Vera Moreno | Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism[END_REF] to derive 1

∂ η0 X 1 x 0 , η 0 = 1 |g(x 0 )dt| 1 -2αdtη 0 g (x 0 ) -αdtf (x 0 ) -αdtf (x 0 ) g (x0) g(x0) + Dα 2 dt 2g (x 0 ) 2 -3g(x 0 )g (x 0 ) . ( 29 
)
For later convenience, we prefer to express the numerator of the r.h.s. in terms of x0 instead of x 0 . We then utilise x 0 = x0 -α(x dt -x 0 ) and we replace x dt -x 0 by its expression deduced from [START_REF] Gardiner | Handbook of stochastic methods for physics, chemistry, and the natural sciences[END_REF]. All in all, the only resulting non-trivial contribution to ( 29) is

dt η 0 g (x 0 ) = dt η 0 g x0 -α dt g(x 0 )η 0 + f (x 0 ) = dt η 0 g (x 0 ) -α dt 2 η 2 0 g(x 0 )g (x 0 ) + o(dt) = dt η 0 g (x 0 ) -2αD dt g(x 0 )g (x 0 ) + o(dt) (30) 
and, finally, Eq. ( 29) becomes 1

∂ η0 X 1 x 0 , η 0 = 1 |g(x 0 )dt| 1 -2αdtη 0 g (x 0 ) -αdtf (x 0 ) -αdtf (x 0 ) g (x0) g(x0) + Dα 2 dt 2g (x 0 ) 2 + g(x 0 )g (x 0 ) . ( 31 
)

CONTENTS

At this point one would like to exponentiate this expression, an operation that has to be performed with care since η 0 dt is of order dt 1/2 . Using the substitution rule ( 12) as previously, one has

e Aη0dt = 1 + Aη 0 dt + DA 2 dt + o(dt) , (32) 
e Aη0dt-DA

2 dt = 1 + Aη 0 dt + o(dt) . (33) 
These relations imply 1

∂ η0 X 1 x 0 , η 0 = 1 |g(x 0 )dt| exp -2αdtη 0 g (x 0 ) -αdtf (x 0 ) -αdtf (x 0 ) g (x0) g(x0) -Dα 2 dt 2g (x 0 ) 2 -g(x 0 )g (x 0 ) . ( 34 
)
The other function that one needs to determine to compute the infinitesimal propagator ( 24) is H 0 (x 0 , x dt ), defined by Eq. ( 23), which is equivalent to Eq. ( 2) evaluated at t = 0. After a simple rearrangement one finds

η 0 = 1 dt x dt -x 0 -dtf (x 0 ) g(x 0 ) + α(x dt -x 0 )g (x 0 ) ≡ H 0 (x 0 , x dt ) . (35) 
In the denominator, one recognises an expansion around x0 [with the l.h.s. η 0 evaluated up to O(dt 0 ) included, so that P noise H 0 (x 0 , x dt ) contains terms up to O(dt), as seen from Eq. ( 4)]. This yields

H 0 (x 0 , x dt ) = x dt -x0 dt -f (x 0 ) g(x 0 ) . (36) 
2.2.3.c Infinitesimal propagator. Coming back to Eq. ( 24), one obtains from Eqs. ( 4), ( 31) and (36) that

P(x dt |x 0 ) α = dt -1 4πD 1 |g(x 0 )| exp - 1 2 dt 2D x dt -x0 dt -f (x 0 ) g(x 0 ) 2 -αdtf (x 0 ) -2αdt x dt -x0 dt -f (x 0 ) g(x 0 ) g (x 0 ) -αdtf (x 0 ) g (x0) g(x0) -Dα 2 dt 2g (x 0 ) 2 -g(x 0 )g (x 0 ) (37) 
where the symbol α = indicates that in the r.h.s. x0 is the α-discretised point. Recognising a double-product to complete the square, one gets

P(x dt |x0) α = dt -1 4πD 1 |g(x0)| exp - 1 2 dt 2D x dt -x 0 dt -f (x0) + 4αD g(x0)g (x0) g(x0) 2 -αdtf (x0) -αdtf (x0) g (x 0 ) g(x 0 ) + Dα 2 dt 2g (x0) 2 + g(x0)g (x0) . ( 38 
)
The global prefactor |g(x 0 )| -1 in the infinitesimal propagator (38) can also be expressed in terms of |g(x 0 )| -1 . For this, one starts again from x 0 = x0 -α(x dt -x 0 ) and replaces x dt -x 0 by its expression deduced from (2). This leads to

1 |g(x 0 )| = 1 |g(x 0 )| 1 + αdtη 0 g (x 0 ) + αdtf (x 0 ) g (x0) g(x0) + Dα 2 dt 2g (x 0 ) 2 -g(x 0 )g (x 0 ) . ( 39 
)
Exponentiating in the same way as we obtained [START_REF] Langouche | General Langevin equations and functional integration[END_REF],

1 |g(x 0 )| = 1 |g(x 0 )| exp 1 + αdtη 0 g (x 0 ) + αdtf (x 0 ) g (x0) g(x0) + Dα 2 dt g (x 0 ) 2 -g(x 0 )g (x 0 ) . ( 40 
)
Since this relation contains a term ∝ η 0 , once again one has to complete the square.

Coming back to Eq. ( 24), finally, many terms compensate and, instead of Eq. ( 38), one obtains a simpler expression for the infinitesimal propagator:

P(x dt |x 0 ) α = dt -1 4πD 1 |g(x 0 )| × exp - 1 2 dt 2D x dt -x0 dt -f (x 0 ) + 2αD g(x 0 )g (x 0 ) g(x 0 ) 2 -αdtf (x 0 ) . (41)
2.2.3.d The continuous-time limit. The result (41) is well-known and can be derived in simpler ways [START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF][START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF][START_REF] Itami | Universal Form of Stochastic Evolution for Slow Variables in Equilibrium Systems[END_REF] that are reviewed in App. A, and that do not use (or use in a different way) the equivalent substitution rules ( 9) or [START_REF] Vera Moreno | Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism[END_REF]. Having such different approaches leading to the same result is important in order to identify the conditions under which this substitution rule can be used; we note in particular that we used this rule in Eqs. ( 29), ( 34) and (40) only in the prefactor of the exponential P noise (H 0 ) and not inside the exponential. As discussed throughout Sec. 3, such restriction on the condition under which the substitution rule ( 9) is valid proves to be crucial. We can read from Eq. (41) the continuous-time limit [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF]: this yields the trajectory probability in the form [START_REF] Alfaro | Field transformations, collective coordinates and BRST invariance[END_REF] with the so-called Onsager-Machlup action

S[x(t)] α = t f 0 dt 1 2 1 2D d t x -f (x) + 2αD g(x)g (x) g(x) 2 + αf (x) (42)
where the arguments of the functions f and g are taken in α-discretisation. The associated normalisation prefactor reads

J [x(t)] α = t dt -1 4πD 1 |g(x t )| . ( 43 
)
We emphasise (and this seems to have been little stressed in the literature) that it is essential to specify the discretisation point of the normalisation prefactor J [x(t)], since it can yield different contributions to the action for different discretisation conventions, as should be clear from Eq. (40). For instance, when proving the Fluctuation-Dissipation Theorem and the Fluctuation Theorem for Langevin equations with multiplicative noise [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF], one has to take into account that reversing the time changes the discretisation from α to 1 -α. This implies that when comparing the trajectory probability of a path and its time reversed, the discretisation of one of the normalisation prefactors has to be restored to α from 1 -α, which induces terms similar to those in (40) in the action without which the Fluctuation Theorem would not be verified. We also note that Itami and Sasa have recently discussed in [START_REF] Itami | Universal Form of Stochastic Evolution for Slow Variables in Equilibrium Systems[END_REF] the consequences of choosing different α-discretisations in the Langevin equation and in the action.

