The complexity of Shortest Common Supersequence for inputs with no identical consecutive letters

Aurélie Lagoutte, Sébastien Tavenas

To cite this version:

Aurélie Lagoutte, Sébastien Tavenas. The complexity of Shortest Common Supersequence for inputs with no identical consecutive letters. 2017. hal-01508495

HAL Id: hal-01508495
https://hal.science/hal-01508495
Preprint submitted on 14 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The complexity of Shortest Common Supersequence for inputs with no identical consecutive letters

A. Lagoutte* S. Tavenas*

January 8, 2015

Abstract

The Shortest Common Supersequence problem (SCS for short) consists in finding a shortest common supersequence of a finite set of words on a fixed alphabet Σ. It is well-known that its decision version denoted $[\text{SR8}]$ in [4] is NP-complete. Many variants have been studied in the literature. In this paper we settle the complexity of two such variants of SCS where inputs do not contain identical consecutive letters. We prove that those variants denoted φSCS and MSCS both have a decision version which remains NP-complete when $|\Sigma| \geq 3$. Note that it was known for MSCS when $|\Sigma| \geq 4$ [3].

1 Introduction

Given two words u and v over an alphabet Σ, u is a supersequence of v if one can find in u a sequence of non-necessarily successive letters that spells v. The shortest supersequence of u is obviously u, but the problem becomes more difficult if the input is a set of words and one wants to find a common supersequence for these words as short as possible. The decision version of this problem, called SCS for Shortest Common Supersequence has been proven NP-complete in 1981 by Räihä and Ukkonen [8], even if the alphabet has size only 2. It is even NP-complete for some very restricted input, such as in the result of Middendorf [7] on which our work deeply relies: the alphabet is $\Sigma_2 = \{0,1\}$, and all the input words have the same length and each contains exactly two non-consecutive 1. However, another variant of SCS, which we will call Modified SCS (MSCS for short), appears very naturally in the study of combinatorial flood-filling games such as Flood-It and Honey-Bee (studied for example in [1, 3, 5, 6]). In particular in [5], the authors show the NP-completeness of Flood-It, using a reduction to MSCS with an alphabet of size 3. This variant is stated as follows:

Modified Shortest Common Supersequence :

MSCS - decision version

Input: A set $L = \{w_1, \ldots, w_n\}$ of words on an alphabet $\Sigma = \{a_1, a_2, \ldots, a_d\}$ such that no word w_i contains two consecutive identical letters and no word w_i starts with letter a_1, and an integer k.

Output: Does there exist a supersequence of L of size less than k?

At first sight, it can seem easy to reduce SCS with $\Sigma_2 = \{0,1\}$ to MSCS with $\Sigma_3 = \{0,1,2\}$ by replacing every occurrence of 0 by 02 in every word of the input set L, and doing the reverse.

LIP, Université de Lyon, ENS Lyon, CNRS UMR5668, INRIA, UCB Lyon 1, France
operation on the solution to MSCS to get the shortest common supersequence of L. Unfortunately, this very natural idea does not work in general as shown on the following counter-example. Let $L = \{00111, 11100\}$ be a input for SCS (in the minimization version), then the corresponding input for MSCS is $L' = \{0202111, 1110202\}$. The shortest solution for MSCS is 1110202111 of length 10, and its corresponding candidate solution for SCS is 11100111 of length 8. However, the shortest solution for L has size 7: 0011100. The problem here is that the operation transforms 0 into a double-counting letter and looses the symmetry between the two letters.

The second idea that occurs to mind is then to transform every occurrence of 0 by 02, and also every occurrence of 1 by 12. Then one can hope solving the newly created instance of MSCS, and delete every 2 from the solution of MSCS to get the shortest solution to SCS. This does not work either: consider the instance of SCS (in its minimization version) with $L = (\Sigma_2)^3 \setminus \{111\}$, that is to say that L contains every word of length 3 on $\Sigma_2 = \{0, 1\}$ except 111. The shortest supersequence for L is 01010 and is unique. Let L' be the set of words obtained from L by replacing every occurrence of 0 by 02 and every occurrence of 1 by 12. There is no supersequence for L' of length 9 obtained from 01010 by inserting some 2’s (there is one of length 10: 0212021202). However there does exist a shortest supersequence for L' of length 9, namely 012012012. Consequently, the very natural ideas do not work for reducing SCS to MSCS.

