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MULTIPLE SUMMING MAPS: COORDINATEWISE SUMMABILITY,
INCLUSION THEOREMS AND p-SIDON SETS

FREDERIC BAYART

ABSTRACT. We discuss the multiple summability of a multilinear map 7' : X1 X --- X
X — Y when we have informations on the summability of the maps it induces on each
coordinate. Our methods have applications to inclusion theorems for multiple summing
multilinear mappings and to the product of p-Sidon sets.

1. INTRODUCTION

1.1. Multiple and coordinatewise summability. Let T : X — Y be linear where X
and Y are Banach spaces. For r,p > 1, we say that T is (7, p)-summing if there exists a
constant C' > 0 such that, for any sequence z = (z;);en C XV,

+o0
<Z IIT(:CZ-)HT> < Cwy(z)
i=1

where the weak #P-norm of x is defined by

400 %
wp(x) = sup <Z !w*(%’)\p> :
llz*|I<1 i=1
The theory of (r, p)-summing operators is very rich and very important in Banach space
theory (see [10] for details). In recent years, the interest moves to multilinear maps. We
start now from m > 1, X4,...,X,,, Y Banach spaces and T': X1 X --- x X;;, = Y m-
linear. Following [8] and [17], for » > 1 and p = (p1,...,pm) € [1,+00)™, we say that
T is multiple (r, p)-summing if there exists a constant C' > 0 such that for all sequences

z(j) € X}, 1<j <m,
v
(Z HT(wi)Hr> < Cwp, (2(1)) - - wp,, (x(m))
ieN™
where T'(x;) stands for T'(z;, (1),...,x;, (m)). The least constant C' for which the inequal-

mult
r7p

say that 7" is multiple (7, p)-summing.

ity holds is denoted by 7/*3"*(T"). When all the p;’s are equal to the same p, we will simply
Even if the notion of multiple summing mappings was formalized only recently, its roots
go back to an inequality of Bohnenblust and Hille appeared in 1931 (see [7]). Using the
reformulation of [21], this inequality says that every m-linear form T : Xj x ---x X, = K
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is multiple (2m/(m+ 1), 1)-summing. Observe that the restriction of 7" to each X}, (fixing
the other coordinates) is, as all linear forms, (1,1)-summing. This motivates the authors
of [9] to study the following question: let T : X7 x - -+ x X, = Y be m-linear and assume
that the restriction of T' to each Xy is (r,p)-summing (we will say that T is separately
summing). Can we say something about the multiple (s, ¢)-summability of 77 The authors
of [9] get a successful answer in the case p =t = 1 (their results were later improved and
simplified in [22] and in [3]). Precisely, they showed the following result:

Theorem (Defant, Popa, Schwarting). Let T : X; x --- X X, = Y be m-linear with
Y a cotype q space. Let r € [1,q] and assume that T is separately (r,1)-summing. Then
T is multiple (s,1)-summing, with

We intend in this paper to fill out the picture by allowing the full range of possible values
for t and p, namely ¢ > p > 1. The following result is a more readable corollary of our
main theorems, Theorems 2.1, 2.2, 2.3, 7.1 (p* will denote the conjugate exponent of p).

Theorem 1.1. Let T : X1 x--- X X,y = Y be m—linear with Y a cotype q space. Assume
that T is separately (r,p)-summing and let t > p.

° If% + 1% -5 > %, then T is multiple (s,t)-summing with

1 m-1 1 1 1

s mq mr - mp*  t*

e If0< % + z% - w < %, then T is multiple (s,t)-summing with

1 1 1 m

s r p* t*
When 1 <p=1t <2 and q =2, the above values of s are optimal.

1.2. Inclusion theorems. Our methods have other interesting consequences. A basic
result in the theory of (r,p)-summing operators is the inclusion theorem: if 7' € L(X,Y)

is (r,p)-summing, then it is also (s, ¢)-summing provided s > r and % —-1< % — =. The

q
proof of this result follows from a simple application of Holder’s inequality.

1
5

In the multilinear case, the situation seems more involved. Using probability in a clever
way, Pérez-Garcia in [20] succeeded to prove that if T € L(Xi,...,X,;Y) is (p,p)-
summing, p € [1,2), then it is also (g, ¢)-summing for ¢ € [p,2). However, this result
is not very helpful to provide inclusion theorems for (r,p)-summing multilinear maps as
those coming from the Bohnenblust-Hille inequality.

The next result seems to be a natural multilinear analogue to the linear inclusion theorem.
It already appeared in [19, Proposition 3.4] in the particular case where all the p; are equal,
with a different proof. Its optimality will be discussed in Theorem 7.2.

Theorem 1.2. LetT : X1 x---xX,, = Y be m-linear, letr,s € [1,4+00), p,q € [1,400)™.
Assume that T is multiple (r,p)-summing, that qx > py for all k = 1,...,m and that
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1 Py pij + 3" L > 0. Then T is multiple (s,q)-summing, with

T Jj=1 E

1 3 11 i 1

e K
1.3. Harmonic analysis. A second application occurs in harmonic analysis. Let G be a
compact abelian group with dual group I'. A subset A of T" is called p-Sidon (1 <p < 2)
if there is a constant k£ > 0 such that each f € C(G) with f supported on A satisfies
I flle, < &l flloo- It is a classical result of Edwards and Ross [12] (resp. Johnson and
Woodward [14]) that the direct product of two 1-Sidon sets (resp. m 1-Sidon sets) is
4/3-Sidon (resp. 2m/(m + 1)-Sidon). We generalize this to the product of p-Sidon sets.
We need an extra assumption. A subset A of T' is called a A(p)-set, p > 1, if for one
q € [1,p) (equivalently, for all ¢ € [1,p)), there exists k > 0 such that, for all f € C(G)

with f supported on A,
1 fllzr) < Bl fllLaa)-

Theorem 1.3. Let Gy,...,Gn, m > 2, be compact abelian groups with respective dual
groups I't,...., Ty, For 1 < j < m, let A; C T'; be a p;-Sidon and A(2)-set. Then
A x -+ x Ay, is a p-Sidon set in 'y x --- x T'y, for

1 1 1

Pk
—=—-+-—and R= .
p 2 2R k:12—pk

m

Moreover, this value of p is optimal.

