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Abstract

Several Rayleigh-Bénard experiments in water are performed with and without roughness elements. We
present new thermal transfer measurements obtained with large roughness elements arranged in a square lattice.
The data are compared to previous ones obtained using smaller elements in the same cell. Experiments in the
same apparatus without roughness are presented, as reference results in order to allow for comparison. Several
regimes of heat transfer, in the rough case, are identified : a regime similar to the smooth case, an enhanced
heat transfer one characterized by a modification of the Nusselt vs Rayleigh numbers relation, and a saturation
part where the relation can be similar to a smooth one with a corrected prefactor.

1 Introduction
Turbulent Rayleigh-Bénard convection is a model system for natural convection. Theoretically, it consists in a
horizontal infinite fluid layer inserted between two plates: a hot at the bottom and a cold one at the top. The
difference of temperature ∆T between the two plates induces a fluid flow. It is characterized by the Rayleigh
number,

Ra =
α∆TgH3

(νκ)
, (1)

where H is the distance between the two plates, α is the expansion coefficient of the fluid, ν its kinematic viscosity,
κ the thermal diffusivity and g the acceleration due to gravity. The system response is the Nusselt number,

Nu =
QH

(λ∆T )
, (2)

where λ is the thermal conduction and Q the thermal flux through the fluid. This Nusselt number corresponds
to the balance of the thermal transfer with the corresponding conductive one at a given difference of temperature.
It is then a measurement of the efficiency of the thermal transfer versus the equivalent purely conductive one. In
the present paper, this ratio is the efficiency of convection versus equivalent conduction. The fluid properties are
characterized using the Prandtl number, which balances the kinematic viscosity to the thermal diffusivity,

Pr =
ν

κ
. (3)

In laboratory the corresponding experiment is the Rayleigh-Bénard cell where the layer of fluid is not infinite but
confined into a tank. The cell is geometrically defined by its vertical aspect ratio Γ = D/H, where D is, here, the
diameter of the cell, and H its height. It represents the confinement of the fluid in the experiment. One possibility
to describe the turbulent thermal behavior of a cell is the use of a power law relating the Nusselt number to the
Rayleigh and Prandtl numbers,

Nu = CRaaPrb. (4)
∗presently at Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, F-38000 Grenoble, France.
†presently at LAAS-CNRS, 7 avenue du Colonel Roche, BP54200 31031 Toulouse Cedex 4, France.
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In order to explore a possible perturbation of the boundary layers, and then a modification of thermal transfer of
cells, experiments involving roughness had been performed. Roughness elements can be added on only one of the
horizontal plates, S. Ciliberto [1999], J.-C. Tisserand [2011] or P. Wei [2014], or on both plates, Y.-B. Du [1998] and
Y.-B. Du [2000] or X.-L. Qiu [2005], or even on the entire cell, P.-E. Roche [2001a]. Several geometries of structure
are used such as square pyramids, Y.-B. Du [1998], Y.-B. Du [2000] for example, pyramidal grooves, P.-E. Roche
[2001a], spheres S. Ciliberto [1999] or square structures J.-C. Tisserand [2011]. Those experiments can be seperated
into two classes: the ones using non-conductive roughness elements added to a smooth plate, S. Ciliberto [1999],
the second class groups experiments performed using conductive roughness, J.-C. Tisserand [2011] or P. Wei [2014].
This second group exhibits some common properties. Two of them are now well-established: thermally conductive
roughness induces an enhancement of the thermal transfer through the cell, and this enhancement appears when
the height of the thermal boundary layer, noted δθ, reaches the height of the roughness, noted h0, whatever the
shape of the structure used.

The general behavior comes with other properties which are not always observed. This can create an apparent
discrepancy between different experiments. J.-C. Tisserand [2011], P.-E. Roche [2001a], X.-L. Qiu [2005] and in
certain configuration P. Wei [2014] observe an increase of the power law exponent a. Before the transition to Nusselt
enhancement, a is close to 2/7 or 1/3 whereas after it increases and reaches nearly 1/2. Other results suggest that
the exponent a can be unchanged but the prefactor C may increase significantly, Y.-B. Du [1998] or P. Wei [2014]
in other configurations.