Note that Fleischer and Woeginger designed in [3] a reduction proving that MSCS is NP-complete when $|\Sigma| \geq 4$ (the conference version of the paper states the result for $|\Sigma| \geq 3$, but the very simple proof turned out to be false; the correct statement appears in the later-published journal version). One should also mention Darte’s work [2] which does not focus directly on MSCS, but states a result about typed fusions for typed directed graphs in a compilation context. However, as he explains at the beginning of Section 3.5, when the directed graphs are disjoint union of chains, his problem is equivalent to SCS. Moreover the conditions over its typed fusions and digraphs implies that the SCS inputs equivalent to his digraph inputs, are words with no identical consecutive letters. Thus Proposition 3 in [2] can be interpreted as the fact that SCS for inputs with no identical consecutive letters is NP-complete. His reduction from Vertex Cover uses the alphabet $\Sigma = \{0, 1, \bar{a}\}$ and a careful look shows that he generates SCS inputs where no word starts with \bar{a}. Consequently one could state that the NP-completeness of MSCS for three letters is shown there. His reduction is derived from a paper of Rääihä and Ukkonen [8] as well as its proof. Unfortunately it is 10 pages long and hard to check.

The main purpose of our work is to provide a new NP-completeness reduction for MSCS when $|\Sigma| \geq 3$, with a shorter proof, so that the result becomes undisputed. To this end, we introduce yet another variant of SCS, called φSCS. We first define the alphabets $\Sigma_2 = \{0, 1\}$ and $\Sigma_3 = \{0, 1, 2\}$, and the word morphism $\varphi : \Sigma_2^* \rightarrow \Sigma_3^*$ by $\varphi(0) = 0202$ and $\varphi(1) = 1$.

Shortest Common Supersequence for some inputs generated by $\varphi : \varphi \text{SCS}$ - decision version

Input: A set $L = \{w_1, \ldots, w_n\}$ of words on the alphabet Σ_3 such that $L \subseteq \varphi(\Sigma^*)$, each w_i contains exactly two ones, which moreover are non consecutive, and an integer k.

Output: Does there exist a supersequence of L of size less than k?

A careful look at those two problems shows that φSCS is a particular case of MSCS if $|\Sigma| \geq 3$. The input words for φSCS are a concatenation of patterns 0202 and 1 with no consecutive ones, thus they do not contain consecutive identical letters. Moreover none of those input words starts with letter 2. Up to relabelling the letters, one may consider that $a_1 = 2$. Consequently, we will
show that φ_{SCS} is NP-complete, which implies that \mathbb{MSCS} is also NP-complete if $|\Sigma| \geq 3$. One may wonder why we use the block 0202 instead of the more natural block 02 (that is to say, why $\varphi(0) = 0202$ and not 02). The key reason appears in the third item of Lemma 2: the elementary technique we use to prove it does not work for the case of blocks 02.

Besides, observe that the threshold on $|\Sigma|$ which involves NP-hardness is tight: when $|\Sigma| = 2$, \mathbb{MSCS} is trivially polynomial. Finally, let us notice that our proof is a very close adaptation of the proof of Middendorf’s result [7, Theorem 4.2] mentioned in the first paragraph.

Notation

Given two words over an alphabet Σ, $u = u_1 \ldots u_p$ ($u_i \in \Sigma$) and $v = v_1 \ldots v_q$ ($v_i \in \Sigma$), an *embedding* of u into v is an injection f from $\{1, \ldots, p\}$ into $\{1, \ldots, q\}$ such that $u_i = v_{f(i)}$. It tells that v is a supersequence of u and we also say that f maps letters of u onto letters of v. We will also use equivalently the terms pattern, block or factor to designate a sequence of consecutive letters in a word. A supersequence for a set of words is a word which is a supersequence for each of those words.