Stochastic calculus in the path integral action

In general, the different actions S[x(t)] that are studied in statistical mechanics (or in quantum field theory [START_REF] Zinn-Justin | Quantum field theory and critical phenomena[END_REF]) take the form of the time integral of a "Lagrangian":

S[x(t)] = t f 0 dt L(d t x(t), x(t))
. This is the case, for instance, of the action (42) that we derived in the previous Section and which corresponds to the α-discretised Langevin equation [START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF]. Since the trajectories x(t) that verify the Langevin equation are not differentiable, it is natural to expect that the Lagrangian L(d t x(t), x(t)) should be sensitive to the convention of α-discretisation for its writing, and that the differential transformations performed in the Lagrangian should incorporate terms akin to the stochastic ones ∝ (1 -2α) of the modified chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF].

It is often assumed that the continuous-time chain rule ( 7) can be applied when manipulating the action (see for instance [START_REF] Tang | Summing over trajectories of stochastic dynamics with multiplicative noise[END_REF]) or that the formulae ( 16)-( 17) describing the change of discretisation in the Langevin equation can be equally used. In this Section, we show (i) that performing a change of discretisation in the Onsager-Machlup action is possible but completely wrong if one uses the relations ( 16)-( 17); and

(ii) similarly, that non-linear changes of variables are allowed in the action but are also wrong if one applies the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF].

In both cases, one arrives at inconsistencies when using the incorrect transformations to manipulate the action. We describe the procedure which enables ones to elucidate the origin of such apparent contradictions of stochastic calculus. The moral of the story is that the substitution rule (9) alone is insufficient to understand the transformations of the action and that other transformations, that we derive, are needed.

From one discretisation to another

In this subsection, we examine the condition of validity of the transformation rules allowing one to go from an α-discretised Langevin equation ( 6) to an equivalent ᾱ-discretised Langevin equation ( 16)- [START_REF] Langouche | Functional integrals and the Fokker-Planck equation[END_REF]. We focus on the transformation from a generic α-discretisation to the Stratonovich one (α = 1/2), which is often performed for the reason that the stochastic chain rule (7) takes a simple form for α = 1/2 (yielding back the standard chain rule of differential calculus). We show that, although it seems natural to perform the same transformations in the action as at the Langevin level, such as changing discretisation through ( 16)-( 17), the resulting action actually proves to be invalid (see Fig. 1 for a schematic representation of the procedure). Finally, we identify the reason why the correct rules of calculus in the action are more complex than at the Langevin level, and we determine the correct calculus to be used in the action that actually involves generalised substitution rules akin to (9).

Direct change of discretisation in the action

The α-discretised Langevin equation (6

) d t x α = f (x) + g(x)
η is equivalent to the following Langevin equation in Stratonovich discretisation, with an α-dependent force f α 

d t x Strato = f α (x) + g(x) η , (44) 
f α (x) = f (x) + 2D(α -1 2 )g (x)g(x) . (45) 
xS t = 1 2 (x t+dt + x t ) , (46) 
a procedure that we followed in Sec. 2.2.2 for a generic change of discretisation: Eqs. ( 16)-( 17) yield the result above, i.e. Eqs. ( 44)-(45) with a force f α = f α→1/2 .

Change of discretisation in the infinitesimal propagator

Since the α-discretised Langevin equation ( 6) and the Stratonovich one (44)-( 45) are equivalent, they must possess equivalent infinitesimal propagators. The change of discretisation in the infinitesimal propagator proves to be more involved than in the equation itself.

3.1.2.a Expanding without throwing powers of ∆x out with the bathwater. We focus, without loss of generality, on the first time step 0 dt. The propagator (41) in α-discretisation is

P(x dt |x 0 ) α = N |g(x 0 )| exp - 1 2 dt 2D x dt -x0 dt -f (x 0 ) + 2αD g(x 0 )g (x 0 ) g(x 0 ) 2 -αdtf (x 0 ) with N ≡ dt -1 4πD . ( 47 
)
The aim is to determine an equivalent propagator in terms of the Stratonovich midpoint xS 0 = 1 2 (x dt + x 0 ). We expand (47) in powers of ∆x ≡ x dt -x 0 , using

x0 = xS 0 + (α -1 2 )∆x (48) 
and keeping all terms of order dt 0 inside the exponential (note that they define the Gaussian weight), while putting all terms of order O(dt 1/2 ) and O(dt) in a prefactor of this weight. In this procedure, one should remember that ∆x = O(dt 1/2 ). This crucially implies that, in the exponential, the expansion of the term

- 1 2 1 2D dt ∆x g xS 0 + (α -1 2 )∆x 2 (49) 
generates terms of order O(dt 1/2 ) and O(dt) which are proportional to dt -1 ∆x 3 and dt -1 ∆x 4 . Expanding then the exponential, one gets terms up to dt -2 ∆x 6 . Explicitly, the result is

P(x dt |x0) N |g(x S 0 )| e -1 2 dt 2D ∆x dt 2 g(x S 0 ) 2 S = 1 + f (x S 0 ) 2Dg(x S 0 ) 2 + (2 -8α)g (x S 0 ) 4g(x S 0 ) ∆x + (2α -1)g (x S 0 ) 4Dg(x S 0 ) 3 ∆x 3 dt -1 + -α αDg (x S 0 ) 2 + f (x S 0 ) + αf (x S 0 )g (x S 0 ) g(x S 0 ) - f (x S 0 ) 2 4Dg(x S 0 ) 2 dt + (-12α 2 + 8α -1)g (x S 0 ) 8g(x S 0 ) + (14α 2 -8α + 1)Dg (x S 0 ) 2 + (2α -1)f (x S 0 ) 4Dg(x S 0 ) 2 + (3 -8α)f (x S 0 )g (x S 0 ) 4Dg(x S 0 ) 3 + f (x S 0 ) 2 8D 2 g(x S 0 ) 4 ∆x 2 + (1 -2α) 2 g (x S 0 ) 16Dg(x S 0 ) 3 - (28α 2 -24α + 5)g (x S 0 ) 2 16Dg(x S 0 ) 4 + (2α -1)f (x S 0 )g (x S 0 ) 8D 2 g(x S 0 ) 5 ∆x 4 dt -1 + (1 -2α) 2 g (x S 0 ) 2 32D 2 g(x S 0 ) 6 ∆x 6 dt -2 . ( 50 
)
Note that we also changed the discretisation of the normalisation prefactor from 1/|g(x 0 )| to 1/|g(x S 0 )| using a relation similar to (39). The symbol S = indicates that the r.h.s. is evaluated in the Stratonovich discretisation.

3.1.2.b

Comparison to the propagator arising from changing discretisation at the Langevin level. We would like to compare this result to that of the commutative procedure depicted in Fig. 1, namely, (i) transform the original α-discretised Langevin equation into the Stratonovichdiscretised one (44) which includes an α-dependent force f α (x) given by (45); and

(ii) follow the same procedure as previously done to get the corresponding propagator, that we denote P S fα . The result is, of course, directly read from Eq. ( 47), where α is first replaced by 1/2 (and hence x0 by xS 0 ), and then f is replaced by f α ; this yields

P S fα (x dt |x0) S = N |g(x S 0 )| exp - 1 2 dt 2D ∆x dt -fα(x S 0 ) + D g(x S 0 )g (x S 0 ) g(x S 0 ) 2 - 1 2 dtf α (x S 0 ) . (51)
By consistency, this propagator should be equal to the result (47), in the small dt limit. To check whether this is the case, we follow the same procedure as the one leading to Eq. (50) from Eq. (47), that is to say, we expand in powers of ∆x and dt, and we replace f α by its explicit expression in terms of f , g and α, to obtain

P S fα (x dt |x0) N |g(x S 0 )| e -1 2 dt 2D ∆x dt 2 g(x S 0 ) 2 S = 1 + f (x S 0 ) 2Dg(x S 0 ) 2 + (α -1)g (x S 0 ) g(x S 0 ) ∆x + - f (x S 0 ) 2 2Dg(x S 0 ) 2 -f (x S 0 ) - 2(α -1)f (x S 0 )g (x S 0 ) g(x S 0 ) + D (1 -2α)g(x S 0 )g (x S 0 ) + (-2(α -1)α -1)g (x S 0 ) 2 1 2 dt + (2(α -1)Dg(x S 0 )g (x S 0 ) + f (x S 0 )) 2 8D 2 g(x S 0 ) 4 ∆x 2 . ( 52 
)
The result is clearly different from the one in Eq. (50), while one expects P(x dt |x 0 ) = P S fα (x dt |x 0 ) because these two propagators correspond to the same Langevin equation. In particular, the maximum power of ∆x for P S fα (x dt |x 0 ) in Eq. ( 52) is ∆x 2 while it is ∆x 6 in Eq. (50) for P(x dt |x 0 ).

