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Introduction

Given two words u and v over an alphabet Σ, u is a supersequence of v if one can find in u a sequence of non-necessarily successive letters that spells v. The shortest supersequence of u is obviously u, but the problem becomes more difficult if the input is a set of words and one wants to find a common supersequence for these words as short as possible. The decision version of this problem, called SCS for Shortest Common Supersequence has been proven NP-complete in 1981 by Räihä and Ukkonen [START_REF] Räihä | The shortest common supersequence problem over binary alphabet is NP-complete[END_REF], even if the alphabet has size only 2. It is even NP-complete for some very restricted input, such as in the result of Middendorf [START_REF] Middendorf | More on the complexity of common superstring and supersequence problems[END_REF] on which our work deeply relies: the alphabet is Σ 2 = {0, 1}, and all the input words have the same length and each contains exactly two non-consecutive 1. However, another variant of SCS, which we will call Modified SCS (MSCS for short), appears very naturally in the study of combinatorial flood-filling games such as Flood-It and Honey-Bee (studied for example in [START_REF] Clifford | The complexity of flood filling games[END_REF][START_REF] Fleischer | An algorithmic analysis of the honey-bee game[END_REF][START_REF] Lagoutte | Flooding games on graphs[END_REF][START_REF] Meeks | Spanning trees and the complexity of flood-filling games[END_REF]). In particular in [START_REF] Lagoutte | Flooding games on graphs[END_REF], the authors show the NP-completeness of Flood-It, using a reduction to MSCS with an alphabet of size 3. This variant is stated as follows:

Modified Shortest Common Supersequence : MSCS -decision version Input: A set L = {w 1 , . . . , w n } of words on an alphabet Σ = {a 1 , a 2 , . . . , a d } such that no word w i contains two consecutive identical letters and no word w i starts with letter a 1 , and an integer k. Output: Does there exist a supersequence of L of size less than k?

At first sight, it can seem easy to reduce SCS with Σ 2 = {0, 1} to MSCS with Σ 3 = {0, 1, 2} by replacing every occurence of 0 by 02 in every word of the input set L, and doing the reverse operation on the solution to MSCS to get the shortest common supersequence of L. Unfortunately, this very natural idea does not work in general as shown on the following counter-example. Let L = {00111, 11100} be a input for SCS (in the minimization version), then the corresponding input for MSCS is L = {0202111, 1110202}. The shortest solution for MSCS is 1110202111 of length 10, and its corresponding candidate solution for SCS is 11100111 of length 8. However, the shortest solution for L has size 7: 0011100. The problem here is that the operation transforms 0 into a double-counting letter and looses the symmetry between the two letters.

The second idea that occurs to mind is then to transform every occurrence of 0 by 02, and also every occurrence of 1 by 12. Then one can hope solving the newly created instance of MSCS, and delete every 2 from the solution of MSCS to get the shortest solution to SCS. This does not work either: consider the instance of SCS (in its minimization version) with L = (Σ 2 ) 3 \ {111}, that is to say that L contains every word of length 3 on Σ 2 = {0, 1} except 111. The shortest supersequence for L is 01010 and is unique. Let L be the set of words obtained from L by replacing every occurrence of 0 by 02 and every occurrence of 1 by 12. There is no supersequence for L of length 9 obtained from 01010 by inserting some 2's (there is one of length 10: 0212021202). However there does exist a shortest supersequence for L of length 9, namely 012012012. Consequently, the very natural ideas do not work for reducing SCS to MSCS.

Note that Fleischer and Woeginger designed in [START_REF] Fleischer | An algorithmic analysis of the honey-bee game[END_REF] a reduction proving that MSCS is NP-complete when |Σ| ≥ 4 (the conference version of the paper states the result for |Σ| ≥ 3, but the very simple proof turned out to be false; the correct statement appears in the later-published journal version). One should also mention Darte's work [START_REF] Darte | On the complexity of loop fusion[END_REF] which does not focus directly on MSCS, but states a result about typed fusions for typed directed graphs in a compilation context. However, as he explains at the beginning of Section 3.5, when the directed graphs are disjoint union of chains, his problem is equivalent to SCS. Moreover the conditions over its typed fusions and digraphs implies that the SCS inputs equivalent to his digraph inputs, are words with no identical consecutive letters. Thus Proposition 3 in [START_REF] Darte | On the complexity of loop fusion[END_REF] can be interpreted as the fact that SCS for inputs with no identical consecutive letters is NP-complete. His reduction from Vertex Cover uses the alphabet Σ = {0, 1, ā} and a careful look shows that he generates SCS inputs where no word starts with ā. Consequently one could state that the NP-completeness of MSCS for three letters is shown there. His reduction is derived from a paper of Räihä and Ukkonen [START_REF] Räihä | The shortest common supersequence problem over binary alphabet is NP-complete[END_REF] as well as its proof. Unfortunately it is 10 pages long and hard to check.