It is well known that any 1-Sidon set is automatically a A(p)-set for all p > 1. It is
not known whether all p-Sidon sets are A(2) or not. We also get an analogous result
for another natural generalization of 1-Sidon sets, the so-called p-Rider sets, without any
extra assumption.

ORGANIZATION OF THE PAPER. Section 2 is devoted to the introduction of some notations
and definitions. We then give the statements of our main theorems (Theorems 2.1, 2.2 and
2.3). These statements may look technical but we derive immediately from them several
striking corollaries. We emphasize particularly Corollary 2.6 whose proof needs the three
main results.

In Section 3, we prove several auxiliary results. They seem interesting for themselves;
for instance, they are at the heart of the proof of Theorems 1.2 and 1.3. We apply these
auxiliary results in the three next sections to the problems we have in mind: coordinatewise
summability in Section 4, inclusion theorems in Section 5, and harmonic analysis in Section
6. Finally, in Section 7, we discuss the optimality of our results.

2. PRELIMINARIES: NOTATIONS AND STATEMENTS OF THE RESULTS

2.1. General statements. We shall use the terminology and notations introduced in [9]
and [22]. For Banach spaces X1,...,X,,, m > 2, and a proper subset C of {1,...,m},
we write X¢ = Hje() X, and identify in the obvious way X; x --- x X,,, with XC x xC
where C denotes the complement of C' in {1,...,m}. With this identification, if y € X¢
and z € XC, then z = (y,2) € X1 X -+ x X, Forz € X7 x -+ x X,,,, we shall also



4 FREDERIC BAYART

denote by z(C') its projection on X, so that we may write 2 = (2(C),z(C)). We take the
norm on finite products of Banach spaces to be the maximum of the component norms;
hence the identification is isometric. We shall abbreviate x({k}) by xz(k), namely the k-th
coordinate of x € X1 X -+ X X. B

IfT: X x---xX,, = Y is m-linear and z € X©, the map T%(z) defined on X¢ by
TC(2)(z) = T(x,z) is clearly |C|-linear. For r,p > 1, we say that T is coordinatewise
multiple (r, p)-summing in the coordinates of C provided T (z) is multiple (7, p)-summing
for all z € C. In that case, we shall denote

C mul C
17 llow () = sup { T ™(TC(2)); |12l o < 1}

Our first result deals with (r, p)-multiple summing maps where r does not exceed the
cotype of the target space.

Theorem 2.1. Let m > 2, let {1,...,m} be the disjoint union of n > 2 non-empty
subsets Cy,...,Cyp, let Y be a Banach space with cotype q and let ri,...,r, € [1,q),
P1y---,Pp € [1,+00). Define

1 1 C; T e Dt
S e k=t
T . J
Tk k J#k p'] 1 Tj p;
q _ 4Ckl
1 1 G5 -5~ Pk
— = > k#le{l,...,n}
* alG;l’ T
Ykl k fory p; 1 ;IJ p;J
R — Yk
—1 47k
qR
s = ——
1+ R
qj = pg provided j € Cy, j=1,...,m
a = (q,--qm)
Let us also assume that, for all k #1 € {1,...,n}, v >0, 0 < v, < q and @# <1.
l
Then all m-linear maps T : X1 X -+ x X,, = Y which are (rg,py)-summing in the
coordinates of Cy, for each k =1,...,n are multiple (s, q)-summing.

Our second result deals with (r, p)-multiple summing maps with r exceeding the cotype of
the target space, but when we start from (7, py)-coordinatewise summability with ry < gq.

Theorem 2.2. Let m > 2, let {1,...,m} be the disjoint union of n > 2 non-empty
subsets Cy,...,Cp, let Y be a Banach space with cotype q and let ri,...,r, € [1,q),
Ply..-,Pn € [1,400). Define

— = = - Z Il Tk Pk k=1,...,n, JC{l,....n})\{k}
Vi, J Tk P; 1— 4 _ ¢l

’ jgJufky *J T p;‘f

qj = pg provided j € Cy, j=1,....,m

a = (q1,--,qm)-
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Assume that there exists J C {1,...,n} such that

(1) there exists ko ¢ J with Y,.7 > q;
(2) For any k,l€ {15 s ,TL}\J, k 7é l7 Ve, Ju{l} € (OaQ];
(3) For any k,l € {1,...,n}\J, k #1, ‘Cm;%“} <1.

We finally set

1 _zﬂCﬂ
S Vko,J jEJ p]
and assume that s > 0. Then all m-linear maps T : X1 X -+ - x X, = Y which are (ry, pg)-
summing in the coordinates of Cy for each k =1,...,n are multiple (s, q)-summing.

Our third result solves the case when one ry is greater than q.

Theorem 2.3. Let m > 2, let {1,...,m} be the disjoint union of n > 2 non-empty
subsets C1,...,Cy, let Y be a Banach space with cotype q and let rq,...,r, € [1,+00),
Ply.--,Pn € [1,+00). Assume that there exists k € {1,...,n} such that r > q. We set

11 leX
R n

r *
kg P

and assume that s > 0. Then all m-linear maps T : X1 X -+ - x X, = Y which are (ry, pg)-
summing in the coordinates of Cy for each k = 1,...,n are multiple (s, q)-summing where
q 15 defined by q; =py, for j € Cy, j=1,...,m.

2.2. Corollaries. The statement of Theorems 2.1, 2.2 and 2.3 may look complicated; this
is due to their generality. In particular cases, they look nicer; they cover and extend many
known statements. We begin by assuming that p, = 1 for all k € {1,...,n}.

Corollary 2.4. Let m > 2, let {1,...,m} be the disjoint union of n > 2 non-empty open
subsets Cq,...,Cy, let Y be a Banach space with cotype q and let ri,...,m, € [1,q). Set

_hﬂq_m’ L+ R

Then all m-linear maps T : X1 X -+ X X, = Y which are (rx, 1)-summing in the coordi-
nates of Cy, for each k =1,...,n are multiple (s,1)-summing.

This corollary is the main result of [22] which was itself an improved version of the main
theorem of [9].