After description of the experimental apparatus, section 2, we will detail some reference results obtained in the
classical smooth configuration of the cell, section 3. Then, following the previous study of J.-C. Tisserand [2011],
we will present results obtained in the rough cell with larger roughness elements, section 4. Structures are machined
on the hot bottom plate and the cold plate is kept smooth. This allows us to explore the thermal behavior of the
cell when the height of the thermal boundary layer is significantly smaller than the height of the elements. In the
following part, 5, we shall compare our data to others obtained with pyramids and using this large corpus of data,
we will try to extract general properties of thermally conductive roughness elements, before conclusion in section 6.

2 Experimental apparatus
2.1 The cell
The experimental apparatus consists in a cylinder, sketched in figure 1. As we use two different lateral walls, the
cell can exhibit two aspect ratios Γ. Figure 1 sketches the aspect ratio 1/2 which corresponds to a 1 m high cylinder.
The diameter D is 0.5 m. We will call this configuration ’Large Cell’ (LC). The other aspect ratio corresponds to
a 0.2 m high cylinder of the same diameter. The aspect ratio is then Γ = 2.5. We will call this configuration ’Small
Cell’ (SC). The lateral walls are in stainless steel and their thickness is 3 mm.

The cold plate is in copper coated with a thin layer of nickel in order to prevent chemical attack from the working
fluid, here deionised and degased water. It is regulated by a water circulation on its top. The circulation is controlled
by a regulated bath. The hot plate, is made of aluminum. It is heated by Joule effect using a spiralled resistor of
13 Ω inserted into the plate. The roughness is machined directly into the plate to preserve the physical properties
of the material. Figure 2 sketches the roughness pattern used. In the present case, h0 = 4 mm and d = 10 mm. The
periodicity of the pattern is 2d. J.-C. Tisserand [2011] used elements with h0 = 2 mm and d = 5 mm arranged in
the same way.

The cell is covered by a thermal insulator, a neopren foam, 4 cm thick, and enclosed into a thermal screen
in copper. The mean temperature of the screen is regulated at the bulk temperature by a water bath in order
to prevent interaction between the cell and the environement. The entire apparatus is placed on a table whose
temperature is also regulated at the bulk temperature.

2.2 Measurement techniques
Measurements are focused on thermal transfer. To do so, the cell is instrumented with different kinds of ther-
mometers. Six thermistors Pt100, three per plates, measure the absolute value of the temperature of the plate. Six
thermocouple junctions measure the temperature at mid height and the temperature of the bottom plate relative
to the top plate with high accuracy. The common reference is then inserted into the cold plate which provides the
relative zero value in the system, noted Tc. Another junction is also introduced into this plate at a different radius.
Two junctions are placed into the hot plate, and provide the hot temperature Th. As the thin lateral walls are in
stainless steel, they are thermalized at the same temperature as the bulk flow. Two junctions are placed onto those
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Figure 1: Sketch of the Γ = 1/2 Rayleigh-Bénard cell. Two aspect ratio can be used : Γ = 1/2 corresponding to a
diameter D = 50 cm and a height H = 1 m, and Γ = 2.5 with D = 50 cm and H = 20 cm.

h0

d

d

d
d

Figure 2: Sketch of the roughness pattern. In the present paper, results are obtained using h0 = 4 mm, d = 10 mm
with a periodicity 2d = 5h0. In J.-C. Tisserand [2011], h0 = 2 mm and d = 5 mm.
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walls to access the bulk temperature Tb. We also measure the temperature of the thermal screen and of the table.
The thermocouple junctions are connected to an electronic amplifier without offset. The signal is amplified 2000
times. One mean point consists in several hours (typically 48 h) of recording.

By varying the bulk temperature of the fluid, we induce variations of the fluid properties resulting in variations
of the Prandtl number. Keeping this bulk temperature constant in a serie of measurements groups results in series
at constant Prandtl number. This allows us to check the potential influence of the Prandtl number in a range of
values between 2.5 and 6.5.