The main purpose of our work is to provide a new NP-completeness reduction for MSCS when |Σ| ≥ 3, with a shorter proof, so that the result becomes undisputed. To this end, we introduce yet another variant of SCS, called ϕSCS. We first define the alphabets Σ 2 = {0, 1} and Σ 3 = {0, 1, 2}, and the word morphism ϕ : Σ * 2 → Σ * 3 by ϕ(0) = 0202 and ϕ(1) = 1. Shortest Common Supersequence for some inputs generated by ϕ : ϕSCS -decision version Input: A set L = {w 1 , . . . , w n } of words on the alphabet Σ 3 such that L ⊆ ϕ(Σ * ), each w i contains exactly two ones, which moreover are non consecutive, and an integer k. Output: Does there exist a supersequence of L of size less than k?

A careful look at those two problems shows that ϕSCS is a particular case of MSCS if |Σ| ≥ 3. The input words for ϕSCS are a concatenation of patterns 0202 and 1 with no consecutive ones, thus they do not contain consecutive identical letters. Moreover none of those input words starts with letter 2. Up to relabelling the letters, one may consider that a 1 = 2. Consequently, we will show that ϕSCS is NP-complete, which implies that MSCS is also NP-complete if |Σ| ≥ 3. One may wonder why we use the block 0202 instead of the more natural block 02 (that is to say, why ϕ(0) = 0202 and not 02). The key reason appears in the third item of Lemma 2 : the elementary technique we use to prove it does not work for the case of blocks 02.

Besides, observe that the threshold on |Σ| which involves NP-hardness is tight: when |Σ| = 2, MSCS is trivially polynomial. Finally, let us notice that our proof is a very close adaptation of the proof of Middendorf's result [START_REF] Middendorf | More on the complexity of common superstring and supersequence problems[END_REF]Theorem 4.2] mentioned in the first paragraph.

Notation Given two words over an alphabet Σ, u = u 1 . . . u p (u i ∈ Σ) and v = v 1 . . . v q (v i ∈ Σ), an embedding of u into v is an injection f from {1, . . . , p} into {1, . . . , q} such that u i = v f (i) . It tells that v is a supersequence of u and we also say that f maps letters of u onto letters of v. We will also use equivalently the terms pattern, block or factor to designate a sequence of consecutive letters in a word. A supersequence for a set of words is a word which is a supersequence for each of those words.

Result

The NP-completeness reduction will start from Vertex Cover, but we will need the next two lemmas.

Lemma 2.1. Let L be a set of words over Σ 3 , such that L ⊆ ϕ(Σ * ), and S = s 1 . . . s l be a supersequence of L. Then there exists a supersequence S of L of size ≤ |S| such that S ⊆ ϕ(Σ * ).

Proof.

• First step: Let S be a supersequence of L and let S be the string obtained from S after applying one of the following operations:

1. If S ends by 0, delete it. Then S is still a supersequence of L: indeed, item (i) and (ii) are obvious since no word of L starts by 2 nor ends by 0. For item (iii), observe that no embedding can map two 0 onto two consecutive 0, since no word contains two consecutive 0. Thus if S contains 00 at index i, and f is an embedding of w ∈ L so that f maps a zero of w onto s i+1 , we can modify f to map this zero onto s i . Then s i+1 is useless and we can delete it. The same argument applies for item (iv). For item (v), observe that no embedding can map a 0 and a 1 onto two consecutive 0 and 1 because this pattern does not appear in any word of L. Thus if S contains 01 at index i, and f is an embedding of w ∈ L so that f maps a zero of w onto s i (resp. a one of w onto s i+1 ), we can swap the 0 and the 1 in S and modify f to map the zero of w onto s i+1 (resp. the one of w onto s i ). The same argument applies for item (vi).