Proof. We may apply Theorem 2.1. Its assumptions are satisfied because p; = +oco. [

Remark 2.5. Observe that there is no restriction to assume r; < ¢. Indeed, any linear
map with value in a cotype ¢ space is always (g, 1)-summing and we may apply Theorem
2.3 to deduce that any multilinear map with value in a cotype ¢ space is always multiple
(¢, 1)-summing, a result already observed in [8, Theorem 3.2]
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Our second more appealing result happens when we start from a (7, py)-separately sum-
ming map (namely |Cy| = 1 for all k) with % - ﬁ =0 € (—00,0]. In view of the inclusion
theorem, this last assumption is not surprising. It implies that all the quotients

_a _ 4C%
Tk Dy
1— q _ Q‘Cj‘
T p;f

are equal to 1.

Corollary 2.6. Let T : X1 x --- x X;;,, = Y with Y a cotype q space and p € [1,+00)™
Assume that T is (ry, pr)-summing in the k-th coordinate and that there exists < 0 such
that i — ka =0 for all k. Set

1
——1+ Z—*.
i1 Pk

(1) If v € (0,q), then T is multiple (s, p)-summing with
1 m-1 1

mq ym

s
(2) If v > q, then T is multiple (v, p)-summing.

Proof. Suppose first that v € (0,¢). Then with the notations of Theorem 2. 17 v, = v for

all £ and % = % 1 for all k # [. This implies that rp < ¢ and o Hence the
s Py

assumptions of Theorem 2.1 are satisfied and this leads to (1). To prove (2), we suppose
first that rp < ¢ for all k. Let J be a maximal set of {1,...,n} such that there exists
ko ¢ J with v, 7 > g. Such a set does exist since 71,5 =7 > ¢ and Ve Lo\ K} = Tk < 4
for all k. This couple J and kg being fixed, we may observe that for all k,1 € {1,...,n}\J,
k # 1, v, 50y < q (otherwise J would not be maximal) and

1 1 1 1 1 1
=—4+=2-+=2—=

Yegufly  VkJ P Y PP

Thus we may apply Theorem 2.2. Finally, if . > g for some k, then the result follows
from Theorem 2.3. U

In turn, this last corollary implies several interesting results. First, half of Theorem 1.1
may be deduced easily from it.

Proof of Theorem 1.1 (without optimality). Assume first that ¢ = p. Then the conclusion
follows directly from Corollary 2.6 with r, = r and pr = p for all k. Suppose now that
t > p. Then, by the inclusion theorem for linear maps, 7' is separately (p,t)-summing for
L_ % + % — %. We conclude again by an application of Corollary 2.6 with r, = p and

p
pr =t for all k. O

We may also deduce from Corollary 2.6 a result of Praciano-Pereira [23] and Dimant /Sevilla-
Peris [11] which is an m-linear version of a famous bilinear inequality of Hardy and Lit-
tlewood [13]. We state it in the spirit of [21].
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Corollary 2.7. Let T : X1 x -+ x X;;, = C be m-linear and let p = (p1,...,pm) €

[1,400)™. Set
1 1
T
(1) If v € (0,2) then T is multiple (s, p)-summing with
1 m—1 1

2m my’

s
(2) If v > 2, then T is multiple (y, p)-summing.

Proof. This follows immediately from Corollary 2.6 since any linear form is (p, p)-summing.
O

Observe finally that Theorem 1.1 extends also Theorem 1.2 of [11].

NoOTATIONS. Part of the notations we shall use was already introduced at the beginning
of this section. We shall also denote by (e;)icn the standard basis of ¢, and e;, i € N™,
will mean (e, (1), ..., €;,,(m)) where (e;(j)); is a copy of (e;);. For u € [[L, £y, i€ N™
and a € R, u; will stand for u;, (1) x -+ x u;,, (m) and u for u;, (1)® x -+ X w;,, (m)*. As
indicated above, if (aj)jenm is a sequence indexed by N and C' C {1,...,m}, we shall

identify i with j, k with j = i(C), k = i(C) so that we shall write a; = a; .

3. USEFUL LEMMAS

3.1. Coefficients of non-negative m-linear forms. We shall need the following non-
negative version of a theorem of Praciano-Pereira [23]. It already appears in [15] for
bilinear forms.

Proposition 3.1. Let m > 1, 1 < pq,...,pp < +00 and A : {p, x --- x L, — C be a
non-negative m-linear form. Then

1/p
<Z A(@i)”) < 4]

ieN™
provided p~' =1 — zgﬂzlpj_l > 0.
Here, non-negative simply means that for any i € N, A(e;) > 0.

Proof. We shall give a proof by induction on m. Our main tool is the following factorization
result of Schep [26] which extends to multilinear maps a result of Maurey [18].

Lemma 3.2. Let B : 4, X --- X £, — L, be a non-negative m-linear map such that
r > max(q,1) with r~! = pfl + -+ p,t. Then there exist a non-negative ¢ € £ with
st = ¢t —r71 and a non-negative m-linear map C : €y, x -+ x £, ~— £, such that
B = M4C where My is the operator of multiplication by ¢. Moreover, || B|| = inf ||¢||s||C]|
where the infimum is taken over all possible factorizations.

Let us come back to the proof of Proposition 3.1. The result is clear for m = 1 (it does
not require positivity) and let us assume that it is true for m-linear forms, m > 1. Let

A:ly x---xt

pms1 — C be a non-negative (m + 1)-linear form. It defines a bounded
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m-linear map B : €y X -+ X £y, = Lyr by (ej, B(z)) = A(z,¢;). By Lemma 3.2, B
factors through ¢,, r—1 = pl_1 + -+ p,l; namely we may write B = MyC with ¢ € £,
sTl=1 —pl_1 — —p;;rl and C': {p, x---x ¥, — {, anon-negative continuous m-linear

map. Thus, writing a; ; = A(es, ej) = (e;, B(es)), ¢ij = (€5, C(e1)), i€ N™, j € N, we get

1/s 1/s
S S S
> ay] = (X d
jeNieN™ jEN ieNm
1/s
< [|¢llssup (Z Cij> -
JEN \ienm

Define now Cj : 4, x --- x £, — C by Cj(z) = (ej,C(z)). Then Cj is a bounded non-
negative m-linear form with ||C;|| < ||C]], and by the induction hypothesis, since s > ¢

where t 71 =1 —pfl — - —p,t, we have
1/s
(Z Cis,j> <[lc-
ieN™
The result now follows by taking the infimum over all possible factorizations of A. U

Remark 3.3. The example of A(z(1),...,z(m)) = >." x;i(1)--- z;(m) shows that the
constant p in Proposition 3.1 is optimal.