2.3 Non-Boussinesq and lateral walls corrections
Since our experimental procedure is the same as the one used by J.-C. Tisserand [2011], we will use similar corrections
which are reminded below. First, we take care of the Non-Boussinesq (NOB) effects. Indeed, under the Boussinesq
approximation, we assume that all the physical properties of the fluid are independent of the temperature except
the density ρ in the buoyancy term, which can be approximated as ρ = ρ0(1 − α∆T ), where ρ0 is the density of
water at the temperature Tb. Experiments performed by G. Ahlers [2006] suggest that the main effect of NOB
effects on the Nusselt number comes from the variation of kinematic viscosity ν and thermal diffusivity κ only. In
liquid water, the second one is nearly constant. The only remaining source of troubles is ν. They define parameter
χ corresponding to this influence.

χ =
Th − Tb

Tb − Tc
= 1− c2∆T (5)

J.-C. Tisserand [2011] used a logarithmic dependence of c2 in Prandtl number but no dependence in Rayleigh
number.

c2 = −0.061Pr0.25
dln(ν)

dT
(6)

This results in corrective prefactors on the Nusselt number such as Nucor
s = (1 + c2∆Ts/2)Nus. The deviation

remains smaller than 1% in all our experimental conditions, and thus can be neglected.
The second effect we have to consider is the spurious heat conduction in the walls, P.-E. Roche [2001b] and

Ahlers [2000]. The thermal conductivity of the side walls has to be taken into account. It behaves as if the effective
surface, Seff , of the horizontal plates is larger than the real one S. They are related by Seff = (1+f(W ))S, where
W balances the heat conductivity of the side walls to the water one and is close to 0.5, and the corrected Nusselt
number is

Nucor = Nuraw(1 + f(W ))−1. (7)

It yields to corrective prefactors. Figure 3 shows the typical values obtained for a smooth plate. The corrections
for the rough plate are expressed in J.-C. Tisserand [2011], and we shall use the same here.

3 Reference smooth cell
Before consideration on results obtained using roughness, we shall discuss the behavior of LC when using only
smooth plates. Indeed, those results were briefly discussed only in the review F. Chillà [2012], but no detailed
presentation is available in litterature.

The experimental apparatus is the same as the one described in section 2. The plates are both smooth, made of
copper and coated with a thin layer of nickel. The results are presented in figures 4(a) and 4(b). Figure 4(a) shows
the Nusselt number compensated by the Rayleigh number

Nu

Ra1/3
. (8)

The LC points are shown as full black diamonds in this figure. This presentation allows to evaluate the potential
departure from a Ra1/3 behavior. Other results obtained in other cells are also shown for comparison. The open
triangles are for X. Chavanne [2001], a cylindrical cell of gaseous cryogenic helium. Green open diamonds and half-
diamonds are for J.J. Niemela [2000], in a second cylindrical cell filled with gaseous helium. Violet crosses and circles
are for the smooth/smooth values of Y.-B. Du [2000], in cylindrical cell filled with water at ambiant temperature.
Finally, blue stars are for P. Urban [2011], in a third cylindrical cell filled with gaseous cryogenic helium. The
black line is the Grossmann-Lohse model fitted for Pr = 3.7. This model was first presented by S. Grossmann
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Figure 3: Corrective prefactors induced by side walls effects for a smooth plate (for more details on the definitions
of Nus and Ras see expressions 11). Circles are for LC cell and triangles are for SC. Red refers to series at mean
temperature 60 ◦C, green is for 40 ◦C and blue for 30 ◦C.

[2000] to interpret the thermal transfer results of several Rayleigh-Bénard cells. The present evaluation of NuGL is
performed using the updated prefactors of the GL-model proposed by R. J. A. M. Stevens [2013], as it will be in the
entire paper. This model fairly represents the general behavior of all Rayleigh-Bénard cells in the present Rayleigh
number range. Comparison with other experiments also shows a global collapse of all the cells. Note that some
points from the Chavanne’s experiment exhibit a departure from other experiments at Ra > 1.1011. The present
experiment does not exhibit such a departure even at similar Prandtl number.