Consequently, starting from S, we can iterately "push" the zeros from left to right by deletion (transformation 00 into 0) or switching (01 into 10), and delete the last letter if it is a zero, until getting a supersequence S 1 where each 0 is followed by a 2. In the same manner, starting from S 1 , we can iterately "push" the 2's from right to left until getting a supersequence S 2 where each two is preceded by a zero. In other words, S 2 is formed by blocks of 02 and blocks of 1. Observe that for such supersequences and for every w ∈ L, there always exists an embedding f of w ∈ L such that for each block 02, either f maps two consecutive letters to this block or f maps no letter to this block. We will focus only on this type of embedding in the following. Observe moreover that |S 2 | ≤ |S|.

• Second step: The goal is to build a supersequence S 3 formed by blocks of 0202 and blocks of 1. Suppose first that S 2 starts by (02) 2k 1 for some k ∈ N. Consider the first apparition s i . . . s i+2k+2 , i ∈ [0 : |S 2 |] of a pattern 1(02) 2k+1 1 for any k ∈ N and call 2j the number of blocks of 02 before the pattern. Let S be the string obtained from S 2 by replacing this pattern by 1(02) 2k 102. Then S is a supersequence of each w ∈ L: let f be an embedding of w in S 2 . Either f does not map any letter to s i+2k+2 = 1, or f uses at most 2k blocks of 02 between s i = 1 and s i+2k+2 = 1, or there exists a block of 02 among the 2jth first blocks such that f maps no letter to this block and f maps no 1 between this block of 02 and s i+1 . Otherwise, w / ∈ ϕ(Σ * ). In each one of the three cases, we can easily modify f so that S is a supersequence of w. We can iterate the process until no odd block of 02 is found. Finally, if S ends with a pattern 1(02) 2k+1 , we can replace it by 1(02) 2k and still have a supersequence: if f is an embedding of w ∈ L, either f uses only 2k blocks among these 2k + 1, or there exists a block of 02 in S before the 1 which is not used by f and such that f maps no one after this block. Thus we can modify f as in the previous arguments. The last case if when S 2 starts with (02) 2k +1 1: we can replace this pattern at the very first step by (02) 2k 102 by the same arguments. Thus we obtain a supersequence S 3 of size ≤ |S| such that S 3 ∈ ϕ(Σ * ). Lemma 2.2. Let n be a positive even integer, L = {S 0 , . . . , S n 2 } be a set of strings with S i = (0202) i 1(0202) n 2 -i for i ∈ [0 : n 2 ]. Then let S be a supersequence of L such that S ∈ ϕ(Σ * ):

• If S contains exactly k ones, then S contains at least (n 2 + 1)/k -1 + n 2 blocks of 0202.

• If S contains exactly n 2 -1 + k blocks of 0202, then S contains at least (n 2 + 1)/k ones.

• The string S min = 1((02) n 1) 2n (02) n-2 is a shortest supersequence of L. It has length 4n 2 + 4n -3.

Proof.

• Let S containing k ones. There must be a subset L of L which contains at least (n 2 + 1)/k strings such that the strings in L can be embedded in S in such a way that the ones in these strings are mapped onto the same one of S. Let i max = max{i|S i ∈ L } and i min = min{i|S i ∈ L }. Since S i min and S imax are mapped onto the same one, S must contain at least i max + n 2 -i min zeros. Moreover, i max ≥ i min + (n 2 + 1)/k -1, so S contains at least (n 2 + 1)/k -1 + n 2 blocks of 0202.

• Let S containing n 2 -1 + k blocks of 0202. Consider a one in S and let L be the subset of L such that the one in the strings of L is mapped onto this one. Let j be the number of blocks of 0202 before this one in S.

Then S i ∈ L only if i ≤ j and n 2 -i ≤ n 2 -1 + k -j, i.e. only if j + 1 -k ≤ i ≤ j. Let i max = max{i|S i ∈ L } and i min = min{i|S i ∈ L }. Then |L | ≤ i max -i min + 1 ≤ j -j -1 + k + 1 ≤ k.
At most k strings are mapped onto the same one, thus there are at least (n 2 + 1)/k ones.

S l = ((02) 6n 1(02) 6n ) i-1 1((02) 6n 1(02) 6n ) j-i-1 (02) 6n 1(02) 6n ((02) 6n 1(02) 6n ) n+1-j (02) 6n . Now we can embed the prefix P l in S l by mapping its two ones onto the two underlined ones of S l and checking that the number of blocks of 0202 is enough.