3.2. An abstract Hardy-Littlewood method. To prove their bilinear inequality on
¢y-spaces in [13], Hardy and Littlewood have introduced a methode to go from ¢, to ¢
and back again. This was performed several times later (for instance in [23], [1] or [11]).
We shall develop here an abstract version of this machinery, first in the bilinear case and
then in the m-linear one.

Lemma 3.4. Let my,mg > 1, p1,p2,q € [1,400), (aij)ienm1, jenme @ sequence of non-
negative real numbers. Assume that there exists kK > 0 and 0 < «, 8 < q such that

e forallue H;n:ll By, ,

a/q
> (S ) ) <

jeEN™2 \ieN™

e forallv e H;ﬂjl By,

Then
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_ 49 _ magq

_1 mi a D2
- o \7_4g_nmug
“ P\ T

B <.

where

provided v > 0, mla <1 and

1/q
Proof. For j € N™2, we denote Sj = <ZieNm1 a?j> . Let also 6 > 0 with my/0 < 1 and
let 1/p =1—my/60. For any v € R, we may write

:E;: 57 = 253 5%(3)”

p

IN

bt
sup E wj Sjp
0 J

U)EH;”:QI By

where we have used Proposition 3.1. We then set v = v/p and we write for w € H 1 By,

S = Vs Yl
j ]
- Tt

1/s 1/s*
NSY /

a. .
LJ § : s q
Z Z S(q—'y’)s w.l aiyj
J 5] J

i

IN

15\ L/t 50\ Lt

q
A .
ij § : § : s* q
Z Z S(q—'y’)s - - w.] aivj
J Jj 1 J

i

IN

where (s,s*) and (t,t*) are two couples of conjugate exponents such that t*/s* = 8/q.
Now, w® /4 belongs to H;”:Ql Bgeq/s*. Thus, if we can set § = PQ;*’ then we can deduce that

) i/s\ 1/t

/ . as 5
zj:“ﬁs} <sUT Y] ;ﬁ
J

i

We then apply Proposition 3.1 to the m-linear form defined on [}, £, by A(e;) =

a
ZJeNmQ 75([1_7 B where
j

(this requires s < t). We obtain
q t/s t/s

ags
Z Z S‘(Ti’)s = et Z Yi Z S(q )
i

ieNm1 \ jeN™m2 yell2d) Be, ieNm™1  jeNme
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Fix now y € [}, By, and let us apply another time Hélder’s inequality with r satisfying
(g —7")sr = q. We get

a?,.
2 ; S_(q—fw)s Z 2V 5<q
1 J 1
al. yr
el o)
N—

J
=1
We may then conclude provided
r* 1
T o9 g =~ =2,
w oo ™t oq
All the conditions imposed on 7, s,t and w fix the value of +'. Indeed, we get successively

1
1_a _o Q_mgt
* 1

B
) e,
since — = —,
m

DI
p1 q

SO A EN )
q P1 ’Y’Zq 1 q q

_B ﬁ afmy
1 q 1= + p1q

We may then compute v by checking that

1 1 maq
P p2s*
afmime
_ |____mp
5 afmy
1-2 150
We finally deduce that
v = 9
é Bma
1- 24 o

(6
1— 5 + aﬁml _ affmimsa
p1q p1p2

which leads to
1.8 + afmi _ afmims

1 q piq P1p2
gl a<1—ﬁ+ﬁ—”fl)
_ 1. om Tﬁ_ﬁ_m;;w
a ( 6+6m1)
N 1 mq 1- %_;Z_?z
= 5 T iT
P B pig
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We verify now that our applications of Holder’s inequality and Proposition 3.1 were legit-
imate. It is clear that s,r > 1. Since

s

R

t P1
we also have 1 < s < ¢. In particular, our application of Proposition 3.1 to [];22; 4, was
possible. Finally, our first application of this proposition requires that p > 0, namely

Oéﬁm1m2§1_é+045m1 amy <ﬁm2_ﬁ>§1_é.

p1p2 q yau n b2 q q
It is easy to check that this last inequality is satisfied provided amy < p1, Bms < p2 and
B<q. u

The following proposition is the main step towards the proof of our main results. It is an
n-linear version of the previous lemma.

Proposition 3.5. Let q € [1,+00)™. Let (Ci,...,Cy) be a partition of {1,...,m} into
non-empty open subsets and let us assume that there exists p € [1,4+00)" such that, for
any 1l € {1,...,n} and any k € Cj, qx = p;. Let also (a(i))ienm be a sequence of non-
negative real numbers. Assume that there exist kK > 0, 0 < ry,...,7r, < q such that for all
ke {l,....n}, for all sequence v € [, [ ec, Bey,»

q.49 < KTk
E E ’Uj ai,j S KR

ieNCk \ jenTh

Define, for all k #£ 1,

g _ |Ckle

i _ i_}:’cj’ 1_7’k Pk
; q _ 1Cilq

Yk Tk ik pj 1_7"_j_p—Jj

L l_z!Cj! T

= pj \ 14 Gl
]#kyl TJ' pj
Then, for all k € {1,...,n},

e\ 5.
q

(1) > 2 <h

ieENCk \jeNCr
provided, for all k # 1, v > 0, v € (0,¢] and lclzl)# <1.

