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Thermal transfer in Rayleigh-Bénard cell with smooth or rough boundaries

. Experiments in the same apparatus without roughness are fully presented, as reference results, to allow for comparison. In the rough case, several regimes of heat transfer are identified : one similar to the smooth case, an enhanced heat transfer one characterized by a modification of the Nusselt vs Rayleigh numbers relation, and a third part where the relation can be similar to a smooth one with a corrected prefactor.

Introduction

Turbulent Rayleigh-Bénard convection is a model system for natural convection. Theoretically, it consists in a horizontal infinite layer of fluid inserted between two plates: a hot one at the bottom and a cold one at the top. The thermal forcing sets the fluid into motion. The intensity of the forcing can be assessed by the Rayleigh number,

Ra = gα∆T H 3 νκ , ( 1 
)
where ∆T is the temperature drop across the cell, H is the distance between the two plates, α is the expansion coefficient of the fluid, ν its kinematic viscosity, κ the thermal diffusivity and g the acceleration due to gravity. The fluid properties are characterized using the Prandtl number,

P r = ν κ , (2) 
which compares the two diffusion mechanisms that impede convection. In this work, the model experiment is a Rayleigh-Bénard cell where the layer of fluid is inserted into a cylindrical container. The only geometrical parameter is the aspect ratio Γ = D/H, where D is the diameter of the cell, and H its height.

The system response is the thermal heat flux, Q, which gets larger than without convection. The non-dimensional heat flux is the Nusselt number, which compares the global heat flux to the purely conductive one for similar temperature drop,

N u = QH λ∆T , ( 3 
)
where λ is the thermal conduction.

One objective is to be able to predict the thermal heat flux for a given forcing, i.e. to relate the Nusselt number to the control parameters. Several models derive predictions in the form of a scaling law, N u = CRa a P r b .

(4)

One of the first of such models was proposed by [START_REF] Malkus | The heat transport and spectrum of thermal turbulence[END_REF] and yields a = 1/3, which means that the heat flux does not depend on the distance between the plates. This is a strong indication that the plates can be described independently of one another. Many published experimental data are in fair agreement with this scaling, though there are some deviations. The reader may refer to the review of [START_REF] Chillà | New perspectives in turbulent Rayleigh-Bénard convection[END_REF] for more details.

An alternative description was proposed by [START_REF] Grossmann | Scaling in thermal convection: a unifying theory[END_REF], where the relation is no longer a simple scaling law, but rather a superposition of scaling laws. It accounts well for the evolution of the effective scaling exponent, a, when the Rayleigh number increases. This is why it is used throughout this work to provide estimates of reference Nusselt numbers in the case of hydrodynamically smooth plates.

For asymptotically large forcings, one may expect the boundary layer to get fully turbulent, which yields a = 1/2 [START_REF] Kraichnan | Turbulent thermal convection at arbitrary prandtl number[END_REF][START_REF] Grossmann | Transition to the ultimate state of turbulent Rayleigh-Bénard convection[END_REF]. This exponent is also a rigorous upper bound [START_REF] Goluskin | Bounds for convection between rough boundaries[END_REF], and the corresponding regime is sometimes called ultimate regime of convection, as there could not be a more efficient regime beyond. Several groups have claimed to observe this regime at very large Rayleigh numbers, using cryogenic gaseous helium [START_REF] Chavanne | Observation of the ultimate regime in Rayleigh-Bénard convection[END_REF][START_REF] Roche | On the triggering of the ultimate regim of convection[END_REF], or compressed sulphur hexafluoride (He et al., 2012).

In this paper, we consider the case of a Rayleigh-Bénard cell with rough boundaries. The addition of a controlled roughness on the boundaries produces an enhancement of the heat transfer beyond a critical Rayleigh number, Ra c , determined by the roughness size. Indeed, below this critical value, the thermal boundary layer is larger than the typical roughness size, and the boundary is hydrodynamically smooth. Enhancement is observed when the boundary layer thickness is the size of the roughness.

In the past, several types of enhancements have been reported. [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF], Roche et al. (2001a), [START_REF] Qiu | Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection[END_REF] and, in some configurations, [START_REF] Wei | Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection[END_REF] observe an increase of the scaling law exponent a: before the transition to Nusselt enhancement, a is close to 2/7 or 1/3 then it increases and reaches nearly 1/2. In several other configurations, the exponent a is unchanged but the prefactor C increases [START_REF] Du | Enhanced heat transport in turbulent convection over rough surface[END_REF][START_REF] Wei | Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection[END_REF].

In our previous works, we showed that roughness allows to trigger turbulent instabilities in the boundary layers at moderate Rayleigh numbers [START_REF] Salort | Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: flow structure and multistability[END_REF] and enhance the velocity fluctuations [START_REF] Liot | Large scale circulation and boundary layer structure in a rough Rayleigh-Bénard cell filled with water[END_REF]. The objective is to get insights on the role of turbulence on the thermal transfer, at a given Rayleigh number, hence without the need of non-conventional working fluids.