• Case 2 : v j ∈ V . The suffixe (0202) 3n (0202) 36n 2 -1 of T l can be embedded in S . We can prove similarly to Case 1 that the prefix P l = (0202) 6n(i-1) 1(0202) 6n(j-i-1)+3n 1(0202) 6n(n+1-j)+3n can be embedded in S .

Finally, S is a supersequence of L of size 168n 2 + 37n -3 + k. Suppose now that L has a supersequence of length ≤ 168n 2 + 37n -3 + k. By Lemma 1, L has a supersequence S of size ≤ 168n 2 + 37n -3 + k such that S ∈ ϕ(Σ * ). Define S and S such that S = S S , where S is the shortest prefix of S that contains exactly 6n 2 + 3n blocks of 0202. Since each A i contains 6n 2 + 3n blocks of 0202, like S , and S is a supersequence of X j i , then S is a supersequence of {B j |j ∈ [0 : 36n 2 ]}. Let us state the following two claims: Claim 2.4. For each i ∈ [1 : n], S must contain a one between the (6n(i -1) + 3n)th block of 0202 and the (6in)th block of 0202. Consequently, S contains at least n ones.

Proof. Assume for contradiction that the claim does not hold for an i ∈ [1 : n]. Then the one in A i is mapped on a one in S which is after at least 6in blocks of 0202. Since S contains only 6n 2 +3n blocks of 0202, the suffix (0202) 3n of A i = (0202) 6n(i-1)+3n 1(0202) 6n 2 +3n-6ni (0202) 3n must be mapped onto S . Consequently, S is a supersequence of {(0202

) 3n B j |j ∈ [0 : 36n 2 ]}, thus by Lemma 2, |S | ≥ 4 • 3n + 144n 2 + 24n -3 = 144n 2 + 36n -3. Since |S | ≥ 4(6n 2 + 3n), we have |S| ≥ 24n 2 + 12n + 144n 2 + 36n -3 = 168n 2 + 48n -3 > 168n 2 + 37n -3 + k, a contradiction.
Claim 2.5. For l ∈ [1 : m] and e l = v i v j , i < j, T l cannot be embedded in S if S contains a one neither between the 6n(i -1)th block of 0202 and the (6n(i -1) + 3n)th block of 0202, nor between the 6n(j -1)th block of 0202 and the (6n(j -1) + 3n)th block of 0202.

Proof. Assume that the claim does not hold for an l ∈ [1 : m] with e l = v i v j , i < j. The suffix (0202) 6n+36n 2 -1 of T l must be mapped onto S : indeed, let P l = (0202) 6n(i-1) 1(0202) 6n(j-i-1)+3n 1(0202) 6n(n+1-j) 0 be a prefix of T l . The first one (resp. second one, last zero) of P l must be mapped to a one (resp. one, zero) of S, let t 1 (resp. t 2 , t 3 ) be the number of blocks of 0202 in S before this one (resp. one, zero). The assumption implies t 1 / ∈ [6n(i -1) : 6n(i -1) + 3n] and t 2 / ∈ [6n(j -1) : 6n(j -1) + 3n]. By definition of P l , t 1 ≥ 6n(i -1) thus, by assumption t 1 ≥ 6n(i -1) + 3n. By definition of P l again, t 2 ≥ t 1 + 6n(j -i -1) + 3n ≥ 6n(j -1). Consequently, t 2 ≥ 6n(j -1) + 3n. Finally, t 3 ≥ t 2 + 6n(n + 1 -j) ≥ 6n 2 + 3n. Since S contains exactly 6n 2 + 3n blocks of 0202, the last zero of P l is mapped onto S .

Consequently, S must contain at least 6n+36n 2 -1 blocks of 0202. Assume S contains 36n 2 +p blocks of 0202 with p ≥ 6n -1. By Lemma 2 (ii), |S | ≥ 4(36n 2 + p) + (36n 2 + 1)/(p + 1) ≥ f (p) where f is the function defined on R by f (x) = 4(36n 2 + x) + (36n 2 + 1)/(x + 1). But f is increasing on [3n : +∞[. Since p ≥ 6n -1, f (p) ≥ f (6n -1) = 4(36n 2 + 6n -1) + (36n 2 + 1)/(6n) > 144n 2 + 24n -4 + 6n. Thus |S | ≥ 144n 2 + 30n -3.