Note that if one takes for g(x) a constant function g, the two propagators are still different, as checked by direct inspection (unless α = 1/2, as it should because then there is no change of discretisation and the two computations are identical). The simple case of additive noise, thus, also requires a peculiar attention.

3.1.2.c

Appropriate substitution rules to render the two approaches compatible. As discussed in Sec. 2.2.1, the Itō prescription amounts to using the substitution rule

∆x 2 → 2Dg(x) 2 dt as dt → 0 , (53) 
where on the r.h.s., the argument x of g(x) can be taken at any discretisation point, at minimal order in dt. We have seen in paragraph 2.2.3.c that the use of such prescription is justified as long as it is performed outside the exponential, for the determination of the infinitesimal propagator.

Therefore, in order to recover from (50) the simpler result (52) for the propagator, a natural possibility is to look for "generalised substitution rules" akin to (53), but now for terms of the form ∆x n dt m with n, m chosen so that ∆x n dt m is typically of order O(dt 1/2 ) or O(dt). One finds by direct computation that, to guarantee that (50) becomes (52), there is a unique prescription to replace the terms ∆x n dt m by standard infinitesimals of the natural form C st × (2Dg(x) 2 ) n/2 dt when n is even and C st × ∆x (2Dg(x) 2 ) (n-1)/2 when n is odd. It reads

∆x 2 = 2Dg(x) 2 dt , (54) 
∆x 3 dt -1 = 3 ∆x 2Dg(x) 2 , ( 55 
) ∆x 4 dt -1 = 3 2Dg(x) 2 2 dt , (56) 
∆x 6 dt -2 = 15 2Dg(x) 2 3 dt . (57) 
A justification of these generalised substitution rules, to be understood in a precise L 2 sense, is presented in App. B. It is similar in spirit to the usual mathematical definition of the first rule (the usual Itō prescription (9)), the L 2 definition of which is also recalled in this Appendix.

3.1.2.d Discussion and comparison to a naive continuous-time computation.

In Sec. 3.1.1 we showed that the change of discretisation at the Langevin equation level requires the use of the standard substitution rule (9) (the Itō prescription). This transformation follows the upper branch in Fig. 1.

In Sec. 3.1.2.c we proved that the change of discretisation at the Onsager-Machlup level (for the infinitesimal propagator) requires a full set of generalised substitution rules, given by the relations (54)-(57), that include the Itō prescription (9) but extend it with transformation rules for three other infinitesimals. This transformation follows the lower branch in Fig. 1. Therefore, the paths along the upper and lower branches should be followed using procedures that involve a different set of substitution rules.

The key point that explains the discrepancy between the two approaches is that when one changes the discretisation in the action, the term which is quadratic in ∆x (see (49)) transforms in a non-trivial way and contributes to a higher order in powers of ∆x than when one changes the discretisation in the Langevin equation (as done in subsec. 3.1.1). Technically, the presence of a square (∆x/dt) 2 divided by the noise amplitude in the infinitesimal propagator implies that, when keeping terms of order O(dt 1/2 ) and O(dt), higher powers of ∆x are generated, as observed in (50).

An instructive observation is to draw a comparison between the Stratonovichdiscretised continuous-time action corresponding to (51)

S S fα [x(t)] S = 1 2 t f 0 dt 1 2D d t x -f α (x) + D g(x)g (x) g(x) 2 -dtf α (x) (58) 
and the result of a naive computation. First, one notes that both the right-down and the down-right branches of the commutative diagram represented in Fig. 1 agree with the same result (58), together with the corresponding prefactor t |g(x S t )|; this is true provided one uses the generalised substitution rules (54)-(57). Another -naiveapproach consists in attempting to arrive at this result by changing the discretisation directly in the time-continuous action, with the following procedure:

(i) start from the continuous-time α-discretised action (42); (ii) use the rules ( 16)- [START_REF] Langouche | Functional integrals and the Fokker-Planck equation[END_REF] for the change of discretisation in the Langevin equation; (iii) change the discretisation of the normalisation prefactor (43) from α to Stratonovich, using a relation similar to (40) ‡.

However, as detailed in App. D, the result of this procedure is different from (58) and is thus incorrect. The reason lies in the fact that the rules ( 16)-( 17) for the change of discretisation in the Langevin equation do not involve substitution rules of high enough order in ∆x: they disregard essential terms contributing to the expansion (50) that are crucial to arrive at the final correct propagator (51) (or, equivalently, to recover the correct action (58) with its associated Stratonovich-discretised normalisation prefactor). This confirms that the sole standard substitution rule ( 9) is not sufficient to handle successfully the path integral representation of the stochastic process, and that the generalised substitution rules ( 54 6) can be transformed exploiting the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] 

Non-linear transformation

A similar apparent contradiction occurs when one attempts to use the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] in the action, instead of restricting its use to the Langevin level. Such inconsistency was observed for non-linear field transformations for the MSRJD action in App. E of [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] §. In App. C of the present article, we translate this computation to the case of the Onsager-Machlup action, and the result is the same: using the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] in the action brings an inconsistency when changing variables. Related issues have been observed in the context of quantum field theory [START_REF] Gervais | Point canonical transformations in the path integral[END_REF][START_REF] Salomonson | When does a non-linear point transformation generate an extra O( 2 ) potential in the effective Lagrangian?[END_REF][START_REF] Langouche | Functional integrals and the Fokker-Planck equation[END_REF][START_REF] Langouche | Functional integration and semiclassical expansions[END_REF][START_REF] Alfaro | Field transformations, collective coordinates and BRST invariance[END_REF][START_REF] Apfeldorf | Coordinate redefinition invariance and "extra" terms[END_REF]. In this subsection, we examine the origin of this paradox. We show that it is again due to an invalid use of the Itō substitution rule [START_REF] Aron | Magnetization dynamics: path-integral formalism for the stochastic Landau-Lifshitz-Gilbert equation[END_REF] in the action, and we provide the correct treatment of non-linear transformations in the action, working with the infinitesimal propagator. We also propose a modified chain rule that can be used in continuous time inside the action.

Non-linear transformation in the Langevin equation

We start from the α-discretised Langevin equation ( 6) and consider an increasing C 1 function u(x) which is a bijection and is used as a non-linear change of variables. The chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] implies that the function U (t) = u(x(t)) satisfies an α-discretised Langevin equation

d t U α = u f + (1 -2α)D g 2 u + u g η .
(59) § Note that this Appendix is found only in the arXiv v1 preprint version.

This writing is a shortcut for the Langevin equation with a force F and a noise amplitude G

d t U (t) α = ≡F (U (t)) u (x U (t)) f (x U (t)) + (1 -2α)D g(x U (t)) 2 u (x U (t)) + u (x U (t)) g(x U (t)) ≡G(U (t)) η(t) (60) 
x

U (t) = u -1 (U (t)) i.e. u(x U (t)) = U (t) . ( 61 
)
Our aim is to compare different procedures represented on the commutative diagram of Fig. 2. Concretely we take the following two paths.