Roughness can be added on only one of the horizontal plates [START_REF] Ciliberto | Random roughness of boundary increases the turbulent convection scaling exponent[END_REF][START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF][START_REF] Wei | Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection[END_REF], or on both plates [START_REF] Du | Enhanced heat transport in turbulent convection over rough surface[END_REF][START_REF] Ahlers | Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Bénard convection[END_REF][START_REF] Qiu | Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection[END_REF], or even on the entire cell (Roche et al., 2001a). Several geometries of structure are used such as square pyramids, [START_REF] Du | Enhanced heat transport in turbulent convection over rough surface[END_REF], [START_REF] Du | Turbulent thermal convection in a cell with ordered rough boundaries[END_REF] for example, pyramidal grooves (Roche et al., 2001a), spheres [START_REF] Ciliberto | Random roughness of boundary increases the turbulent convection scaling exponent[END_REF] or square structures [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF]. Among these experiments, the one of Ciliberto and Laroche is particular because the roughness elements are glass spheres coated with copper varnish, so they can be considered as thermally insulating the plate. Though the details of the roughness geometry is of high interest for optimization purposes [START_REF] García | The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils[END_REF], we focus on the effects of roughness-triggered turbulence in general.

Recently, [START_REF] Toppaladoddi | Roughness as a route to the ultimate regime of thermal convection[END_REF] and [START_REF] Zhu | Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection[END_REF] focused on the influence of the density of roughness structures on the thermal transfer. To do so, they performed several 2D numerical simulations in a Rayleigh-Bénard system with sinusoidal roughness on both plates. Both studies report the dependency of the exponent a with Λ = d/H, the "wavelength" associated to the roughness horizontal dimensions, and the existence of an optimal wavelength value, Λ opt , at which a is maximum. Above Λ opt , a recovers the smooth case value. Horizontal spacing was also identified as an important parameter in studies involving roughness in wind-tunnel such as [START_REF] Perry | Rough wall turbulent boundary layers[END_REF].

Recent experiments from [START_REF] Xie | Turbulent thermal convection over rough plates with varying roughness geometries[END_REF] also evidence this role of roughness geometry. They have varied the roughness aspect ratio, λ, defined as the height of a single roughness element over its base, and found that the asymptotic scaling law exponents increases with λ. However, the roughness density also increases when λ increases, so it is not yet possible to disentangle the effect of aspect ratio and the effect of roughness density.

They evidence two transitions in the N u vs. Ra scaling: the first transition occurs when the thermal boundary layer thickness is the height of the roughness, consistently with other past experiments. They call this regime of enhanced heat transfer "Regime II". Then, a second transition occurs when the velocity boundary layer thickness is the height of the roughness, yielding "Regime III". The scaling exponent in Regime III is lower than in Regime II.

In the present paper, new heat-transfer measurements are presented in several rough configurations. We observe both the regime of enhanced scaling exponent a, and the regime of enhanced prefactor C. Because the roughness aspect ratio is fixed (h 0 /d = 0.4), we cannot disentangle the role of roughness height from the role of the roughness wavelength.

After a description of the experimental apparatus, in section 2, we will detail some reference results obtained in the classical smooth configuration of the cell, section 3. Then, we will present the new results obtained in the rough cell with larger roughness elements and compare them to other published measurements, section 4. This allows us to explore the thermal behaviour of the cell when the height of the thermal boundary layer is significantly smaller than the height of the elements.

Experimental apparatus

The cell

The experimental apparatus consists in a cylindrical Rayleigh-Bénard cell, see figure 1. The diameter D is 0.5 m. Two sidewalls can be installed, one of height 20 cm, the second of height 1.0 m. They are made of 3 mm-thick stainless steel. Figure 1 sketches the 1-meter-high cell, "Tall Cell" (T C), of aspect ratio Γ = 0.5. The smaller configuration, "Small Cell" (SC), has an aspect ratio Γ = 2.5.

The cold plate is in copper coated with a thin layer of nickel to prevent chemical attack from the working fluid, deionised and degassed water. It is thermalised by a water circulation on its top which is controlled by a regulated bath. The hot plate, is made of aluminium. It is heated by Joule effect using a spiralled resistor of 13 Ω inserted into the plate.

The cell is covered by a thermal insulator, a 4 cm-thick neoprene foam, and enclosed into a thermal screen made of copper. The mean temperature of the screen is regulated at the bulk temperature by a water bath to prevent interaction between the cell and the environment. The entire apparatus is placed on a table whose temperature is also regulated at the bulk temperature.

Measurement techniques

Measurements are focused on thermal transfer. To do so, the cell is instrumented with different kinds of thermometers. Six resistance temperature detectors (Pt100 type), three per plates, measure the absolute value of the temperature of each plates. Six thermocouple junctions measure the temperature at mid height and the tempera-ture of the bottom plate relative to the top plate with high accuracy. The common reference is then inserted into the cold plate which provides the relative zero value in the system (T c ). Another junction is also introduced into this plate at a different radius. Two junctions are placed into the hot plate, and provide the hot temperature T h . As the thin lateral walls are in stainless steel, they are thermalised at the bulk temperature T b . Two junctions are then placed onto those walls to access T b . We also measure the temperature of the thermal screen and the table. The thermocouple junctions are connected to an electronic amplifier with negligible offset. The signal is amplified 2000 times. One measurement consists in averaging over several hours (typically 48 h) of recording.

By varying the bulk temperature of the fluid, we induce variations of the fluid properties and consequently of the Prandtl number. We perform measurements at fixed Prandtl number by keeping the bulk temperature constant. This allows us to check the potential influence of the Prandtl number in a range of values between 2.5 and 6.5.