Since S contains 6n 2 + 3n blocks of 0202 and, as a consequence of Claim 4, at least n ones, we have |S | ≥ 4(6n 2 + 3n) + n = 24n 2 + 13n. Consequently, |S| ≥ 144n 2 + 30n -3 + 24n 2 + 13n = 168n 2 + 43n -3 > 168n 2 + 37n -3 + k, a contradiction.

Conclusion By Lemma 2, |S | ≥ 144n 2 + 24n -3. By definition, S contains 6n 2 + 3n blocks of 0202. Since |S| ≤ 168n 2 + 37n -3 + k, S can contain at most 168n 2 + 37n -3 + k -(144n 2 + 24n -3) -4(6n 2 + 3n) = n + k ones. By Claim 4, there is a one between the (6n(i -1) + 3n)th zero and the 6inth zero of S for each i ∈ [1 : n], which makes n ones. This implies that there can be at most k indices i ∈ [1 : n] such that there is a one between the 6n(i -1)th zero and the (6n(i -1) + 3n)th zero of S . Let i 1 , . . . i p be these indices, p ≤ k. Thanks to Claim 5, we see that {v i 1 , . . . , v i k } is a vertex cover of G of size p ≤ k.

As explained in the presentation of the two variants, inputs for ϕSCS have no identical consecutive letters and do not start with 2, thus we immediatly gain the following corollary.

Corollary 2.6. MSCS is NP-complete when |Σ| ≥ 3.

2 .

 2 If S starts by 2, delete it 3. If S contains 00, replace it by 0. 4. If S contains 22, replace it by 2. 5. If S contains 01, replace it by 10. 6. If S contains 12, replace it by 21.

• S min is indeed a supersequence of L: first, it is a supersequence of S 0 . Secondly, if i = 0, there exists j ∈ [1 : 2n] such that (j -1)n/2 + 1 ≤ i ≤ jn/2. Then the one in S i can be mapped to the (j + 1)th one, and there is jn/2 ≥ i blocks of 0202 before the one, and (2n-j)n/2+n/2-1 blocks of 0202 after the one, which is enough to map the suffix (0202

Let S be the shortest supersequence of L. By Lemma 1, S ∈ ϕ(Σ * ), so we can apply (i): if k is the number of ones of S , then |S | ≥ k + 4 (n 2 + 1)/k -4 + 4n 2 ≥ f (k) where f is the function defined on R by f (x) = x + 4(n 2 + 1)/x -4 + 4n 2 . However, f admits a minimum on R which is f (2

Proof. Obviously, ϕSCS is in NP. We reduce the Vertex Cover problem to it. Let G = (V, E) be a graph with vertices V = {v 1 , . . . , v n } and edge set E = {e 1 , . . . e m } and an integer k be an instance of Vertex Cover. Recall that the Vertex Cover problem asks whether G has a vertex cover of size ≤ k, i.e. a subset V ⊆ V with |V | ≤ k such that for each edge v i v j ∈ E, at least one of v i and v j is in V . Let us now construct our instance of ϕSCS:

For each edge e l = v i v j ∈ E, i < j, let T l = (0202) 6n(i-1) 1(0202) 6n(j-i-1)+3n 1(0202) 6n(n+2-j) (0202

Clearly, L can be constructed in polynomial time, each string in L is in ϕ(Σ * ) and has exactly two ones, which are non consecutive. We will now show that L has a supersequence of length ≤ 168n 2 + 37n -3 + k if and only if G has a vertex cover V of size ≤ k.

By Lemma 2, S is a supersequence of {B j |j ∈ [0 : 36n 2 ]}. Moreover, ((02) 6n 1(02) 6n ) n (02) 6n is a supersequence of {A i |i ∈ [1 : n]} thus S also is. From this we deduce that S is a supersequence of {X j i |i ∈ [1 : n], j ∈ [0 : 36n 2 ]}. Finally, let us prove that S is a supersequence of T l for l ∈ [1 : m]. Let e l = v i v j , i < j, and consider the two following cases:

• Case 1 : v i ∈ V , i.e. there exists t ∈ [1 : k] such that i = i t . The suffixe (0202) 36n 2 -1 of T l can be embedded in S . The goal is to prove that the prefix P l = (0202) 6n(i-1) 1(0202) 6n(j-i-1)+3n 1(0202) 6n(n+2-j) can be embedded in S . Observe that one can obtain the following subsequence S l of S by deleting a few ones: S l = ((02) 6n 1(02) 6n ) it-1 1((02) 6n 1(02) 6n ) n+1-it 1 (02) 6n . Now S l can be rewritten