(i) The down path (on the left) that starts from the α-discretised Langevin equation ( 6) and arrives at the Onsager-Machlup action on x(t) given by the expression in (42), which, together with its associated normalisation prefactor (43), is equivalent to the infinitesimal propagator (41).

(ii) The right-down-left path. It starts from the Langevin equation ( 59), goes next to its corresponding Onsager-Machlup representation and, finally, through the application of rules that we still need to find, this path performs a non-linear transformation on the Onsager-Machlup action on U (t) that should take it to the one on x(t).

We first analyse these procedures at the infinitesimal propagator level.

Direct determination of the propagator

As in subsec. 3.1.2, we perform the comparison by keeping only the quadratic in ∆x contribution to the Gaussian weight in the exponential, and by expanding the rest in front of this weight. The propagator (41) associated to the Langevin equation ( 6) reads

P(x dt |x 0 ) α = N |g(x 0 )| e -1 2 dt 2D ∆x dt 2 g(x0) 2 × 1 -dtαf (x 0 ) + f (x 0 ) -2Dαg (x 0 ) g (x 0 ) 2Dg (x 0 ) 2 ∆x . (62) 
In this expansion, we have already used the standard substitution rule (9) to reexpress ∆x 2 .

Indirect path: passing through the propagator for U (t)

Corresponding to the Langevin equation (60) for U (t), one can write from (41) the propagator

PU (U dt |U0) α = N |G( Ū0)| exp - 1 2 dt 2D U dt -U 0 dt -F ( Ū0) + 2αD G( Ū0)G ( Ū0) G( Ū0) 2 -αdtF ( Ū0) . ( 63 
)
Since the two Langevin equations ( 6) and ( 60) are equivalent, this propagator has to be equivalent to (62). As remarked in the literature in the stochastic [START_REF] Langouche | General Langevin equations and functional integration[END_REF][START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] and the quantum mechanical [START_REF] Gervais | Point canonical transformations in the path integral[END_REF][START_REF] Salomonson | When does a non-linear point transformation generate an extra O( 2 ) potential in the effective Lagrangian?[END_REF][START_REF] Langouche | Functional integrals and the Fokker-Planck equation[END_REF][START_REF] Langouche | Functional integration and semiclassical expansions[END_REF][START_REF] Alfaro | Field transformations, collective coordinates and BRST invariance[END_REF][START_REF] Apfeldorf | Coordinate redefinition invariance and "extra" terms[END_REF] contexts, the application of the chain rule does not yield back (62) or (41). The computation describing this inconsistency for our Onsager-Machlup action of interest is recalled for completeness in App. C

The idea to examine the origin of this inconsistency, as done previously for the change of discretisation, is to treat the "dangerous" term of the propagator U dt -U0 dt G( Ū0) 2 in a safe way, by expanding the propagator and putting all terms in prefactor, apart from the quadratic part defining the Gaussian weight itself. To set up the expansion, one uses that

Ū0 = (1 -α)u(x 0 ) + α u(x dt ) , (64) 
x 0 = x0 -α ∆x , (65) 
x dt = x0 + (1 -α)∆x , (66) 
and one expands in powers of ∆x, keeping in mind that this quantity is O(dt 1/2 ). The change of variables in the (conditional) probability

P U (U dt |U 0 ) u (x dt ) = P(x dt |x 0 ) (67) 
is also needed, where in u (x dt ) one uses (66). After a tedious computation (where the substitution rule (53) for ∆x 2 is employed though only in the prefactor), the result is that the propagator P(x dt |x 0 ) obtained from (67), with P U read from (63), is

P(x dt |x0) N |g(x 0 )| e -1 2 dt 2D ∆x dt 2 g(x 0 ) 2 α = 1 + f (x0) 2Dg(x0) 2 - αg (x0) g(x0) - 3(-1 + 2α)u (x0) 2u (x0) ∆x + 3Dα(-2 + 3α)g(x0)g (x0)u (x0) u (x0) - (2αf (x0)u (x0) + 3(-1 + 2α)f (x0)u (x0)) 2u (x0) + + Dg(x0) 2 (3(1 -6α + 6α 2 )u (x0) 2 + 2(1 -3α + 3α 2 )u (x0)u (3) (x0)) 2u (x0) 2 dt + (-1 + 2α)u (x0) 4dtDg(x0) 2 u (x0) ∆x 3 + (-1 + 2α)f (x0)u (x0) 8dtD 2 g(x0) 4 u (x0) - α(-2 + 3α)g (x0)u (x0) 4dtDg(x0) 3 u (x0) - 3(7 -32α + 32α 2 )u (x0) 2 + 4(1 -3α + 3α 2 )u (x0)u (3) (x0) 48dtDg(x0) 2 u (x0) 2 ∆x 4 + (1 -2α) 2 u (x0) 2 32dt 2 D 2 g(x0) 4 u (x0) 2 ∆x 6 . ( 68 
)
This form seems to be different from (62) because it still involves the function u(x) that should not be present in the microscopic propagator for x (unless of course the transformation is the identity u(x) = x in which case (68) is equal to (62)). However, as checked with a direct computation, using the generalised substitution rules (55)-(57) allows one to remove all dependencies of (68) in the function u(x). Strikingly, the result is the correct propagator (62).

This computation shows that one can follow without inconsistencies the different branches of Fig. 2 for non-linear transformations, provided that the correct expansion is done when performing the change of variables in the action (yielding (68)) and that the generalised substitution rules (55)-( 57) are applied to the prefactor of the Gaussian weight |g(x t )| -1 exp -∆x 2 /[4D dt g(x t )] 2 , after the expansion of the infinitesimal propagator.

Discussion

In this subsection, we gather the previous results on the change of discretisation and the change of variables in a common description, aiming at understanding which are the valid rules of stochastic calculus that apply in the action. We first describe the origin of the observed issues in the infinitesimal propagator, setting down modified substitution rules than can be applied "inside" the exponential of the propagator (instead of "outside", on the prefactor of the Gaussian weight as done so far). We then formulate a modified chain rule in continuous time that one should apply in the path integral formalism.

(Generalised) substitution rules and exponentials of infinitesimals

In subsec. 3.1 and 3.2, we noted that the expansion of the infinitesimal propagator involves a separation between (i) a purely Gaussian weight (which defines the probability distribution of the increment ∆x = x dt -x 0 ) and (ii) a prefactor gathering all other terms, of the form 1 + O(dt 1/2 ) + O(dt).

We now first show explicitly that the generalised substitution rules (54)-(57) cannot be applied in the exponential and we elucidate which are the "modified substitution rules" to use in the exponentiated expression. Recalling the notation, N = 1/(4πDdt) 1/2 we denote by

P G t α = N |g(x t )| e -1 2 dt 2D ∆x dt 2 g(xt) 2 (69) 
the part of the infinitesimal propagator (taken in a given α-discretisation) which corresponds to the Gaussian distribution of ∆x. Then, either for the change of discretisation (50) or for the non-linear change of variables (68), the microscopic propagator is decomposed as

P(x dt |x 0 ) α = P G 0 ×exp A 0 dt + A 1 ∆x + A 2 ∆x 2 + A 3 ∆x 3 dt + A 4 ∆x 4 dt (70) 
where A 0 , . . . , A 4 are functions of x0 taken in α-discretisation. The number of terms inside the exponential is finite, because higher-order powers of ∆x and dt do not contribute at the orders O(dt 1/2 ) and O(dt) we are interested in . Note that (50) and (68) are written in an expanded form, which goes up to order ∆x 6 as

exp A 0 dt + A 1 ∆x + A 2 ∆x 2 + A 3 ∆x 3 dt + A 4 ∆x 4 dt
Of course other computations than the change of discretisation and the change of variables that we considered in subsec. 3.1 and 3.2 could generate larger powers of ∆x, such as ∆x 5 /dt 2 or ∆x 6 /dt 2 , which are respectively of order O(dt 1/2 ) and O(dt). The modified rule that we present in the present subsection are easily adapted to such terms.