Non-Boussinesq and lateral walls corrections

Since our experimental procedure is similar to the one used by [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF], we will use the same corrections as reminded below. First, we take care of the Non-Boussinesq (NOB) effects and we show that they are negligible in our case. The Boussinesq approximation assumes that all the physical properties of the fluid are independent of the temperature except the density ρ in the buoyancy term, which can be approximated as ρ = ρ 0 (1 -α∆T ), where ρ 0 is the density of water at the temperature T b . Experiments performed by [START_REF] Ahlers | Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard convection[END_REF] suggest that, in water, the main source of NOB effects comes from the variation of kinematic viscosity ν and thermal diffusivity κ only. In liquid water, the second one is nearly constant which leaves only the effects of ν. [START_REF] Ahlers | Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard convection[END_REF] define a parameter χ, as previously done by [START_REF] Wu | Non-Boussinesq effects in free thermal convection[END_REF], corresponding to the dissymmetry of the system, 

χ = T h -T b T b -T c = 1 -c 2 ∆T. (5) 
c 2 = -0.061P r 0.25 dln(ν) dT (6)
This results in corrective prefactors on the Nusselt number such as N u cor s = (1 + c 2 ∆T s /2)N u s . The deviation remains smaller than 1% in all our experimental conditions, and thus can be neglected. This was also suggested by [START_REF] Ahlers | Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard convection[END_REF]. In their study, they performed thermal transfer measurements in water, reaching difference of temperature of nearly 40 K, and found only small deviation of the Nusselt number from the Oberbeck-Boussinesq case. In the experiment presented here, the largest temperature difference is 20 K and the highest Rayleigh number we can attain is 1.5 • 10 12 . We, then, do not expect NOB corrections to be large in those conditions.

The second effect we have to consider is the spurious heat conduction in the sidewalls, see Roche et al. (2001b) and [START_REF] Ahlers | Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Bénard convection[END_REF]. The thermal conductivity of those walls has to be taken into account. It behaves as if the effective surface, S eff , of the horizontal plates was larger than the real one S. S eff can be related to S by S eff = (1 + f (W ))S, where W balances the heat conductivity of the sidewalls to the water one and is close to 0.5, and the corrected Nusselt number is

N u cor = N u raw (1 + f(W )) -1 . (7) 
It yields to corrective prefactors shown in figure 2 for a smooth plate. The corrections for the rough plate are expressed in [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF], and we shall use the same here.

Reference smooth cell

Before presentation of the results obtained in the asymmetric rough cell, we shall discuss the behaviour of T C in the classical configuration where all boundaries are smooth. Indeed, those results were briefly discussed only in the review [START_REF] Chillà | New perspectives in turbulent Rayleigh-Bénard convection[END_REF], but no detailed presentation is available in literature. The reference case will be referred to as 'RSC' case for 'Reference Smooth Cell' in the following. The experimental apparatus is the same as the one described in section 2 except that the two plates are smooth, made of copper and coated with a thin layer of nickel. Results are presented in figures 3(a) and 3(b). Figure 3 (2000), in a cylindrical cell filled with gaseous helium. Violet crosses and circles are for the smooth/smooth values of [START_REF] Du | Turbulent thermal convection in a cell with ordered rough boundaries[END_REF], in cylindrical cell filled with water at ambient temperature. Finally, blue stars are for [START_REF] Urban | Efficiency of heat transfer in turbulent Rayleigh-Bénard convection[END_REF], in a cylindrical cell filled with gaseous cryogenic helium. The black line is the Grossmann-Lohse model (GL-model in the following) fitted for P r = 3.7. The present evaluation of N u GL is performed using the updated prefactors proposed by [START_REF] Stevens | The unifying theory of scaling in thermal convection: the updated prefactors[END_REF], as it will be in the entire paper.

Comparison with other experiments also shows a global collapse of all the cells. Some points from the Chavanne's experiment exhibit a departure from other experiments at Ra > 10 12 . The present experiment does not exhibit such a departure even at similar Rayleigh and Prandtl numbers. As the GL-model is in fair agreement with all the smooth experiments, and then well captures the changes of behaviour in these range of Rayleigh number, we shall use its evaluated Nusselt number to normalise our results in the following and then allow for comparison.

Convection cell with rough boundaries

In this section, we consider a rough cell, where roughness is added on the bottom plate only. The top plate and the lateral walls are smooth. The smooth plate is the same used for the RSC case previously mentioned. The symmetry is broken, the thermal impedance at the top and bottom boundaries are no longer identical, even within the Boussinesq approximation. This allows in-situ comparison of rough and smooth boundary layers.

The roughness elements consists in cubic square studs, arranged in a lattice, as shown in figure 4. The height of the roughness elements is h 0 = 4 mm, their width is d = 10 mm. The periodicity of the pattern is 2d. They are machined directly into the plate to preserve the thermal properties of the material. This configuration is similar to the one of [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF], but with larger roughness elements. They used elements with h 0 = 2 mm and d = 5 mm arranged in the same way, so there is a scaling factor of 2 between the two roughness sizes. The present results will be compared with those obtained in this previous study.