Proof. The proof is done by induction on n. For n = 1, there is nothing to prove (the inner
sum does not appear) and the case n = 2 is the content of Lemma 3.4. So, let us assume
that the result is true for n — 1 > 2 and let us prove it for n. We fix some [ € {1,...,n}

and some w € HjeCl ngl. We then define, for i € Nﬁl,

q

b(i) = Z wJ?aiqvj

jeN©
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Our assumption implies that, for k # [,

»Q‘;

S X wmair) e

ieNCE \5eNCrUC

where v is any element of || skl II jec, Be,,- We may thus apply the induction hypothesis
to get that, for any k #£ 1

Vil

Z Z bl(iaj)q < KTkL,

ieNCE \5eNCrUC

We then set, for i € NCk and j € N¢,

Q|

cri(i,j) = Z aiq,j,k

kENCkUCl

so that our inequality becomes

k.l
q

Z Z wfck,z(i,j)q < R

ieNCk \jeNC

which is satisfied for all w € []
by k and [ and we also have

jec, ngl. But of course, we can exchange the role played

.k
q

Z Z wier (i, §) < RNk

jeENCt \ieNCk
for all w € [[;ec, Be,, - We now apply Lemma 3.4 to find that (1) is satisfied with

_ _q _ |Cklg
11 Gl (e T e

Yo i po\1-— 2 |Gl
Yi,k pL

It remains to verify that this is the expected value of 4. This follows from

q _ |Cklg
1_i_@ _ 1_£_qz|0j| IR _|Ck|q
B ; ICjla
Thi Pk e g P\l = 5 -5 Pr
C
= (1_i_ﬂ> 1_2 qq ren
7’. [ A —
keooPR jE L= =

and from the symmetric computation involving ~; . (]
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3.3. A mixed-norm inequality. We finally need a last result which is a combination of
a mixed-norm Hoélder inequality (see [4]) and an inequality due to Blei (see [5]). It appears
in [22]. Let (M, j1;) be o-finite measure spaces for j = 1,...,n and introduce the product
measure spaces (M", u") and (M, u7) by

n n n n

M" = HMk, p = H,Ulm M} = HMk, py = Huk-
=1 k=1 k1 k1
k#j k#j

Lemma 3.6. Let ¢ >0, n>2 and ri,...,r, € (0,q). If h > 0 is u™-measurable, then

1 i
[ a
(o) <L, ([, o) oo

1
R(g—rj)

J

—\n rj — 4R
where R—zjzl e and Q = {5.

4. PROOF OF THE MAIN RESULTS

Proof of Theorem 2.1. Let, for 1 < j < m, x(j) = (;(J))ien C XJN with wg, (z(5)) < 1.
We set a; = || T(x;)]| for i € N and we intend to show that the assumptions of Proposition
3.5 are satisfied. So, let k € {1,...,n}. For l # k € {1,...,n} and u € C}, we consider
a sequence v(u) € ngl* = ng; and we set y(u) = (v;(u)x;(u))ien so that wi(y(u)) < 1.

Writing Cy = {u1, ..., us} and picking j € NG, we set y; = 15(Cr) = (45, (1), - ..,y (us)),

so that
Tk Tk

q q
S| 2 vy =X | 22 1T () (@l
iENCk \3eNCr ieENk \jeNCk
Since Y has cotype ¢, and using Kahane’s inequalities, there exists a constant Ay (de-
pending only on 7y, on |Cy| and on the cotype g constant of Y) such that

Tk
q

S X ats] <A [ X IT@@0. ) e

ieN®t \;eNCr ieNCk
where y(w) = (315 Ejvi(w)yi(j))jeC_k and (€5;);cq, ien are sequences of independent

Bernoulli variables on the same probability space (€2,.A4,P). Recall that |e;;(w)| < 1, for
any j € Cj, and any i € N. Therefore,

lyG.wlly, = sup

+oo
T, Zej,i(w)yi(j)
!L’*EBX; i=1

wi(y(4)) < 1.

Since T is coordinatewise multiple summing in the coordinates of Cj, this yields

IN

Tk
q

q _q C
Yool D el | < AT -

1ieNCk 'EN@
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Setting £ = maxy, AkHTCk lew ( we may apply Proposition 3.5 which yields, for any

TkDk)?
kEe{l,...,m},
Do D IT@s(Cr). (Tl < K.
ieNCk \jeNCr
We conclude by Lemma 3.6. O

Remark 4.1. We have A4} < (C'q(Y)Krk,q)w_‘“| where Cy(Y') is the cotype g constant of
Y and K,, 4 is the constant appearing in Kahane’s inequality between the L™ and the
Li-norms. Hence, we have shown that

W;?;lt(T) < sup {(CQ(Y)KTMQ)‘CH HTCkHCW("’“’pk)}'

k=1,...m

The forthcoming lemma will be uselful for (r, p)-multiple summing maps with r greater
than the cotype of the target space. It is inspired by the proof of Theorem 1.2 of [11].

Lemma 4.2. Let T : X1 X --- X X, = Y be m-linear with Y a cotype q space. Let
q€[l,+00)™ and C C {1,...,m}. We define t € [1,400)" byt = qi for allk € C. Let
finally s,r € [1,+00) satisfying

1 1 1

oty

r s <
jec
r>qand s> q for all k € {1,...,m}. Then there exists K > 0 such that

T (T) < sup {mBI(TE(2)); (12l ge <1}

If all the g5 are equal to the same p, the conclusion takes the more pleasant form:
1 1 |C]
1 C
mq (1) < KIT lew e, — =<+ o
Note that we require now coordinatewise summability only in the coordinates of C' (and

nothing on C'). But now, we start with (r,t)-summability with r greater than the cotype
of the target space.

Proof. Let x belong to [~ Bgz}uk (x;)- We write

1/s

1/s
(2) (Z HT(xi)HS> = X luillz, v

ieNm™ ieNC

where, for a fixed i € N, y; is the sequence (T'(2:(0), xj(C'))jeNC. Since r > ¢, £,(Y) has
cotype 7 so that id : £,(Y) — £,.(Y) is (7, 1)-summing. By the ideal property of summing
operators, id : £,(Y) — £4(Y) is still (r,1)-summing. By the inclusion theorem, this last
map is (s, p)-summing, with

1 1 1 1

S=l-—4-=1-) —€(0,1).