= 1 + A 0 dt + A 1 ∆x + 1 2 A 2 1 + A 2 ∆x 2 + A 3 ∆x 3 dt + A 1 A 3 + A 4 ∆x 4 dt + A 2 3 2 ∆x 6 dt 2 . (71) 
In this form, one can then apply the generalised substitution rules (54)-(57) in a valid manner and reexponentiate the result, taking into account the orders in dt correctly. (This is similar to what we have done in [START_REF] Arnold | Symmetric path integrals for stochastic equations with multiplicative noise[END_REF] when treating the exponential of functions of the noise η t only that now we deal with a function of ∆x.) Denoting by σ = 2Dg 2 (x) the noise amplitude, one finds that the form (70) of the propagator becomes

P(x dt |x 0 ) α = P G 0 ×exp A 1 + 3A 3 σ ∆x + A 0 + A 2 σ + 3(A 3 ) 2 σ 2 + 3A 4 σ 2 dt (72)
with terms in the exponential that are order ∆x (or dt 1/2 ) and dt only, as they should.

One observes by direct inspection that the generalised substitution rules (54)-(57) cannot be used directly inside the exponential of (70) in order to get the correct result (72). Indeed, the term A 3 ∆x 3 dt in (70) generates a quadratic contribution ∝ (A 3 ) 2 in (72). The valid "modified substitution rule" to use in the exponential (70) are thus

A 2 (x)∆x 2 → A 2 (x) 2Dg(x) 2 dt (74) A 3 (x)∆x 3 dt -1 → 3A 3 (x) 2Dg(x) 2 ∆x + 3 A 3 (x) 2Dg(x) 2 ∆x 2 dt (75) A 4 (x)∆x 4 dt -1 → 3A 4 (x) 2Dg(x) 2 2 dt (76)       
valid only in the exp.

One observes that while the first and third line coincide with the corresponding ones in ( 54) and ( 56), the second line is different: in (55) ∆x 3 dt -1 is substituted by an expression which is independent of its possible prefactor, while in the exponential (70) we need to use (75) that effectively replaces ∆x 3 dt -1 by an expression which explicitly depends on its prefactor A 3 (in other words, the second term depends on [A 3 (x)] 2 ).

In the formulation leading from (70) to (72) it is rather evident that the generalised substitution rules (54)-(57) cannot be applied inside the exponential: indeed one can see e A3∆x 3 /dt as equivalent to a moment-generating function of parameter A 3 , and the exponent in (72) as the corresponding cumulant-generating function, cut after O(dt); thus, forgetting the quadratic term ∝ (A 3 ) 2 in (75), which is of order dt, amounts to forgetting the term of degree 2 in the expansion of a cumulantgenerating function ¶.

We note that Gervais and Jevicki [START_REF] Gervais | Point canonical transformations in the path integral[END_REF] have also determined in a quantum-field theory context that the correct procedure to change variables (in their case, to perform a canonical transformation) requires an expansion of the exponent up to terms of order ∆x 4 dt -1 , akin to (70). However, to our understanding, their treatment of these terms is unrelated to ours and remains perturbative in D, in contrast to our treatment which is non-perturbative.

Modified chain rule

The chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] allows one to deduce an α-discretised Langevin equation on a variable U (t) = u(x(t)) from the corresponding Langevin equation on the variable ¶ For ∆x 2 and ∆x 4 , the higher-order term of the cumulant expansion do not contribute because they are o(dt). However, if a term in A 5 ∆x 5 dt -2 had been present in (70), its modified substitution rule in the exponential would present a quadratic contribution ∝ (A 5 ) 2 as in (75) for A 3 ∆x 3 dt -1 .

x(t) after a non-linear transformation, as discussed in Sec. 3.2. This same chain rule does not directly allow one to perform such non-linear change of variables at the level of the action (see App. C). To understand this issue on a general footing, let us start from a Langevin equation of the form (60)

d t U (t) α = F (U (t)) + G(U (t))η(t) (76) The corresponding Onsager-Machlup weight reads t N |G( Ū )| × exp - t f 0 dt 1 4D dtU -F ( Ū ) + 2αD G( Ū )G ( Ū ) G( Ū ) 2 + αdtF ( Ū ) (77) 
with each Ū = U (t) taken in α-discretisation. The naive approach consists in substituting U (t) by u(x(t)) and then using the chain rule to determine the Onsager-Machlup weight for the trajectory x(t). In the next paragraphs, in order to understand why this procedure fails, we come back to the microscopic propagator (63) corresponding to (77), in which we expand the square and we study separately the terms affine in d t U and the term quadratic in d t U . As we now show, the result is that the standard chain rule allows one to transform the terms affine in d t U , while to correctly transform the quadratic term ∝ (d t U ) 2 , one has to use a "modified chain rule".

3.3.2.a Terms affine in d t U . For the infinitesimal propagator, these terms take the form

B 1 = dt B 0 ( Ū ) + dt B 1 ( Ū ) d t U (78) 
where the first and second terms are of orders O(dt) and O(dt 1/2 ), respectively. In order to reexpress e B1 in terms of the original variable x(t) one can follow either of the two following approaches.

(i) In discrete time, one takes the same path as in the previous subsection. Firstly, one discretises time explicitly; secondly, one expands U dt -U 0 = U (x dt )-U (x 0 ) in powers of ∆x = x dt -x 0 around x0 using (65)-(66). With the usual substitution rule (9) ∆x 2 = 2Dg(x) 2 dt, after reexponentiation one obtains that e B1 α = exp dt B 0 u(x(t)

+ dt B 1 u(x(t) u (x(t)) d t x(t) + (1 -2α)D g x(t) 2 u x(t) (79) 
in the dt → 0 limit. In the light of subsec. 3.1.1, the computation involves no term in ∆x 3 dt -1 (nor higher order in powers of ∆x n dt m ), implying that the standard substitution rules could have also been applied inside the exponential. (ii) In continuous time, one can use the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] inside the exponential, for U (t) = u(x(t)) to get the result (79). It is valid here as shown by the discretetime computation described in the previous point.

3.3.2.b

Term proportional to (d t U ) 2 . This term takes the form 

B 2 = - 1 2 dt 2D B 2 ( Ū ) d t U 2 with B 2 = 1 G 2 . ( 80 
where g(x) 2 = 1/B 2 (u(x)). Instead, one should discretise in time, using

B 2 = - 1 4D dt -1 B 2 ( Ū0 ) U dt -U 0 ) 2 as dt → 0 (82)
where U 0 = u(x 0 ), U dt = u(x dt ) and Ū0 is defined in (64). We also define the function b 2 (x) = B 2 (u(x)) = 1/g(x) 2 for lighter notations.

Expansion of B 2 -Using the relations (64)-(66), one then expands (82) in powers of ∆x up to order dt to find

B2 = - 1 4Dg(x0) 2 ∆x 2 dt + (-1 + 2α)u (x0) 4Dg(x0) 2 u (x0) ∆x 3 dt + - (-1 + α)αg (x0)u (x0) 4Dg(x0) 3 u (x0) - (1 + 8(-1 + α)α)u (x0) 2 16Dg(x0) 2 u (x0) 2 + (-1 -3(-1 + α)α)u (3) (x0) 12Dg(x0) 2 u (x0) ∆x 4 dt , (83) 
which is not obviously related to (81). We note that this expression contains a crucial term proportional to ∆x 3 dt -1 which, as we have discussed in subsec. 3.3.1, has to be treated with great care. The modified substitution rule (75) has to be used here [and not the rule (55)], in order to handle correctly ∆x 3 dt -1 inside the exponential. We also remark that the term in ∆x 3 dt -1 is non-zero for an additive noise (i.e. when g(x) is constant), indicating that non-linear changes of variables also have to be handled with care in this case.