It is always formally possible to define global Rayleigh and Nusselt numbers in this cell. As shown in figure 5, the global Nusselt number is larger than in the case of smooth boundaries, and the scaling exponent is modified. However, due to the mixed nature of the boundaries, and the broken symmetry, it is hard to draw more precise conclusions from these quantities. 
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Separation of plates

Following the approach of [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF], the asymmetric cell can be divided into two symmetric half-cells, under the assumption that the plates are independent. This procedure is justified only by the broken symmetry of cell geometry. Indeed, though this has recently triggered some discussion [START_REF] Skrbek | Has the ultimate state of turbulent thermal convection been observed?[END_REF][START_REF] Shishkina | Conductive heat flux in measurements of the nusselt number in turbulent rayleigh-bénard convection[END_REF], its relevance as a means to recover from non-Boussinesq effect is not discussed in this paper, because our working conditions are all chosen in a range where the Boussinesq approximation holds. The bulk temperature is not equal to (T h + T c )/2 due to the impedance adaptation of the flow induced by the introduction of roughness on only one plate of the cell. The heat flux is imposed at the hot plate and the cold one is temperature-regulated which allows the bulk and hot temperatures to stabilize at free values corresponding to the stationary state of the operating point. The asymmetric cell with roughness on the bottom and without roughness on the top is sketched as case (a) of figure 6. We measure T c , T b and T h . If we focus on the hot/rough plate and its corresponding half-cell, we can construct the symmetrical part by considering that, with respect to the Boussinesq approximation, the corresponding cold plate should be at the temperature T h -2(T h -T b ), case (b). This can be done also for the cold plate, resulting in case (c). We then compute a difference of temperature corresponding to cases (b) and (c),

∆T r = 2(T h -T b ) ∆T s = 2(T b -T c ), (9) 
and the Rayleigh and Nusselt numbers for the rough half-cell, Ra r and N u r , and for the smooth half-cell, Ra s and N u s ,

Ra r = αg∆T r H 3 νκ , N u r = QH λ∆T r ; ( 10 
)
Ra s = αg∆T s H 3 νκ , N u s = QH λ∆T s . ( 11 
)
This way, the behaviour of each plates can be characterized separately.

Smooth plate case

Let us first consider the smooth plate. In our previous work [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF], the thermal transfer of the smooth plate was not modified by the presence of the roughness on the hot plate. To verify that this still holds in the case of larger roughness elements, the Nusselt number of the smooth half-cell is plotted in figure 7. Four sets of points are presented, obtained in the Tall and Small Cells, and each with two roughness sizes. These four experimental configurations are compared to the RSC configuration previously discussed in section 3 (black open diamonds on figure 7). We then can discuss four different experimental configurations compared to the reference points. Open triangles and circles correspond to [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF], for aspect ratios Γ = 2. The thermal efficiency of the smooth/cold plate is not modified by the presence of roughness on the opposite hot plate and it is in good agreement with the reference results obtained in the fully smooth cell. This backs up the independence of plates. Similar observations were also done by [START_REF] Wei | Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection[END_REF] in asymmetrical cell. The behaviour of the smooth plate was not changed by the introduction of roughness elements on the opposite plate. This was tested with roughness either on the bottom or the top plate. It suggests that the independence of plates is a robust result in the range of Rayleigh number explored here (Ra larger than 10 8 ). However, some recent Particle Image Velocimetry (PIV) measurements, [START_REF] Liot | Large scale circulation and boundary layer structure in a rough Rayleigh-Bénard cell filled with water[END_REF], performed in asymmetric rough cell, seem to show a major increase of the root mean square of the velocity close to the smooth plate at nearly constant Rayleigh number. Though the introduction of roughness on one plate yields larger fluctuations in the bulk, it does not change the efficiency of the smooth plate.

Rough plate case

The heat transfer measurements of the rough half-cell are presented in figure 8. or The four sets of points are clearly disjoined and correspond to the SC (low Rayleigh numbers) and T C (large Rayleigh numbers) and to the two sizes of roughness elements: the small one used by [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF] and the large one presented here. The comparison between those two plots gives another argument for the independence of plates: the scaling law behaviour of one plate may significantly differ from the other.

The open symbols are the previous points from [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF], with a roughness size h 0 = 2 mm. The full symbols are the new measurements obtained with h 0 = 4 mm. Both exhibit a regime of enhanced heat transfer, with a scaling exponent a higher than the smooth case which starts when the height of the thermal boundary layer, δ θ ,

δ θ = H 2N u r , (12) 
gets smaller than the roughness height, h 0 , i.e. when the plate is hydrodynamically rough. That is why the Rayleigh number threshold differs for the four values of h 0 /H (0.02, 0.01, 0.004, 0.002 from left to right in figure 8).

The effective scaling exponent is close to 1/2 and the prefactor fairly agrees with roughness-induced turbulent structure of the boundary layer described by [START_REF] Salort | Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: flow structure and multistability[END_REF]. The lines shown in figure 8 Eq. 23 of [START_REF] Salort | Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: flow structure and multistability[END_REF],

N u = (2σ) 3/2 2 h 0 H 1/2 Ra 1/2 . ( 13 
)
where

σ = N u c Ra 1/3 c , (14) 
and N u c and Ra c are the critical value of N u r and Ra r at the transition. Because this transition is controlled by the height of the thermal boundary layer, one can write

N u c = H 2h 0 . ( 15 
)
The range of Rayleigh numbers is wider than was considered by [START_REF] Salort | Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: flow structure and multistability[END_REF], therefore it is not possible to choose one single value for σ: typically σ = 0.06 for Ra > 10 11 where the scaling exponent is 1/3. For lower Rayleigh numbers, the effective value of σ is larger. One way to estimate its value is to use the GL model which is well suited to yield estimates of the Nusselt number as long as the plate is hydrodynamically smooth.