2 Result

The NP-completeness reduction will start from Vertex Cover, but we will need the next two lemmas.

Lemma 2.1. Let L be a set of words over Σ_3, such that $L \subseteq \varphi(\Sigma^*)$, and $S = s_1 \ldots s_l$ be a supersequence of L. Then there exists a supersequence S' of L of size $\leq |S|$ such that $S' \subseteq \varphi(\Sigma^*)$.

Proof.

- **First step:** Let S' be a supersequence of L and let S'' be the string obtained from S' after applying one of the following operations:

 1. If S' ends by 0, delete it.
 2. If S' starts by 2, delete it.
 3. If S' contains 00, replace it by 0.
 4. If S' contains 22, replace it by 2.
 5. If S' contains 01, replace it by 10.
 6. If S' contains 12, replace it by 21.

Then S'' is still a supersequence of L: indeed, item (i) and (ii) are obvious since no word of L starts by 2 nor ends by 0. For item (iii), observe that no embedding can map two 0 onto two consecutive 0, since no word contains two consecutive 0. Thus if S' contains 00 at index i, and f is an embedding of $w \in L$ so that f maps a zero of w onto s_{i+1}, we can modify f to map this zero onto s_i. Then s_{i+1} is useless and we can delete it. The same argument applies for item (iv). For item (v), observe that no embedding can map a 0 and a 1 onto two consecutive 0 and 1 because this pattern does not appear in any word of L. Thus if S' contains 01 at index i, and f is an embedding of $w \in L$ so that f maps a zero of w onto s_i (resp. a one of w onto s_{i+1}), we can swap the 0 and the 1 in S and modify f to map the zero of w onto s_{i+1} (resp. the one of w onto s_i). The same argument applies for item (vi).

Consequently, starting from S, we can iteratively "push" the zeros from left to right by deletion (transformation 00 into 0) or switching (01 into 10), and delete the last letter if it is a zero, until getting a supersequence S_1 where each 0 is followed by a 2. In the same manner, starting
Lemma 2.2. Let n be a positive even integer, $L = \{S_0, \ldots, S_{n^2}\}$ be a set of strings with $S_i = (0202)^i 1(0202)^{n^2-i}$ for $i \in [0 : n^2]$. Then let S be a supersequence of L such that $S \in \varphi(\Sigma^*)$:

- If S contains exactly k ones, then S contains at least $\lceil (n^2 + 1)/k \rceil - 1 + n^2$ blocks of 0202.
- If S contains exactly $n^2 - 1 + k$ blocks of 0202, then S contains at least $\lceil (n^2 + 1)/k \rceil$ ones.
- The string $S_{\min} = 1((02)^n 1)^2 n (02)^{n-2}$ is a shortest supersequence of L. It has length $4n^2 + 4n - 3$.

Proof. Let S containing k ones. There must be a subset L' of L which contains at least $\lceil (n^2 + 1)/k \rceil$ strings such that the strings in L' can be embedded in S in such a way that the ones in these strings are mapped onto the same one of S. Let $i_{\max} = \max \{|i|S_i \in L'\}$ and $i_{\min} = \min \{|i|S_i \in L'\}$. Since S_{\min} and S_{\max} are mapped onto the same one, S must contain at least $i_{\max} + n^2 - i_{\min}$ zeros. Moreover, $i_{\max} \geq i_{\min} + \lceil (n^2 + 1)/k \rceil - 1$, so S contains at least $\lceil (n^2 + 1)/k \rceil - 1 + n^2$ blocks of 0202.