T S <
p iec 4;
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Applying this to (2) yields

1/s
<Z HT(wi)Hs> <k sup | > lelw)l”

ieNm PEBr (e \ jenC

1/p

Observe that the constant x > 0 does not depend on 7', but only on Y, r» and q. We now
apply Proposition 3.1 to get

1/s
<Z \|T(9Ei)\|s> < K sup sup Y vip(w)

icNm #€B1e, (v velljec Bey, jene

< Kk _sup sup o | | T| D wi(C),25(C)

velljec By, #€Bien v - jene
r\ 1/r

< Kk _sup AT D vias(C),x5(C)

velljec By, \jenc ieNC
1/r

< Kk sup Z | T (2, z;(C)||"

zEXé, [|z]|<1 jENC
since, for any m € C, by Holder’s inequality,
Zv,(m)xz(m) = sup sz(m)(m*,xz(m» <1.
i zreXn
]

Proof of Theorem 2.2. We fix kg and J satisfying the assumptions of the theorem. At the
beginning we argue like in the proof of Theorem 2.1. Let D = U]eJ Cjand z € Byxp. We
also set C = D and C' = C\{ko}. Let, for j € C, (z;(j)) € X?I with wg, (z(j)) < 1. We
can follow the arguments of the proof of Theorem 2.1 up to the application of Lemma 3.6
for the multilinear map T°(z). This gives

Vkq,J
q

S S IT@i(Cry), 25(C7), 2)1 <

ieN“ko  \jeNC’

I
Tkqg,J

Observe that the constant x does not depend on z € Byp. Since 7, 7 > ¢, this implies

1
Tkg,J

S 7@ (), ) | <k

icNC

We may then apply Lemma 4.2 to T" with r = 74, ; and

I TR

il a5 P
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to get the conclusion. O

Proof of Theorem 2.3. The proof is completely similar but more elementary. Indeed, we

can start from
1

Tk
> I (@ (Cr), 2))™ <K
ieNCk
for all z € [] jeCn By, and apply directly Lemma 4.2 since rj > ¢. U
5. THE INCLUSION THEOREM

The proof of Theorem 1.2 follows rather easily from Proposition 3.1.

Proof of Theorem 1.2. We start from = € [[-, B% (x,) and u € [T, By, where é =

é—i. Then by Hélder’s inequality, ux = (u(1)z(1),...,u(m)z(m)) belongs to [ [, Bg;uk (Xp)-
Hence,

1/r
(Z \ui\r\\T(ﬂﬁi)\V) < mip (1)

ieNm
We may then apply Proposition 3.1 to the multilinear form A : £¢;, x---x /£, — C defined
by A(v) = > icnm UillT(21)||". This is possible since '

7 1 &1 1
S D R DTS W )
j=1 0; e A
This yields immediately Theorem 1.2. O

Of course, it is natural to compare Pérez-Garcia result with ours. If we start from a
(p, p)-summing multilinear map, the former is better. But if we start from a multiple

2m

T 1)—summing m-linear map, Theorem 1.2 shows that, for any s € ( 2m 2), it is

m+1?

s 2m?s
’ 2m+(2m2 —m—1)s
theorem a better result than it is (s, s)-summing. It is easy to check that for those s,

also multiple < )—summing whereas we cannot expect from Pérez-Garcia

2m?s
2m + (2m? —m —1)s

< 8.

In other words, Theorem 1.2 gives a better conclusion. Applications of Theorem 1.2 are
given in [19].

6. APPLICATIONS TO HARMONIC ANALYSIS

6.1. Product of p-Sidon sets.

Proof of Theorem 1.3. Let G = Gy X --+ X Gyy and f = ) ; .ym @471 be a polynomial with
spectrum in Ay X - - X A,,,. Here 7; denotes the tensor product v;, (1)®- - -®~;,, (m) and each
7i;(j) belongs to I';. Fixk € {1,...,m}, let C}, = {k}, Gr=Gix- Gy XGpy1 X XGpy
and //\\k =Ny X Ap_1 X Agy1 X -+ X Ayy. Tt is well-known that the product of A(2)-sets
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is still a A(2)-set (this follows from Minkowski’s inequality for integrals). Hence, Agis a
A(2)-set and we deduce that for any i € N = Nk,

Pr/2 Dk

> Jaigl? Sff/a > aigild)| dg'.
k

ieNCr JENCE

We sum over i € N and we use that Ay, is pg-Sidon to deduce that

pr/2\ /P 1/pk
Do | 2 lagl < K (/A sup If(g,g’)lp’“dg’>
i€NCk \jeNCk G 9€Gx
< Kl lloo-
The result now follows from Lemma 3.6. We postpone the proof of optimality to the last
section. ]

6.2. Product of p-Rider sets. Beyond p-Sidon sets, L. Rodriguez-Piazza has introduced
in [24] another class of sets extending naturally that of Sidon sets. For G a compact abelian
group with dual T',; a subset A C T is called p-Rider (1 < p < 2) if there is a constant
k > 0 such that each f € C(G) with f supported on A satisfies

1l < wl] = /Q S ey (| ap

vyel oo

where (e )~er is a sequence of independent Bernoulli variables. The terminology p-Rider
comes from Rider’s theorem which asserts that 1-Sidon sets and 1-Rider sets coincide.
Observe that it is easy to prove that a p-Sidon set is always a p-Rider set (see [16]), but
the converse is an open question.

It turns out that p-Rider sets are usually easier to manage than p-Sidon sets. This is due to
the inconditionnality of the norm [-]. For instance, this last property implies immediately
that the union of two p-Rider sets is still a p-Rider set, a fact which is unknown for p-Sidon
sets. This is also the case for the direct product.

Theorem 6.1. Let Gy,...,Gn, m > 2, be compact abelian groups with respective dual
groups I't,..., Iy, For 1 < j <m, let Aj CT'; be a pj-Rider set. Then Ay X --- X Ay, is
a p-Rider set in 'y x -+ x 'y, for

m

11 1 D
4~ wmdR= .
5 Tag ™ Za9—py

This result was already proved in [25] using an arithmetical characterization of p-Rider
sets. We provide a new (and maybe more elementary) proof using our machinery.

Proof. Let G = G1 X --- X Gy, and f = ) . ym aj; be a polynomial with spectrum in
Ay x -+ x Ay Fix k € {1,...,m} and keep the notations of the proof of Theorem 1.3.