Let f GL be the function that gives the Nusselt number for a given Rayleigh number in the GL model, i.e.

N u GL = f GL (Ra). (16) 
Then the critical Rayleigh number, Ra c , beyond which the plate gets hydrodynamically rough can be estimated as

Ra c = f -1 GL H 2h 0 , (17) 
and therefore

σ = H 2h 0 f -1 GL (H/(2h 0 )) . ( 18 
)
The values of σ are shown in table 3. The prediction (Eq. 13) has no free parameters, it is fully determined by two geometrical parameters: h 0 and H. As shown in figure 9, this estimate allows to fairly collapse the 4 datasets into one master curve. There are however still some dispersion left. That could be caused by the effect of the Prandtl number which is not taken into account in this description. Recent experiments of [START_REF] Xie | Turbulent thermal convection over rough plates with varying roughness geometries[END_REF] increased. They evidence such increase only for larger Prandtl numbers than we do, but the geometry of the cells and roughness significantly differ. Our results are consistent with theirs in the sense that the Nusselt number tends to increase with the Prandtl number in the rough configuration only. As long as the boundary is hydrodynamically smooth, the Nusselt number does not significantly depend on the Prandtl number. However, it is possible that the velocity boundary layer thickness also plays a role near the threshold, and therefore the critical Rayleigh number may depend on the Prandtl number.

For Rayleigh numbers lower than Ra c , the plate is hydrodynamically smooth, and the scaling exponent is similar to a smooth plate. However, several Nusselt numbers are lower than predicted by the GL model. This indicates that the thermal transfer is less efficient than in the classical smooth case. The interpretation proposed by [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF] was that it is caused by the additional thermal impedance of the fluid which fills the space around the roughness elements and locally thickens the boundary layer.

In the high Rayleigh number limit, the data exhibits a second transition, both for the Tall and Small cells. In this range, the heat transfer is still larger than the smooth case, and larger than effective surface increase (40 %), but the scaling exponent a is less than 1/2. It may be related to other published works which have reported an increase of the prefactor C caused by enhanced plume emissions, rather than an increase of the exponent a due to a change in the structure of the boundary layer. It seems consistent, in particular, to the recent results of [START_REF] Xie | Turbulent thermal convection over rough plates with varying roughness geometries[END_REF] in their symmetric rough cell where both plates have pyramid-shaped roughness elements.

To the best of our knowledge, there are only two other published datasets in asymmetric Rayleigh-Bénard cells: [START_REF] Wei | Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection[END_REF] and [START_REF] Salort | Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: flow structure and multistability[END_REF]. The former performed experiments in a cylinder of aspect ratio close to 1. They used pyramidal elements as roughness, sketched in figure 10. The base length d is equal to 2h 0 . The surface increase induced was of 41%. The latter uses similar square-studs roughness but within a rectangular cell with vertical aspect ratio width/height = 1 and horizontal aspect ratio depth/width = 0.25.

These datasets are shown in figure 9. As could be expected, the points do not exactly collapse. Indeed, the details of the geometry may change prefactors in the Nusselt numbers. However, the observations of the three regimes hold, the Rayleigh number thresholds are all consistent and the enhancement goes beyond the increase solely yielded by the increase of the effective surface area.

Discussion

Thermal transfer measurements have been carried out in a cylindrical Rayleigh-Bénard cell with square roughness on the bottom plate for two different cell aspect ratios. The results have been compared to previous studies, with different roughness shapes and dimensions. The Grossmann-Lohse model is used to estimate the Nusselt numbers when the boundaries are smooth.

We have shown that both plates are independent, at least when the thermal impedance is considered. The impedance of the smooth boundary is fully determined by its temperature difference to the bulk, and the classical scaling law is fully recovered when the Rayleigh number of the smooth half-cell is considered. Beyond a critical Rayleigh number corresponding to the thermal boundary layer smaller than the typical roughness size, the thermal impedance of the rough boundary is smaller than the smooth case, and is well described by a turbulent destabilization of the boundary layer.

Such destabilization was confirmed directly by the work of [START_REF] Liot | Boundary layer structure in a rough Rayleigh-Bénard cell filled with air[END_REF] where PIV measurements have exhibited a turbulent velocity profile in the boundary layer. However, other enhancement mechanisms were also proposed in the past. In particular, [START_REF] Du | Turbulent thermal convection in a cell with ordered rough boundaries[END_REF] used thermochromic liquid crystals to measure temperature fields close to a rough plate. Tips of roughness elements seemed to be preferential points of nucleation of thermal plumes. Following this hypothesis, we can assume that a cube can induce a higher increase of the thermal transfer than a pyramid since a cube is formed of four singularities (i.e. : corners) interacting with the fluid whereas a pyramid is only exhibiting one singularity. The details of the shape of the roughness elements, such as sharp edges and vertical surfaces, surely bear some importance and may be investigated further. As can be seen in figure 9, the curves obtained with cubic roughness elements are above the ones obtained with pyramids, which backs up the idea that more plumes are induced by cubes than pyramids. At lower Rayleigh numbers, N u r /N u GL is lower than 1 for several experiments, [START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF] and [START_REF] Wei | Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection[END_REF]. This could be caused by an additional thermal resistance induced by motionless fluid between the roughness elements, as was suggested by PIV measurements [START_REF] Liot | Boundary layer structure in a rough Rayleigh-Bénard cell filled with air[END_REF].