Let S containing $n^2 - 1 + k$ blocks of 0202. Consider a one in S and let L' be the subset of L such that the one in the strings of L' is mapped onto this one. Let j be the number of blocks of 0202 before this one in S. Then $S_i \in L'$ only if $i \leq j$ and $n^2 - i \leq n^2 - 1 + k - j$, i.e. only if $j + 1 - k \leq i \leq j$. Let $i_{\max} = \max \{|i|S_i \in L'\}$ and $i_{\min} = \min \{|i|S_i \in L'\}$. Then $|L'| \leq i_{\max} - i_{\min} + 1 \leq j - j + 1 + k + 1 \leq k$. At most k strings are mapped onto the same one, thus there are at least $\lceil (n^2 + 1)/k \rceil$ ones.
• S_{\min} is indeed a supersequence of L: first, it is a supersequence of S_0. Secondly, if $i \neq 0$, there exists $j \in [1 : 2n]$ such that $(j - 1) n/2 + 1 \leq i \leq j n/2$. Then the one in S_i can be mapped to the $(j + 1)$th one, and there is $jn/2 \geq i$ blocks of 0202 before the one, and $(2n - j)n/2 + n/2 - 1$ blocks of 0202 after the one, which is enough to map the suffix $(0202)^{n^2-i}$ because $(2n - j)n/2 + n/2 - 1 \geq n^2 - ((j - 1)n/2+1) \geq n^2 - i$. So S_{\min} is indeed a supersequence of L.

Let S' be the shortest supersequence of L. By Lemma 1, $S' \in \varphi(\Sigma^*)$, so we can apply (i): if k is the number of ones of S', then $|S'| \geq k + 4([n^2 + 1]/k) - 4 + 4n^2 \geq f(k)$ where f is the function defined on \mathbb{R} by $f(x) = x + 4(n^2 + 1)/x - 4 + 4n^2$. However, f admits a minimum on \mathbb{R} which is $f(2\sqrt{n^2 + 1}) = 4\sqrt{n^2 + 1} + 4n^2 - 4 > 4n + 4n^2 - 4$. Consequently, $|S'| \geq f(k) > 4n + 4n^2 - 4$. Since $|S'|$ is an integer, $|S'| \geq 4n + 4n^2 - 3 = |S|$.

Theorem 2.3. φ_{SCS} is NP-complete.

Proof. Obviously, φ_{SCS} is in NP. We reduce the Vertex Cover problem to it. Let $G = (V, E)$ be a graph with vertices $V = \{v_1, \ldots, v_n\}$ and edge set $E = \{e_1, \ldots, e_m\}$ and an integer k be an instance of Vertex Cover. Recall that the Vertex Cover problem asks whether G has a vertex cover of size $\leq k$, i.e. a subset $V' \subseteq V$ with $|V'| \leq k$ such that for each edge $v_i v_j \in E$, at least one of v_i and v_j is in V'. Let us now construct our instance of φ_{SCS}:

For all $i \in [1 : n], j \in [0 : 36n^2]$, let

- $A_i = (0202)^{6n(i-1)+3n^2}1(0202)^{6n(n+1-i)}$,
- $B_j = (0202)^21(0202)^{36n^2-j}$,
- $X_i^j = A_iB_j$.

For each edge $e_l = v_i v_j \in E$, $i < j$, let

$$T_l = (0202)^{6n(i-1)+1}(0202)^{6n(j-i-1)+3n^2}1(0202)^{6n(n+2-j)}(0202)^{36n^2-1}.$$

Now let $L = \{X_i^j \mid i \in [1 : n], j \in [0 : 36n^2]\} \cup \{T_l \mid l \in [1 : m]\}$. Clearly, L can be constructed in polynomial time, each string in L is in $\varphi(\Sigma^*)$ and has exactly two ones, which are non-consecutive. We will now show that L has a supersequence of length $\leq 168n^2 + 37n - 3 + k$ if and only if G has a vertex cover V' of size $\leq k$.

Suppose $V' = \{v_{i_1}, \ldots, v_{i_k}\}$ is a vertex cover of G. Define $S' = ((02)^{6n}1(02)^{6n})^{i_1-1}((02)^{6n}1(02)^{6n})^{i_2-1}i_1 \ldots ((02)^{6n}1(02)^{6n})^{i_k-i_{k-1}-1}((02)^{6n}1(02)^{6n})^{n+1-i_k}1(02)^{6n}$,

$S'' = 1((02)^{6n}1(02)^{6n})^{6n-2}$.

$S = S'S''$, then $|S| = 168n^2 + 37n - 3 + k$.