Figure 4(b) shows the same experiment in a (Ra, Pr) phase diagram. Note that several points of the LC
experiment do not overlap with previous measurements in this (Ra, Pr) plane. Even if other experiments had
been performed and are not presented here, to our knowledge, the LC data are the only ones which range from
Ra = 1.1010 to Ra = 1.1011 and Pr > 6. The corresponding values of Nusselt, Rayleigh and Prandtl numbers of
those points are given in table 3.
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Figure 4: (a) : compensated Nusselt number as a function of the Rayleigh number. The symbols are the same as
in figure 4(b). The continuous black line is the Grossmann-Lohse model with Pr = 3.7. The present points are
represented by the full black diamond. (b) : Prandtl number as a function of Rayleigh number.
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Pr Ra Nu
9.48 8.10 · 109 129
9.35 1.27 · 1010 145
9.09 2.46 · 1010 173
7.91 3.70 · 1010 194
6.94 2.82 · 1010 181
6.82 1.34 · 1011 283
6.86 9.93 · 1010 258
3.70 7.58 · 1011 494
3.74 5.01 · 1011 433
3.71 2.53 · 1011 345
3.85 1.30 · 1011 288
2.70 1.88 · 1012 661

Pr Ra Nu
2.97 1.37 · 1012 601
3.31 1.04 · 1012 547
3.70 7.61 · 1011 481
3.72 2.38 · 1011 342
3.86 4.79 · 1011 426
2.46 2.09 · 1012 692
2.95 1.37 · 1012 607
3.30 1.03 · 1012 555
2.87 2.24 · 1012 716
2.31 3.71 · 1012 846
2.79 2.32 · 1012 722
2.40 3.01 · 1012 791

Table 1: Values of Nusselt, Rayleigh and Prandtl numbers obtained in the symmetric Smooth/Smooth case.

4 The asymmetric case: introduction of roughness elements
To destabilize the thermal and viscous boundary layers of the experiment, roughness elements are used on the
hot/bottom plate, whereas the other one is kept smooth. This allows us to look for possible long distance influence
of the roughness elements by checking the behavior of the cold/smooth plate.

4.1 Separation of plates
To compare our results to those of J.-C. Tisserand [2011], we shall separate our asymmetric cell into two half
symmetric ones. This type of processing assumes independence of plates and, as we will see in section 4.2, this is
indeed the case. The asymmetric cell with roughness on the bottom and without roughness on the top is sketched
as case (a) of figure 5. We measure Tc, Tb and Th. If we focus on the hot/rough plate and its corresponding half-cell,
we can construct the symmetrical part by considering that, under Boussinesq approximation, the corresponding
cold plate should be at the temperature Th − 2(Th −Tb), case (b). This can be done for the cold plate too resulting
in case (c).

T
h

T
c

T
b

T
b

T
b

T
h

T
c

T
h

2(T  -T  )
b

-
h

T
c

2(T  -T  )
c

+
b

(a) (b) (c)

Figure 5: Separation of plates. (a) is the asymmetric cell we use, (b) is the symmetric cell based on the hot plate,
(c) the symmetric cell based on the cold plate.

We then compute a difference of temperature corresponding to cases (b) and (c).

∆Tr = 2(Th − Tb) ∆Ts = 2(Tb − Tc) (9)
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We also define and compute (Ra,Nu) couples for each cases.

Rar =
αg∆TrH

3

νκ
, Nur =

QH

λ∆Tr
; (10)

Ras =
αg∆TsH

3

νκ
, Nus =

QH

λ∆Ts
. (11)

This allow us to characterize the behavior of each plates seperately.

4.2 Thermal transfer results
4.2.1 Cold/Smooth plate case

First, we focus on the cold/smooth plate. Indeed, J.-C. Tisserand [2011] showed that the thermal transfer of this
plate is not modified by the presence of the roughness on the hot/rough plate. This is a good validation of the
independence of plates. Indeed, if plates had not been independent, then, the roughness on the hot plate would
have disrupted the cold plate. This still must be checked for the present 4 mm elements.