Though the actual Nusselt numbers depend on the details of the geometry, several observations hold for all known setups, regardless of the roughness or cell geometry. Like [START_REF] Xie | Turbulent thermal convection over rough plates with varying roughness geometries[END_REF], three regimes can be consistently exhibited: (i) below Ra c , N u r /f GL (Ra r ) are horizontal lines, meaning that the behavior is similar to a smooth plate, and consistent with the GL model within ±20 %. (ii) a regime of increased scaling exponent occurs beyond Ra c , fairly compatible with a = 1/2, and more precisely with Eq. 13, which suggests roughness-triggered turbulent boundary layer structure. (iii) a third regime, where the heat transfer is enhanced, more than the increase of effective surface area, but the scaling exponent is lower than in the second regime, which suggests that turbulent destabilization of the boundary layer may no longer be the dominant enhancement mechanism.

Figure 1 :

 1 Figure 1: Sketch of the Γ = 0.5 Rayleigh-Bénard cell. Two aspect ratios can be used : Γ = 0.5 corresponding to a diameter D = 50 cm and a height H = 1 m, and Γ = 2.5 with D = 50 cm and H = 20 cm.

Tisserand

  et al. (2011) used a logarithmic dependence of c 2 in Prandtl number but no dependence in Rayleigh number.
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 2 Figure 2: Corrective prefactors induced by sidewalls effects for a smooth plate (for more details on the definitions of N u s and Ra s see expressions 11). Circles are for T C cell and triangles are for SC. Red refers to series at mean temperature 60 • C, green is for 40 • C and blue for 30 • C.

Figure 3 :

 3 Figure 3: (a) : compensated Nusselt number as a function of the Rayleigh number. The symbols are the same as in figure 3(b). The continuous black line is the Grossmann-Lohse model with P r = 3.7. The present points are represented by the full black diamond. (b) : Prandtl number as a function of Rayleigh number.

P

  

Figure 3

 3 (b) shows the same experiments in a (Ra, Pr) phase diagram. Several points of RSC have no overlap with previous measurements in this (Ra, P r) plane, and thus extend the explored parameter space. Though not all published data are shown, to our knowledge, the RSC data are the only ones which range from Ra = 10 10 to Ra = 10 11 and P r > 6. The corresponding values of Nusselt, Rayleigh and Prandtl numbers are given in table 1.

Figure 4 :Figure 5 :

 45 Figure4: Sketch of the roughness pattern. In the present paper, results are obtained using h 0 = 4 mm, d = 10 mm with a periodicity 2d = 5h 0 . In[START_REF] Tisserand | Comparison between rough and smooth plates within the same Rayleigh-Bénard cell[END_REF], h 0 = 2 mm and d = 5 mm.

Figure 6 :

 6 Figure 6: Separation of plates. (a) is the asymmetric cell we use, (b) is the symmetric cell based on the hot plate, (c) the symmetric cell based on the cold plate.

Figure 7 :

 7 Figure 7: Thermal transfer of the smooth plate: N u s normalised by the Grossmann-Lohse model computed with respect to the experimental Prandtl number as a function of Ra s . Colours refer to the bulk temperature T b , blue is 25 • C or 30 • C, green is 40 • C, red 60 • C and brown 70 • C. Open symbols refer to the h 0 = 2 mm of Tisserandet al. (2011), full symbols to the current h 0 = 4 mm elements. Triangles are for the SC, circles for the large one T C. Black diamonds are for the reference smooth/smooth cell presented in section 3.

Figure 8 :

 8 Figure 8: Thermal transfer of the rough plate: N u r normalised by the Grossmann-Lohse model computed with respect to the experimental Prandtl number as a function of Ra r . Symbol and colour choices are the same as figure 7. Lines stand for expression 13 : blue lines are SC, black lines are T C, full lines are for h 0 = 4 mm and dashed lines for h 0 = 2 mm.

Figure 9 :

 9 Figure 9: (a) Rough half-cell heat transfer measurements with Ra 1/3 compensation. Circles and triangles are data from the present work with the same conventions as in figure 7. (b) Rough half-cell heat transfer enhancement N u r /N u GL versus compensated Rayleigh number Ra r /Ra c . The collapse is better because the use of GL model accounts for variation of the effective exponent. Black solid line: roughness-triggered turbulent model from Eq. 13. (c) compilation of several cell geometries. Black symbols are from the cylindrical asymmetric cell from Wei, et al.. Stars are h 0 = 8 mm R/S, +-circles are h 0 = 8 mm S/R and x-circles are h 0 = 3 mm R/S. Squares are from the rectangular Rayleigh-Bénard cell from Salort et al.