By Lemma 2, S'' is a supersequence of $\{B_j \mid j \in [0 : 36n^2]\}$. Moreover, $((02)^{6n}1(02)^{6n})^{n}(02)^{6n}$ is a supersequence of $\{A_i \mid i \in [1 : n]\}$ thus S' also is. From this we deduce that S is a supersequence of $\{X_i^j \mid i \in [1 : n], j \in [0 : 36n^2]\}$.

Finally, let us prove that S is a supersequence of T_l for $l \in [1 : m]$. Let $e_l = v_i v_j$, $i < j$, and consider the two following cases:

- **Case 1:** $v_i \in V'$, i.e. there exists $t \in [1 : k]$ such that $i = i_t$. The suffix $(0202)^{36n^2-1}$ of T_l can be embedded in S''. The goal is to prove that the prefix $P_l = (0202)^{6n(i-1)+1}(0202)^{6n(j-i-1)+3n^2}1(0202)^{6n(n+2-j)}$ can be embedded in S'. Observe that one can obtain the following subsequence S'_l of S' by deleting a few ones: $S'_l = ((02)^{6n}1(02)^{6n})^{i-1}((02)^{6n}1(02)^{6n})^{n+1-i}1(02)^{6n}$. Now S'_l can be rewritten
$S'_i = ((02)^6n_1(02)^{6n_i-1})^{-1}_i((02)^{6n_1}(02)^{6n})_{i-1} - 1(02)^{6n_1}(02)^{6n}((02)^{6n_1}(02)^{6n})_{n+1-j}(02)^{6n}$. Now we can embed the prefix P_i in S'_i by mapping its two ones onto the two underlined ones of S'_i and checking that the number of blocks of 0202 is enough.

- Case 2: $v_j \in V'$. The suffix $(0202)^{3n}(0202)^{36n^2-1}$ of T_i can be embedded in S''. We can prove similarly to Case 1 that the prefix $P_i = (0202)^{6n(i-1)}(0202)^{6n(j-i-1)+3n}1(0202)^{6n(n+1-i)+3n}$ can be embedded in S''.

Finally, S is a supersequence of L of size $168n^2 + 37n - 3 + k$.

Suppose now that L has a supersequence of length $\leq 168n^2 + 37n - 3 + k$. By Lemma 1, L has a supersequence S of size $\leq 168n^2 + 37n - 3 + k$ such that $S \in \varphi(\Sigma^*)$. Define S' and S'' such that $S = S'S''$, where S' is the shortest prefix of S that contains exactly $6n^2 + 3n$ blocks of 0202. Since each A_i contains $6n^2 + 3n$ blocks of 0202, like S', and S is a supersequence of X_1^i, then S'' is a supersequence of $\{B_j|j \in [0 : 36n^2]\}$. Let us state the following two claims:

Claim 2.4. For each $i \in [1 : n]$, S' must contain a one between the $(6n(i-1) + 3n)$th block of 0202 and the $(6n(i-1) + 3n)$th block of 0202. Consequently, S' contains at least one.

Proof. Assume for contradiction that the claim does not hold for an $i \in [1 : n]$. Then the one in A_i is mapped on a one in S which is after at least $6n$ blocks of 0202. Since S' contains only $6n^2 + 3n$ blocks of 0202, the suffix $(0202)^{3n}$ of $A_i = (0202)^{6n(i-1)+3n}1(0202)^{6n^2+3n-6n}(0202)^{3n}$ must be mapped onto S''. Consequently, S'' is a supersequence of $\{(0202)^{3n}B_j|j \in [0 : 36n^2]\}$, thus by Lemma 2, $|S''| \geq 4 \cdot 3n + 144n^2 + 24n - 3 = 144n^2 + 36n - 3$. Since $|S'| \geq 4(6n^2 + 3n)$, we have $|S| \geq 24n^2 + 12n + 144n^2 + 36n - 3 = 168n^2 + 48n - 3 > 168n^2 + 37n - 3 + k$, a contradiction.