Expansion of e B2 -The correct procedure to follow in order to first use the (simple) substitution rules (54)-(57) for ∆x n is to first expand the terms of (83) which are not in ∆x 2 dt -1 , and to use then the substitution rules (54)-(57). Alternatively, one can use the modified ones (74)-(76) which are valid inside an exponential. Recalling the notation g 2 = 1/b 2 , and writing e (...)∆x

2 = exp - 1 2 b 2 (x 0 ) dt 2D ∆x dt 2 u (x 0 ) 2 (84) 
one obtains e B2 e (...)∆x 2 = exp

3 2 (-1 + 2α)u (x 0 )u (x 0 )∆x + dt - 3D(1 -2α) 2 u (x 0 ) 2 4b 2 (x 0 ) + 3D(1 -2α) 2 u (x 0 ) 2 u (x 0 ) 2 2b 2 (x 0 ) (85) + u (x 0 ) 3D(-1 + α)αb 2 (x 0 )u (x 0 ) 2b 2 (x 0 ) 2 - D(1 + 3(-1 + α)α)u (3) (x 0 ) b 2 (x 0 ) .
This result is completely different from the naive result (81), obtained from the use of the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] in the exponential, that can be recast as

e B 2 e (...)∆x 2 wrong! = exp 1 2 (-1 + 2α)u (x0)u (x0)∆x - D(1 -2α) 2 u (x0) 2 4b2(x0) dt . (86) 
(They coincide for linear transformations such that u = 0.)

The result (85) allows one to identify the correct (but complicated) form of the chain rule to be used in the exponential for terms of the form (80). Instead of the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] that would lead to (86), one has that

- 1 2 dt 2D B 2 (U ) d t U
• Additive noise and Stratonovich discretisation:

- 1 2 dt 2D b 2 d t U 2 in exp. → - 1 2 dt 2D b 2 u (x)d t x 2 -D dt u (x)u (3) (x) 4b 2 . (91) 
This last case is peculiarly striking, because one could have expected the standard chain rule of differentiable calculus to be valid in the dynamical action of an additive-noise Stratonovich-discretised Langevin equation (as it is valid at the Langevin equation level). Surprisingly, this is not the case as soon as u (3) (x) = 0.

Outlook

The trajectory probability of Langevin processes is well described by a pathintegral weight, through either the MSRJD [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF][START_REF] Bausch | Renormalized field theory of critical dynamics[END_REF] or the Onsager-Machlup [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF][START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] formulations. In this article we studied the behaviour of the Langevin equation and its corresponding Onsager-Machlup action under two generic transformations: a change of α-discretisation and a non-linear change of variables. The correct rules to perform these transformations at the level of the Langevin equations are well-known, they have been recalled in this article, and we verified, once again, that they are reversible. Consistency requires that the trajectory probability constructed from the Langevin equation of a variable u(t) = u(x(t)) in a discretisation scheme ᾱ be the same as the trajectory probability of the Langevin process of the variable x(t) in another discretisation scheme α, after applying to the latter the corresponding discretisation and non-linear transformations. Figures 1 and2 provide sketches of this statement for the discretisation scheme transformation and the non-linear transformation, respectively. However, it was observed in the literature that their use in the action could yield inconsistencies, both in the stochastic field-theory context [START_REF] Langouche | General Langevin equations and functional integration[END_REF][START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] and in the quantum-mechanical one [START_REF] Gervais | Point canonical transformations in the path integral[END_REF][START_REF] Salomonson | When does a non-linear point transformation generate an extra O( 2 ) potential in the effective Lagrangian?[END_REF][START_REF] Langouche | Functional integrals and the Fokker-Planck equation[END_REF][START_REF] Langouche | Functional integration and semiclassical expansions[END_REF][START_REF] Alfaro | Field transformations, collective coordinates and BRST invariance[END_REF][START_REF] Apfeldorf | Coordinate redefinition invariance and "extra" terms[END_REF]. The aim of the present article was to identify the generalisation of the Itō rule and the correct rules of calculus that ensure the reversibility of the construction.

By carefully analysing the discrete-time behaviour of the propagator corresponding to the infinitesimal evolution during a time step dt → 0, we identified the source of inconsistencies and we provided procedures that allow one to perform the transformations in the action in a correct manner.

To summarise them, we now list the possible sources of issues. At the infinitesimal level, we denote the trajectory increment by ∆x = x t+dt -x t which is typically of order dt 1/2 . The main source of problems is that terms of the form ∆x 3 dt -1 , ∆x 4 dt -1 and ∆x 6 dt -2 are generated in the infinitesimal propagator upon the mentioned transformations, while they are not generated at the Langevin level. First, they have to be correctly identified, and second, one has to understand their behaviour in the dt → 0 limit. We have provided generalised substitution rules (54)-(57) that allow one to do so (they generalise the usual Itō prescription dB 2 t = dt for the Brownian motion). An important point is that these relatively simple rules have to be used in the prefactor of the Gaussian weight of the infinitesimal propagator (after a dt → 0 expansion), and not inside the exponential of this propagator. We have provided a simple explanation of this condition in subsec. 3.3.1. If one insisted upon applying the transformations in the exponential, the modified substitution rules become significantly more complicated and are given in Eqs. ( 74)-(76).

In the continuous-time path integral, an important consequence of the previous observations is that one cannot use the stochastic chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] to perform changes of variables. One has, instead, to rely on a time-discrete expansion or on a modified chain rule, described in subsec. 3.3.2. We emphasise that the application of the invalid chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] in the action yields wrong results even for an additive-noise Stratonovich-discretised Langevin equation. The reason for this is that under a nonlinear transformation of variables the equation becomes one with multiplicative noise.

For future perspectives, we can list a number of interesting questions to address:

(i) It would be helpful to identify similar rules that would solve inconsistencies observed when manipulating the MSRJD action [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF], because many field theories (including quantum ones) are better written in this formalism or in similar ones that also involve a response field. (ii) The generalisation to more than one degree of freedom could be tricky [START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF] but should be very interesting and useful. (iii) Langevin equations with inertia (a second time derivative) and/or coloured noise approach in the overdamped and/or white noise limit the equation that we studied here in the Stratonovich scheme (see, e.g. [START_REF] Gardiner | Handbook of stochastic methods for physics, chemistry, and the natural sciences[END_REF][START_REF] Aron | Symmetries of generating functionals of Langevin processes with colored multiplicative noise[END_REF]). It would be interesting to understand how the issues discussed in the present article arise and are solved in these regularised and better behaved cases since, as we showed, even the action in the Stratonovich discretisation scheme has to be treated attentively. (iv) The results we have presented also encourage one to revisit the validity of some non-linear transformation used in quantum field theory [START_REF] Gervais | Point canonical transformations in the path integral[END_REF][START_REF] Salomonson | When does a non-linear point transformation generate an extra O( 2 ) potential in the effective Lagrangian?[END_REF][START_REF] Langouche | Functional integrals and the Fokker-Planck equation[END_REF][START_REF] Langouche | Functional integration and semiclassical expansions[END_REF][START_REF] Alfaro | Field transformations, collective coordinates and BRST invariance[END_REF][START_REF] Apfeldorf | Coordinate redefinition invariance and "extra" terms[END_REF], where the Lagrangians defining the action take forms that are similar to that of statistical mechanics.

Let us thus show that in the sense of (B. We compare the direct path (downwards, on the left) of the commutative diagram represented on Fig. 2, and the indirect path where one first (top arrow) changes variables from x(t) to U (t) = u(x(t)) in the Langevin equation, then (right arrow downwards) constructs the action, and finally (down arrow leftwards) tries to come back to the Onsager-Machlup action by applying the standard stochastic chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF]. On the way, one should not forget to handle correctly the change of variables in the normalisation prefactor of the action.