Figure 10 :

 10 Figure 10: Sketch of the pyramidal roughness used by Wei et al. (2014).

Table 1 :

 1 Values of Nusselt, Rayleigh and Prandtl numbers obtained in the Reference Symmetric Cell (RSC), with smooth boundaries.

	r	Ra	N u	P r	Ra	N u
	9.48	8.10 • 10 9	129	2.97	1.37 • 10 12	601
	9.35	1.27 • 10 10	145	3.31	1.04 • 10 12	547
	9.09	2.46 • 10 10	173	3.70	7.61 • 10 11	481
	7.91	3.70 • 10 10	194	3.72	2.38 • 10 11	342
	6.94	2.82 • 10 10	181	3.86	4.79 • 10 11	426
	6.82	1.34 • 10 11	283	2.46	2.09 • 10 12	692
	6.86	9.93 • 10 10	258	2.95	1.37 • 10 12	607
	3.70	7.58 • 10 11	494	3.30	1.03 • 10 12	555
	3.74	5.01 • 10 11	433	2.87	2.24 • 10 12	716
	3.71	2.53 • 10 11	345	2.31	3.71 • 10 12	846
	3.85	1.30 • 10 11	288	2.79	2.32 • 10 12	722
	2.70	1.88 • 10 12	661	2.40	3.01 • 10 12	791

The RSC points are shown as full black diamonds in this figure. This presentation allows to evaluate the potential departure from a Ra 1/3 behaviour. Other results obtained in other cells are also shown for comparison. The open triangles are for

[START_REF] Chavanne | Turbulent Rayleigh-Bénard convection in gaseous and liquid He[END_REF]

, a cylindrical cell of gaseous cryogenic helium. Green open diamonds and half-diamonds are for

Niemela et al. 

  .34 × 10 11 3.76 × 10 2 1.54 × 10 11 3.26 × 10 2 1.15 × 10 11 4.44 × 10 2 1.0 5.44 7.46 × 10 10 3.11 × 10 2 8.47 × 10 10 2.72 × 10 2 6.44 × 10 10 3.63 × 10 2 1.0 5.45 4.44 × 10 10 2.60 × 10 2 4.98 × 10 10 2.30 × 10 2 3.90 × 10 10 2.99 × 10 2 10 10 2.86 × 10 2 6.63 × 10 10 2.50 × 10 2 5.06 × 10 10 3.34 × 10 2 1.0 4.37 3.44 × 10 10 2.39 × 10 2 3.85 × 10 10 2.12 × 10 2 3.03 × 10 10 2.74 × 10 2 1.0 4.38 2.05 × 10 10 1.96 × 10 2 2.29 × 10 10 1.74 × 10 2 1.81 × 10 10 2.24 × 10 2 1.0 4.35 2.96 × 10 11 4.87 × 10 2 3.41 × 10 11 4.19 × 10 2 2.50 × 10 11 5.81 × 10 2 1.0 4.31 5.10 × 10 11 5.76 × 10 2 5.93 × 10 11 4.92 × 10 2 4.27 × 10 11 6.95 × 10 2 1.0 2.98 4.56 × 10 11 5.54 × 10 2 5.20 × 10 11 4.83 × 10 2 3.92 × 10 11 6.50 × 10 2 1.0 2.97 2.72 × 10 11 4.63 × 10 2 3.08 × 10 11 4.07 × 10 2 2.36 × 10 11 5.38 × 10 2 1.0 2.98 1.56 × 10 11 3.83 × 10 2 1.77 × 10 11 3.36 × 10 2 1.36 × 10 11 4.44 × 10 2 1.0 2.96 9.34 × 10 10 3.20 × 10 2 1.04 × 10 11 2.85 × 10 2 8.28 × 10 10 3.64 × 10 2 1.0 2.96 5.56 × 10 10 2.65 × 10 2 6.15 × 10 10 2.38 × 10 2 4.98 × 10 10 2.98 × 10 2 1.0 2.96 3.32 × 10 10 2.18 × 10 2 3.56 × 10 10 2.02 × 10 2 3.08 × 10 10 2.37 × 10