Figure 6 shows the (Nus, Ras) couple corresponding to the smooth/cold plate. Black open diamonds are the
results obtained in the LC classical smooth/smooth configuration described in section 3. The other open symbols
correspond to J.-C. Tisserand [2011], triangles are for aspect ratio Γ = 2.5 and circles for aspect ratio Γ = 1/2,
colors are Prandtl number series : blue for Tb = 25 ◦C, green for Tb = 40 ◦C and brown for Tb = 70 ◦C corresponding
to a Prandtl number of 6.1, 4.3 and 2.5 respectivelly. Full symbols are the new results presented here, blue is for
Tb = 30 ◦C, red for Tb = 60 ◦C. Note that the ordonates have been extended in order to range the same values
than those of figure 7 for comparison. Focusing on each series, we can observe that they are qualitativelly well
aligned. There mean values are always close to 1. The typical root mean square of those points is close to 5% with
a maximal dispersion of order 10%.
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Figure 6: Thermal transfer of the smooth plate: Nus normalised by the Grossmann-Lohse model computed with
respect to the experimental Prandtl number as a function of Ras. Colors refer to the bulk temperature Tb, blue is
25 ◦C or 30 ◦C, green is 40 ◦C, red 60 ◦C and brown 70 ◦C. Open symbols refer to the h0 = 2 mm of J.-C. Tisserand
[2011], full symbols to the current h0 = 4 mm elements. Triangles are for the SC, circles for the large one LC. Black
diamonds are for the reference smooth/smooth cell presented in section 3.

We can conclude that the general behavior of the smooth/cold plate is not modified by the presence of roughness
on the opposite hot plate whatever the case we examine here. They particularly remain in good agreement with the
reference results obtained in the fully smooth cell. It claims for independence of plates, at first order, whatever the
height of the roughness used on the other plate. Similar observations were also done by P. Wei [2014] when using
asymmetrical cell. The behavior of the smooth plate was not changed by the introduction of roughness elements on
the opposite plate. This was confirmed considering both top/smooth plate or bottom/smooth plate (ie: thermally
regulated plate or constant heat flux plate). It suggests that the independence of plates is a robust result in the
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range of Rayleigh number explored here (Ra larger than 108). Note that some recent Particule Image Velocimetry
(PIV) measurements, O. Liot [2017], seem to show a major increase of the root mean square of the velocity close
to the smooth plate respectively. This suggests that the smooth plate interacts with a modified bulk. However, the
possible induced modifications of the thermal behavior of the smooth plate are smaller than the dispersion of our
points.

Pr Ras Nus

5.32 1.54 · 1011 326
5.44 8.47 · 1010 272
5.45 4.98 · 1010 230
5.45 2.94 · 1010 196
5.46 1.76 · 1010 166
5.45 1.03 · 1010 136
5.36 2.61 · 1011 380

Pr Ras Nus

4.37 2.00 · 1011 353
4.37 1.13 · 1011 296
4.36 6.63 · 1010 250
4.37 3.85 · 1010 212
4.38 2.29 · 1010 174
4.35 3.41 · 1011 419
4.31 5.93 · 1011 492

Pr Ras Nus

2.98 5.20 · 1011 483
2.97 3.08 · 1011 407
2.98 1.77 · 1011 336
2.96 1.04 · 1011 285
2.96 6.15 · 1010 238
2.96 3.56 · 1010 202
2.94 1.40 · 1011 323
2.96 8.88 · 1011 575
2.96 1.52 · 1012 683

Table 2: Values for the smooth plate when using h0 = 4mm high roughness. Large cell.

Pr Ras Nus

4.36 1.57 · 109 73
4.37 8.95 · 108 61
4.37 5.27 · 108 51
4.38 3.06 · 108 44
4.39 1.84 · 108 36
4.40 2.66 · 109 85
4.40 4.54 · 109 100

Pr Ras Nus

3.03 2.37 · 109 82
3.06 3.99 · 109 97
3.04 6.80 · 109 116
3.07 1.14 · 1010 136
2.98 1.17 · 1010 139
2.93 7.34 · 109 112
2.95 4.27 · 109 95
3.00 2.46 · 109 81
2.96 1.40 · 109 68
2.97 8.18 · 108 58
2.98 4.84 · 108 48
2.99 7.19 · 109 112
2.98 4.23 · 109 95
3.01 2.46 · 109 80
3.00 1.40 · 109 67
3.03 8.25 · 108 57
3.01 4.70 · 108 49
3.04 2.83 · 108 41

Table 3: Values for the smooth plate when using h0 = 4mm high roughness. Small cell.