The direct path leads to the expression (42) of the dynamical action, together with its associated normalisation prefactor (43). The indirect path starts by obtaining the Langevin equation (60) on U (t) = u(x(t)) and continues by writing the corresponding the Onsager-Machlup weight (77). The last step consists in attempting to come back to the Onsager-Machlup weight for the process x(t) by a change of variables in the action and in the Jacobian.

C.1. The normalisation prefactor

One can focus on the first time step 0 dt without loss of generality. The change of variables in the normalisation prefactor involves two stages: (i ) taking into account the factor u (x dt ) of (67) that comes from the change of measure and (ii ) actually passing from the variable Ū0 [given by Eq. ( 64 
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 1 Figure 1. Schematic representation, for a change of discretisation, of the difference between the stochastic calculus performed in the Langevin equation and in the Onsager-Machlup action. The α-discretised Langevin equation (6) can be transformed by use of the substitution rule (9) into a Stratonovich-discretised one (α = 1/2) given by Eqs. (44)-(45). However, one cannot use such equations in the α-discretised Onsager-Machlup action (42) to get the correct Stratonovichdiscretised action. Instead, to go from one action to the other, one has to use the generalised substitution rules (54)-(57) in discrete time for the infinitesimal propagator (once expanded in powers of ∆x and dt), or to rely on modified substitution rules (74)-(76) inside the exponential of the propagator.

  )-(57) that we propose have to be used instead. ‡ The relation (40) allows one to change the discretisation of the prefactor J [x(t)] from the Itō one (α = 0) to the α one, but is easily adapted to change from α to Stratonovich (α = 1/2); see Eq. (D.6).

Figure 2 .

 2 Figure 2. Schematic representation, for a non-linear (bijective) change of variables x → u(x), of the difference between the stochastic calculus performed in the Langevin equation and in the Onsager-Machlup action. The α-discretised Langevin equation (6) can be transformed exploiting the chain rule (7) into a Langevin equation (59) for U (t) = u(x(t)). To this equation corresponds a Onsager-Machlup action, equivalent to the infinitesimal propagator (63). However, one cannot use such chain rule in the α-discretised Onsager-Machlup action (42) to derive the correct action of the process U (t), as explained in App. C. To go from one action to the other, one has to use, instead, the generalised substitution rules (54)-(57) in discrete time after expanding the action [or equivalently (74)-(76) inside the discretised action], or to rely on a modified chain rule for the time-continuous process as discussed in subsec. 3.3.2. In the text, for simplicity, the lower branch of this commutative diagram is performed from right to left.
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 2 )] to the variable x0 in the prefactor N /|G( Ū0 )| of the Onsager-Machlup weight (77). Denoting by J U (x 0 ) the elementary normalisation prefactor coming from this procedure, one hasJ U (x 0 ) = N |G( Ū0 )| u (x dt ) (C.1) = N |g(x 0 )| u (x dt ) |g(x 0 )| |G( Ū0 )| , (C.2)where on the second line we have put in prefactor the expected contribution N /|g(x 0 )| of the first time step in the total path-integral normalisation prefactor (43) on x(t). The other factor u (x dt ) |g(x 0 )|/|G( Ū0 )| gives a contribution that has to be incorporated into the exponential part of the infinitesimal propagator (i.e. into the action of the path integral in the dt → 0 limit). To do so, one expresses Ū0 and x dt in terms of x0 and ∆x by means of Eqs. (64)-(66) and one expands the result up to order dt, keeping in mind that ∆x = O(dt 1/2 ). One obtains from (C.2) thatJ U (x 0 ) = N |g(x 0 )| 1 -(-1 + α)u (x 0 ) u (x 0 ) ∆x + (C.3) (-1 + α) αg (x 0 )u (x 0 ) 2g(x 0 )u (x 0 ) + αu (x 0 ) 2 2u (x 0 ) 2 + (-1 + α)u (3) (x 0 ) 2u (x 0 ) ∆xThen using the substitution rule (9) for ∆x 2 and reexponentiating the result through[START_REF] Arnold | Symmetric path integrals for stochastic equations with multiplicative noise[END_REF] one getsJU (x0) = N |g(x0)| exp -(-1 + α)u (x0) u(x0) ∆x + D(-1 + α)g(x0) 2 u (x0) 2 u (x0) 2 + (C.4) D(-1 + α)g(x0)[αg (x0)u (x0) + (-1 + α)g(x0)u (3) (x0)] u (x0) dt .
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  3)-(B.4), one has ∆x 2 = 2Dg(x) 2 dt. For this, one computest ∆x 2 -2Dg(x t ) 2 dt ) + g(x t )η t dt 2 -2Dg(x t )2 dt zero as dt → 0, hence finishing the proof of (B.2).Note that when going from (B.10) to (B.11), one cancels the sum over different time indices t = t using that x t is independent of B t+dt -B t :(B t+dt -B t 2 -dt 2Dg(x t ) 2In particular, the factor 2 in ∆x 2 = 2Dg(x) 2 dt is essential, because it allows one to factorise by 2Dg(x) 2 between (B.8) and (B.9), and to obtain in fine the cancellation in (B.14) which makes that (B.13) is of order dt. B.2. The generalised substitution rule ∆x 4 dt -1 = 3 2Dg(x) 2 2 dt One follows the same path, using (B t+dt -B t ) 8 = 105 dt 4 , one computes

				2		
	(6) =			dtf (x t 2
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	=			g(x t )η t dt	2 -2Dg(x t ) 2 dt	2	+ O(dt)	(B.8)
		t				
	=		(B t+dt -B t	2 -dt 2Dg(x t ) 2 2	+ O(dt)	(B.9)
		t				
	(B.5) =			(B t+dt -B t	2 -dt 2Dg(x t ) 2 2	+ O(dt)
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	= O(dt)					(B.13)
	which goes to =		(B t+dt -B t	2 -dt	2Dg(x t ) 2
					(B.6) = 0 .	(B.14)
	∆x 4 dt -3 2Dg(xt) 2 2	dt	2	
	t					
							4
	(6) =	t		dtf (xt) + g(xt)ηtdt dt	-3 2Dg(xt) 2 2	dt

t (B t+dt -B t 2 -dt 2 (B.6)-(B.7) = 3dt 2 -2dt 2 +dt 2 2Dg(x t ) 2 2 + O(dt) (B.

[START_REF] Zochil | Functional integral approach for multiplicative stochastic processes[END_REF] 
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(We took the dt → 0 limit, with the r.h.s. being α-discretised.) In order to apprehend better the difference with the naive application of the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF], one can rewrite this result as

chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] u (x

+ dt 3D(-1 + α)αu (x)b 2 (x)u (x) 2b 2 (x) 2 + D((1 -2α) 2 (-1 + 3u (x) 2 )u (x) 2 -2(1 + 3(-1 + α)α)u (x)u (3) (x)) 2b 2 (x) , the three last lines being the terms one misses if one merely applies [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF].

Special cases -One notes that this modified chain rule remains non-trivial in the three following simplified cases:

Appendices

A. Determination of the infinitesimal propagator: other approaches

In this appendix, in order to shed a different light on the use of the Itō prescription in the determination of the infinitesimal propagator, we review other less pedestrian approaches than the one presented in Sec. 2.2.3.