	H [m] P r	Ra global	N u global	Ra s	N u s	Ra r	N u r
	1.0 5.32 11.0 5.45 2.67 × 10 10 2.17 × 10 2 2.94 × 10 10 1.96 × 10 2 2.40 × 10 10 2.43 × 10 2
	1.0	5.46 1.64 × 10 10 1.80 × 10 2 1.76 × 10 10 1.66 × 10 2 1.51 × 10 10 1.96 × 10 2
	1.0	5.45 9.76 × 10 9 1.44 × 10 2 1.03 × 10 10 1.36 × 10 2 9.22 × 10 9 1.54 × 10 2
	1.0	5.36 2.26 × 10 11 4.43 × 10 2 2.61 × 10 11 3.80 × 10 2 1.91 × 10 11 5.30 × 10 2
	1.0	4.37 1.74 × 10 11 4.10 × 10 2 2.00 × 10 11 3.53 × 10 2 1.47 × 10 11 4.88 × 10 2
	1.0	4.37 9.88 × 10 10 3.41 × 10 2 1.13 × 10 11 2.96 × 10 2 8.47 × 10 10 4.03 × 10 2
	1.0	4.36 5.84 × 1
	0.2	4.37 4.49 × 10 8 6.04 × 10 1 5.27 × 10 8 5.10 × 10 1 3.71 × 10 8 7.40 × 10 1
	0.2	4.38 2.66 × 10 8 5.08 × 10 1 3.06 × 10 8 4.40 × 10 1 2.26 × 10 8 6.00 × 10 1
	0.2	4.39 1.60 × 10 8 4.19 × 10 1 1.84 × 10 8 3.60 × 10 1 1.36 × 10 8 5.00 × 10 1
	0.2	4.40 2.22 × 10 9 1.02 × 10 2 2.66 × 10 9 8.50 × 10 1 1.79 × 10 9 1.28 × 10 2
	0.2	4.40 3.78 × 10 9 1.21 × 10 2 4.54 × 10 9 1.00 × 10 2 3.02 × 10 9 1.52 × 10 2
	0.2	3.03 2.01 × 10 9 9.78 × 10 1 2.37 × 10 9 8.20 × 10 1 1.65 × 10 9 1.21 × 10 2
	0.2	3.06 3.36 × 10 9 1.16 × 10 2 3.99 × 10 9 9.70 × 10 1 2.73 × 10 9 1.44 × 10 2
	0.2	3.04 5.73 × 10 9 1.38 × 10 2 6.80 × 10 9 1.16 × 10 2 4.66 × 10 9 1.71 × 10 2
	0.2	3.07 9.56 × 10 9 1.64 × 10 2 1.14 × 10 10 1.36 × 10 2 7.71 × 10 9 2.05 × 10 2
	0.2	2.98 9.86 × 10 9 1.66 × 10 2 1.17 × 10 10 1.39 × 10 2 8.02 × 10 9 2.05 × 10 2
	0.2	2.93 6.05 × 10 9 1.37 × 10 2 7.34 × 10 9 1.12 × 10 2 4.76 × 10 9 1.77 × 10 2
	0.2	2.95 3.54 × 10 9 1.16 × 10 2 4.27 × 10 9 9.50 × 10 1 2.80 × 10 9 1.48 × 10 2
	0.2	3.00 2.05 × 10 9 9.80 × 10 1 2.46 × 10 9 8.10 × 10 1 1.64 × 10 9 1.24 × 10 2
	0.2	2.96 1.18 × 10 9 8.13 × 10 1 1.40 × 10 9 6.80 × 10 1 9.63 × 10 8 1.01 × 10 2
	0.2	2.97 6.98 × 10 8 6.83 × 10 1 8.18 × 10 8 5.80 × 10 1 5.77 × 10 8 8.30 × 10 1
	0.2	2.98 4.16 × 10 8 5.63 × 10 1 4.84 × 10 8 4.80 × 10 1 3.47 × 10 8 6.80 × 10 1
	0.2	2.99 5.88 × 10 9 1.37 × 10 2 7.19 × 10 9 1.12 × 10 2 4.58 × 10 9 1.78 × 10 2
	0.2	2.98 3.50 × 10 9 1.15 × 10 2 4.23 × 10 9 9.50 × 10 1 2.77 × 10 9 1.47 × 10 2
	0.2	3.01 2.06 × 10 9 9.66 × 10 1 2.46 × 10 9 8.00 × 10 1 1.65 × 10 9 1.22 × 10 2
	0.2	3.00 1.18 × 10 9 8.02 × 10 1 1.40 × 10 9 6.70 × 10 1 9.61 × 10 8 1.00 × 10 2
	0.2	3.03 6.98 × 10 8 6.76 × 10 1 8.25 × 10 8 5.70 × 10 1 5.72 × 10 8 8.30 × 10 1
	0.2	3.01 4.13 × 10 8 5.62 × 10 1 4.70 × 10 8 4.90 × 10 1 3.56 × 10 8 6.60 × 10 1
	0.2	3.04 2.50 × 10				

2 1.0 2.94 1.26 × 10 11 3.60 × 10 2 1.40 × 10 11 3.23 × 10 2 1.13 × 10 11 4.06 × 10 2 1.0 2.96 7.83 × 10 11 6.55 × 10 2 8.88 × 10 11 5.75 × 10 2 6.78 × 10 11 7.61 × 10 2 1.0 2.96 1.34 × 10 12 7.83 × 10 2 1.52 × 10 12 6.83 × 10 2 1.15 × 10 12 9.16 × 10 2 0.2 4.36 1.32 × 10 9 8.71 × 10 1 1.57 × 10 9 7.30 × 10 1 1.07 × 10 9 1.08 × 10 2 0.2 4.37 7.58 × 10 8 7.24 × 10 1 8.95 × 10 8 6.10 × 10 1 6.21 × 10 8 8.90 × 10 8 4.70 × 10 1 2.83 × 10 8 4.10 × 10 1 2.18 × 10 8 5.50 × 10 1 Table 2: Heat transfer data in the asymmetric cells with rough bottom plate and smooth top plate.

Table 3 :

 3 also suggest that the heat transfer efficiency in the case of rough boundaries gets larger when the Prandtl number is Values of the parameter σ.

	σ	H	h 0
	0.0607	1 m	4 mm
	0.0579	1 m	2 mm
	0.0740 0.2 m 4 mm
	0.0667 0.2 m 2 mm
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