Let (€2,.4,P) be a probability space and consider three sequences (ai,j)ieNjeNq, (05)5enC
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(n:)ien of independent Bernoulli variables on (€2, A,P). Then, for any i € N = N and
any w € €, by the Khintchine inequalities,

Pr/2 Pr/2

> Jaigl® = [ D] laijeii(w)l?
j

jENCk

< l‘fl/Q Zj:a@js@j(w)éj(w’) dP(w').

We sum over i and use that Ay is a pp-Rider set to get

Pr/2
Yol D laislP
ieN \;enTr
Pk

< / [ s |5 asgen)dimw ) o)| P | dp)

Q geGy, isj

Pk
<y [ [ sup | S asjeig@)d@)n i) @) W)
QJQ geGy i

where the last line comes from Kahane’s inequalities. We then integrate over w € (2,
exchange integrals, apply the contraction principles to Bernoulli variables (see [10, Propo-
sition 12.2]) and use a last time Kahane’s inequality to get

Pr/2 Pk
S lal) <o [ s |Saes@ntie)] @@
ieN \ience QIECH 5
< raf1P
We conclude using Lemma 3.6. O

7. ABOUT THE OPTIMALITY

7.1. Optimality for coordinatewise summability. We now discuss the optimality of
our results. We first show that Theorem 1.1 is optimal when we restrict ourselves to cotype
2 spaces and 1 < p < 2.

Theorem 7.1. Let p € [1,2], r > p satisfying % > % — % and m > 1. Then the optimal s
such that every m-linear map T : X1 X -+ X X, — lo which is separately (r,p)-summing
s automatically (s,p)—summz’ng satisﬁes

_m-1, 1
— 2m +mr

P
1 m—1 m—1
—;—p—*pmmded0<;— <

@ =& =

1

It should be observed that the assumption % < % — 5 is not a restriction on the possible

values of r. Indeed, a linear map with values in a cotype 2 space is always (2, 1)-summing,
hence (7, p)-summing with % =1_1
P
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Proof. We shall use the following result proved partly in [11] and partly in [2]. Let 1 <
u < 2. Define p as the best (=smallest) real number such that, for all m-linear maps
A lye X oo X Ly — £y, the composition I, 2 o A is multiple (p, p)-summing where I, 2
denotes the identity map from £, into £5. Then

:%4_%(1_%_1%) provided0<%<%—%;

u
1
T u

DIED I

—%provided%—%§%<%.

The real numbers r and p being fixed (and satisfying the assumptions of Theorem 7.1),
we fix u € [1,2] such that % = % + % — 1. By the Bennett-Carl inequalities, I,, 2 is (r,p)-
summing with % = % + % — 1 so that I, 20 A is separely (r,p)-summing. Then the optimal
s in Theorem 7.1 must satisfy s > p. But using the relation linking w, p and r, it is easy
to see that the condition 1% < % — % is equivalent to % — ”};1 > % and that the values of
% are exactly the optimal values appearing in Theorem 7.1. U

7.2. Optimality for the inclusion theorem. We now show that, in full generality,
Theorem 1.2 is also optimal.

Theorem 7.2. Letr > 2 and p = r2+—rl Then there exists a bilinear form T : £y X {9 — C
which is (r,p)-summing and such that, for every s > 2 and q > p, it is (s, q)-summing if
and only if

1 2 1 2

s 9 r.p

Proof. Let T(z,y) = Zj_:of 2;9;, which has norm 1. Then by Corollary 2.7, as all bilinear
forms, T is (r,p)-summing. Conversely, let us assume that it is also (s, ¢)-summing. We

1_1
choose « = (€;)i=1,....n s0 that wy(x) = nmax(ff 2’0>. For this choice we get

n s

= [ S 1)l < mg @@ < w0,

This implies ¢ < 2 and % < % — 1 namely

w | =
|
LS
IN
S =

’U'Iw

O

In view of this example and Pérez-Garcia’s result, it seems conceivable that something
similar does not happen if we start with » < s < 2. This deserves further investigation.

7.3. Optimality for the product of p-Sidon sets. We finally conclude by proving the
optimality of Theorem 1.3. To simplify the notations, we will only prove it for the product
of two sets. We shall work with G = Q = {—1, 1} whose dual group I is the set of Walsh
functions. Recall that if (r,)nen is the sequence of Rademacher functions on €2, defined
by rp(w) = wy, w € , then the Walsh functions are the functions wy =[], c4 7 where
A is any finite subset of N (in particular, wgy = 1). We will prove the following theorem,
which clearly implies optimality in Theorem 1.3.
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Theorem 7.3. Let Q = {—1,1}N, T its dual group, pi, pa rational numbers in [1,2).
There exist two subsets Ay, Ao of I' which are respectively pi-Sidon or ps-Sidon, and such
that their direct product Ay X Ao is not p-Sidon for

L1 1 P1 P2
- > -+ — where R = .
P 2 " oR 2—p1+2—p2

Proof. The proof needs some preparation. First we recall a necessary condition for a subset

A C T to be p-Sidon (see [6, Theorem VII.41]):

Lemma 7.4. Let A C T" and assume that A is p-Sidon. Then there exists k > 0 such that,
for any polynomial f supported on A, for any s > 1,

e

VAl e,
p—2

We write p; = mzlnﬁﬁ and py = mi’i% Let Si,...,S} (vesp. Si,...,S2,) the subsets of

{1,...,m1} (vesp. of {1,...,ma}) with cardinal k; (resp. ks). Let E1,... , EL [ E? ... ,E,%Q

ni’

be pairwise disjoint infinite subsets of the Rademacher system and enumerate each El‘s,
§€{0,1}, 1€ {1,...,ns} by NFs:
B = {3 jen}.