A.1. À la Lau-Lubensky

To compute δ(x dt -X 1 (x 0 , η 0 )) in [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF], it proves simpler [START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF] to start from the following identity, where the argument of the first delta is the equation of motion at t = 0:

where one recognises F (η 0 , x 0 , x dt ) = η 0 -H 0 (x 0 , x dt ) from Eq. (35). One thus has

so that finally

By direct computation, one obtains

g(x0)

(A.4) that, using the Dirac delta in (A.3) to re-express x dt -x 0 as a function of η 0 , implies

= 1 dt

Inserting this expression in Eq. (A.3), one finds exactly the same propagator given in Eq. ( 41). This provides a justification for the use of the Itō rule [START_REF] Vera Moreno | Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism[END_REF] in Eqs. ( 29), ( 34) and (40), used in the derivation of the propagator presented in Sec. 2.2.3. Last, we mention that Lau and Lubensky [START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF] actually follow a slightly different route, which involves a Fourier transformation, but in the end their treatment is equivalent to the one we presented in this paragraph.

A.2. À la Itami-Sasa

In order to calculate the Jacobian 1 |∂η 0 X1(x0,H0)| arising in [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF], one can proceed as follows [START_REF] Itami | Universal Form of Stochastic Evolution for Slow Variables in Equilibrium Systems[END_REF]: we write the first time step 0 dt of the equation of motion as

Differentiating with respect to the noise, one obtains

Note that so far, no expansion nor approximation has been done: this result is exact.

In order to exponentiate the numerator of this expression, one uses (33):

This is the same expression as the one in Eq. (A.6) obtained following the Lau-Lubensky approach, and the one that we obtained in Sec. 2.2.3.

A.3. A continuous-time derivation of the Jacobian

In the quantum-mechanical context a continuous-time formalism is used and the subtleties linked to the discretisation scheme are usually encoded in the choice of the value of the Heaviside theta function at zero, Θ(0) = α [START_REF] Zinn-Justin | Quantum field theory and critical phenomena[END_REF]. In this field, the Jacobian |∂ η0 X 1 (x 0 , H 0 (x 0 , x dt ))| is computed with the help of the identity det(1 + C η0 ) = exp Tr ln(1 + C η0 ) where C η0 is the part of the Jacobian that depends on the noise. The expression ln(1 + C η0 ) is further expanded in powers of C η0 to quadratic order (so as to keep terms that are quadratic in the noise and contribute to the trace involving a time integral when the noise is delta correlated) [START_REF] Arnold | Symmetric path integrals for stochastic equations with multiplicative noise[END_REF]. The explicit calculation of the Jacobian along these lines was explained in App. D in [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] and constitutes another way of arriving at the expression in Eq. (A.6). It is less useful for our purposes in this article since it works in continuous time and does not allow to make immediate contact with the (generalised) substitution rules in discrete time.

B. Justifying the generalised substitution rules

Stochastic calculus tells us that, when expanding infinitesimals, for a standard Brownian motion B t , one has:

For our time-discrete noise, η 2 t = 2D/dt. For a more complex variable such as x, the solution of the Langevin equation ( 6), the substitution rule (9) implies

where on the r.h.s., the argument x of g(x) can be taken at any discretisation point, at minimal order in dt. As discussed in Sec. 2.2.1, there is no direct argument on the distribution of ∆x which allows one to use (B.2) point-wise. The meaning of this relation is to be found in an integral way. Following Øksendal [START_REF]Stochastic differential equations: an introduction with applications[END_REF], one uses the following ingredients:

• Two functions A 1 and A 2 of the process x are equivalent if the L 2 norm of the temporal integral of their difference is zero:

• Two Brownian increments B t+dt -B t and B t +dt -B t at different times t = t are independent:

• The following averages are computed (e.g. à la Wick) using the Gaussian nature of B t : which goes to zero as dt → 0, hence finishing the proof of (56). The derivations of ( 55) and (57) follow in the same way.

Note that in passing from (B.16) to (B.17) we have used (i) the same independence as in (B.14) and (ii) the fact that in the double sum term

which is similar to (B.10), one again has the important cancellation

In particular, the factor 3 in the substitution rule ∆x 4 dt -1 = 3 2Dg(x) 

C. An inconsistency arising when applying the standard chain rule inside the dynamical action

We detail in this appendix how an invalid use of the standard stochastic chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] can lead to an inconsistency when changing variables in the dynamical action corresponding to the Langevin equation ( 6). This appendix is the translation to the Onsager-Machlup action of the App. E of [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] (version v1 of the arXiv preprint) where the same inconsistency was observed in the Martin-Siggia-Rose-Janssen-De Dominicis formulation of the dynamical action.

Taking finally the continuous-time limit, we see that the change of variables from U (t) to x(t) brings a contribution ∆S U [x(t)] to the action equal to

We note that it vanishes for a linear transformation such that u = 0, or for α = 1 and any function u. This last case is understood from (C.2), where for α = 1 one has x0 = x dt and Ū0 = U dt = u(x dt ) which implies, using (60) for the expression of G, that G( Ū0 ) = u (x dt )g u(x dt ) from which the factor in parenthesis in (C.2) is equal to 1.

C.2. The change of variables in the action

We can now combine the contribution ∆S U [x(t)] obtained in the previous subsection and the change of variables from U (t) = u(x(t)) to x(t) in the action S[U (t)] of the process U (t). The expression of S[U (t)] is read from (77). The correct procedure to follow is discussed in subsec. 3.2 following a discrete-time approach. One can also apply the continuous-time modified chain-rule discussed in subsec. 3.3.2. Both approaches yield back the correct action (42) for the process x(t).

If one improperly applies the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] to determine d t U = d t u(x(t)) in (77), one finds a result for the action S U x(t)], in which there are supplementary terms compared do the correct result S[x(t)] given by (42); that is

The terms in the time integral should be absent if the procedure had been correct. (At the very least, the result should not depend on the function u.) These terms are equivalent to the terms in Eq. (E.18) of the App. E in [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF]. Their presence is due to the fact that, when using the chain rule [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF] as we did, one discards terms proportional to ∆x 3 dt -1 , ∆x 4 dt -1 and ∆x 6 dt -2 that are present in Eq. ( 50) when following the correct procedure. The supplementary terms vanish when a linear change of variables is applied, i.e. when u = 0. Special cases -One notes that these supplementary terms still remain present in the three following simplified cases:

(iii) Additive noise and Stratonovich discretisation:

This last case is surprising because, as often described, the additive-noise Stratonovich-discretised Langevin equation is the better behaved in terms of the rules of differential calculus. But in spite of this fact, as we have shown, the standard chain rule of differential calculus cannot be used inside the corresponding Onsager-Machlup action (although this rule is valid at the Langevin equation level).

D. An inconsistency arising when applying the Langevin rule for changing discretisation inside the dynamical action

In this appendix, we study how the α-discretised Langevin equation ( 6) can be described by a path-integral probability written in a different ᾱ-discretisation. The direct procedure to follow is to change the discretization in the Langevin equation first [this yields [START_REF] Salomonson | When does a non-linear point transformation generate an extra O( 2 ) potential in the effective Lagrangian?[END_REF] with a modified force f α→ ᾱ(x) given by ( 17)], and to write the corresponding trajectory weight. One reads its action from (42) as

where the arguments of the functions f and g are taken in ᾱ-discretisation. The associated normalisation prefactor reads, from (43)

The correct way of performing the change in discretisation in the original αdiscretized action (42) [together with the prefactor (43)] was described in subsec. 3.1.2, going through the infinitesimal propagator in discrete time and using the generalised substitution rules (54)-(57). The computation is done in the special case ᾱ = 1/2 but also works for any value of ᾱ.

The naive procedure discussed in subsec. 3.1.2.d consists in applying the two following steps.

• For the action: start from the (α-discretized) action ( 42) and assume that one can replace the force f by the effective force f α→ ᾱ appearing in the Langevin equation [START_REF] Salomonson | When does a non-linear point transformation generate an extra O( 2 ) potential in the effective Lagrangian?[END_REF]. This would yield an exponential contribution to the action of the form

• For the normalisation prefactor: change the discretisation from α to ᾱ by going to discrete time (and considering the first time step) and writing, with explicit discretisation points, that