Claim 2.5. For $l \in [1 : m]$ and $e_l = v_i v_j$, $i < j$, T_i cannot be embedded in S if S' contains a one neither between the $6n(i-1)$th block of 0202 and the $(6n(i-1) + 3n)$th block of 0202, nor between the $6n(j-1)$th block of 0202 and the $(6n(j-1) + 3n)$th block of 0202.

Proof. Assume for contradiction that the claim does not hold for an $l \in [1 : m]$ with $e_l = v_i v_j$, $i < j$. The suffix $(0202)^{6n+36n^2-1}$ of T_i must be mapped onto S'': indeed, let $P_i = (0202)^{6n(i-1)}1(0202)^{6n(j-i-1)+3n}1(0202)^{6n(n+1-j)}0$ be a prefix of T_i. The first one (resp. second one, last zero) of P_i must be mapped to a one (resp. one, zero) of S, let t_1 (resp. t_2, t_3) be the number of blocks of 0202 in S before this one (resp. one, zero). The assumption implies $t_1 \notin [6n(i-1) : 6n(i-1) + 3n]$ and $t_2 \notin [6n(j-1) : 6n(j-1) + 3n]$. By definition of P_i, $t_1 \geq 6n(i-1)$ thus, by assumption $t_1 \geq 6n(i-1) + 3n$. By definition of P_i again, $t_2 \geq t_1 + 6n(j-i-1) + 3n \geq 6n(j-1)$. Consequently, $t_2 \geq 6n(j-1) + 3n$. Finally, $t_3 \geq t_2 + 6n(n + 1 - j) \geq 6n^2 + 3n$. Since S' contains exactly $6n^2 + 3n$ blocks of 0202, the last zero of P_i is mapped onto S''.

Consequently, S'' must contain at least $6n + 36n^2 - 1$ blocks of 0202. Assume S'' contains $36n^2 + p$ blocks of 0202 with $p \geq 6n - 1$. By Lemma 2 (ii), $|S''| \geq 4(36n^2 + p) + [(36n^2 + 1)/(p + 1)] \geq f(p)$ where f is the function defined on \mathbb{R} by $f(x) = 4(36n^2 + x) + (36n^2 + 1)/(x + 1)$. But f is increasing on $[3n : +\infty[$. Since $p \geq 6n - 1$, $f(p) \geq f(6n - 1) = 4(36n^2 + 6n - 1) + (36n^2 + 1)/(6n) > 144n^2 + 24n - 4 + 6n$. Thus $|S''| \geq 144n^2 + 30n - 3$.

Since S' contains $6n^2 + 3n$ blocks of 0202 and, as a consequence of Claim 4, at least n ones, we have $|S'| \geq 4(6n^2 + 3n) + n = 24n^2 + 13n$. Consequently, $|S| \geq 144n^2 + 30n - 3 + 24n^2 + 13n = 168n^2 + 43n - 3 > 168n^2 + 37n - 3 + k$, a contradiction.
Conclusion By Lemma 2, $|S''| \geq 144n^2 + 24n - 3$. By definition, S' contains $6n^2 + 3n$ blocks of 0202. Since $|S| \leq 168n^2 + 37n - 3 + k$, S' can contain at most $168n^2 + 37n - 3 + k - (144n^2 + 24n - 3) - 4(6n^2 + 3n) = n + k$ ones. By Claim 4, there is a one between the $(6n(i - 1) + 3n)$th zero and the $6n$th zero of S' for each $i \in [1 : n]$, which makes n ones. This implies that there can be at most k indices $i \in [1 : n]$ such that there is a one between the $6n(i - 1)$th zero and the $(6n(i - 1) + 3n)$th zero of S'. Let i_1, \ldots, i_p be these indices, $p \leq k$. Thanks to Claim 5, we see that \{\(v_{i_1}, \ldots, v_{i_k}\)\} is a vertex cover of G of size $p \leq k$.

As explained in the presentation of the two variants, inputs for φ_{SCS} have no identical consecutive letters and do not start with 2, thus we immediately gain the following corollary.

Corollary 2.6. \mathcal{MSCS} is NP-complete when $|\Sigma| \geq 3$.

References