Define II g5 as the projection from {1,...,ms} onto S?. We finally consider

_J.9 s o
As = {71,113“' " gl j I € Nm‘s}-
1 ng

It is shown in [6, p. 465] that A is ps-Sidon (and nothing better!). We shall prove that
A1 x Ay is not p-Sidon for

11 1 D1 D2
= > -4 — where R = :
p = 2 T ap Where 22— py

namely
1 maiki + moki + kiko
p 2(m1ky + makz)

To do this, we consider N a large integer and set Ny = N*2 and N, = N*! so that

N{“ = Né”. ‘We then define

_ 1 1 2 2
In= E Mg T digr Mgk " Tnolln k
1 ni 1 ng
je{1,..., Np}™1
ke{lv"'vNQ}m2

which is a polynomial supported on A; X As, and the Riesz product

ni n2
Rv=IT II G+upxII II @+9ip
I=1je{1,..,N1}"1 I=1je{1,...,.Na}r2

k k
Then ||Ry|1 = [ Ry =1 (recall that Ry is positive) whereas || Ry ||g = 2m1 TN ' +n2+N2* —
gnitna+2NF1F2 By interpolation, for any s > 2,

ni+ng +2Nk1 ko

IR lls <2 :
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On the other hand, by the very definition of Ry, Ry = fy + QN where the spectrum of
Qn is disjoint from that of fn. Hence,

Bufy= [  fi=312= NNy = Nk,
QxQ QxQ kK
j
Now, observe that Holder’s inequality also yields
n1+n2+2Nk1k2
| Rt < Bl Il <2755
QxQ

We choose s = N¥1%2 g5 that one obtains

I fnlls > wNTkatmaks

In order to apply Lemma 7.4 we just compute

17wl 2 = (N Ng2) B = NOmkemab) B0
3p—2

Thus,

M > N(m1k2+m2k1)22_—pp—m.

2
Vllfnll 2
3p—2

If Ay x Ay is p-Sidon, then Lemma 7.4 tells us that

1 1 k1ka
- _ - S
<2 p> (m1k2+m2k1) 5 <0
which is exactly the desired inequality. O

i
2]
8]
]
5]
6]
7]
8]
9]

[10]

11]

12]

[13]
[14]

REFERENCES

N. Albuquerque, F. Bayart, D. Pellegrino, and J.B. Seoane-Sepulveda, Sharp generalizations of the
multilinear Bohnenblust-Hille inequality, J. Funct. Anal. 266 (2014), 3726-3740.

, Optimal Hardy—Littlewood type inequalities for polynomials and multilinear operators, Israel
J. Math. 211 (2016), 197-220.

N. Albuquerque, D. Ninez-Alarcon, J. Santos, and D.M. Serrano-Rordriguez, Absolutely summing
multilinear operators via interpolation, J. Funct. Anal. 269 (2015), 1636-1651.

A. Benedek and R. Panzone, The space LP with mized norm, Duke Math. J. 28 (1961), 301-324.
R.C. Blei, Fractional cartesian products of sets, Ann. Inst. Fourier 29 (1979), 79-105.

, Analysis in integer and fractional dimensions, Cambridge Studies in Advanced Mathematics,
vol. 71, Cambridge University Press, 2001.

H.F. Bohnenblust and H. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. 32
(1931), 600-622.

F. Bombal, D. Pérez-Garcia, and 1. Villanueva, Multilinear extensions of Grothendieck’s theorem, Q.
J. Math 55 (2004), 441-450.

A. Defant, D. Popa, and U. Schwarting, Coordinatewise multiple summing operators in Banach spaces,
J. Funct. Anal. 259 (2010), 220—242.

J. Diestel, H. Jarchow, and A. Tonge, Absolutely summing operators, Cambridge Studies in Advanced
Mathematics, vol. 43, Cambridge University Press, 1995.

V. Dimant and P. Sevilla-Peris, Summation of coefficients of polynomials on ¢, spaces, Publ. Mat. 60
(2016), 289-310.

R.E. Edwards and K.A. Ross, p-Sidon sets, J. Funct. Anal. 15 (1974), 404-427.

G. Hardy and J. Littlewood, Bilinear forms bounded in space [p,q], Q. J. Math. 5 (1934), 241-254.
G.W. Johnson and G.S. Woodward, On p-Sidon sets, Indiana Univ. Math. J. 24 (1974), 161-167.




22
[15]
[16]
17]
18]
[19]
[20]
21]
22]
23]
[24]
[25]

[26]

FREDERIC BAYART

M. Lacruz, Hardy-Littlewood inequalities for norms of positive operators on sequence spaces, Linear
Algebra Appl. 438 (2013), 153-156.

P. Lefevre and L. Rodriguez-Piazza, p-Rider Sets are q-Sidon Sets, Proc. Amer. Math. Soc. 131
(2003), 1829-1838.

M.C. Matos, Fully absolutely summing and Hilbert-Schmidt multilinear mappings, Collect. Math. 54
(2003), 111-136.

B. Maurey, Théoremes de factorisation pour les opérateurs linéaires a valeurs dans les espaces LP,
Astérisque, vol. 11, Société Mathématique de France, 1974.

D. Pellegrino, J. Santos, D. Serrano-Rodriguez, and E. Teixeira, Regularity principle in sequence spaces
and applications, preprint, arXiv:1608.03423.

D. Pérez-Garcia, The inclusion theorem for multiple summing operators, Studia Math. 165 (2004),
275-290.

D. Pérez-Garcia and 1. Villanueva, Multiple summing operators on C(K) spaces, Ark. Math 42 (2004),
153-171.

D. Popa and G. Sinnamon, Blei’s inequality and coordinatewise multiple summing operators, Publ.
Mat. 57 (2013), 455-475.

T. Praciano-Pereira, On bounded multilinear forms on a class of I’ spaces, J. Math. Anal. Appl. 81
(1981), 561-568.

L. Rodriguez-Piazza, Caractérisation des ensembles p-Sidon p.s., C. R. Math. Acad. Sci. Paris 305
(1987), 237-240.

, Rango y propiedades de medidas vectoriales. Conjuntos p-Sidon p.s., Ph.D. thesis, Universidad
de Sevilla, 1991.

A.R. Schep, Factorization of positive multilinear maps, Illinois J. Math 28 (1984), 579-591.

UNIVERSITE CLERMONT AUVERGNE, CNRS, LMBP, F-63000 CLERMONT-FERRAND, FRANCE.
E-mail address: frederic.bayart@uca.fr