4.2.2 Hot/Rough plate case

Let us now focus on the rough/hot plate, ie. the (Nur, Rar) couple. The results are presented in figure 7 in the
same normalised way as figure 6. The color and symbol choices are the same. The comparison between those two
figures gives us another argument for the independence of plates. The general behavior of the rough/hot plate is
different from the smooth/cold one.

As explained in J.-C. Tisserand [2011], the open symbols exhibit a transition when the height of the thermal
boundary layer defined as δθ = H/2Nur reaches the height of the roughness h0. This leads to an increase of the
exponent a, expression 4.

The full symbols, corresponding to the new results obtained with h0 = 4 mm, exhibit another transition at
high Rayleigh number both in the Large and the Small Cells. This transition can be interpreted as a saturation
phenomenon. However, the range of Rayleigh number in the saturation part is too small to discuss a potential
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Figure 7: Thermal transfer of the rough plate: Nur normalised by the Grossmann-Lohse model computed with
respect to the experimental Prandtl number as a function of Rar. Symbol and color choices are the same as figure
6.

exponent value. Comparison with other results obtained by different groups, in section 5, will allow a more detailed
discussion on that point.

Pr Rar Nur

5.32 1.15 · 1011 444
5.44 6.44 · 1010 363
5.45 3.90 · 1010 299
5.45 2.40 · 1010 243
5.46 1.51 · 1010 196
5.45 9.22 · 109 154
5.36 1.91 · 1011 530

Pr Rar Nur

4.37 1.47 · 1011 488
4.37 8.47 · 1010 403
4.36 5.06 · 1010 334
4.37 3.03 · 1010 274
4.38 1.81 · 1010 224
4.35 2.50 · 1011 581
4.31 4.27 · 1011 695

Pr Rar Nur

2.98 3.92 · 1011 650
2.97 2.36 · 1011 538
2.96 1.36 · 1011 444
2.96 8.28 · 1010 364
2.96 4.98 · 1010 298
2.96 3.08 · 1010 237
2.94 1.13 · 1011 406
2.96 6.78 · 1011 761
2.96 1.15 · 1012 916

Table 4: Values for the rough plate when using h0 = 4mm high roughness. Large cell. Precision of the measurement
is ±1.5%.

4.3 A caracteristic length h0

As the plates are independent, we can base the Rayleigh number on the height of the roughness and no longer on
the height of the cell. This leads to the following normalisation of absissa:

Rah0
=

(
2h0

H

)3

Rar =
αg∆Tr(2h0)

3

νκ
(12)

The prefactor 2 in 2h0 comes from symmetrised rough cell corresponding to the case (b) of figure 5. The results
obtained with the normalisation are presented in figure 8. The collapse of all the different curves is good. We obtain
a master curve which gives us a transition at low Rah0

, close to Rah0
≈ 1.5.104, corresponding at the beginning

of the thermal transfer enhancement when δθ = h0. Then a saturation process appears at high Rah0
, close to

106. This representation collapses the departure from the smooth-like behavior and the beginning of the saturation
process.

In the satured part of this curve, the thermal transfer enhancement exceeds 60%. We remind here that the
presence of the roughness increase geometrically the surface of the hot plate of 40%. This leads us to an increase
of the thermal transfer higher than a simple surface increase.
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Pr Rar Nur

4.36 1.07 · 109 108
4.37 6.21 · 108 89
4.37 3.71 · 108 74
4.38 2.26 · 108 60
4.39 1.36 · 108 50
4.40 1.79 · 109 128
4.40 3.02 · 109 152

Pr Rar Nur

3.03 1.65 · 109 121
3.06 2.73 · 109 144
3.04 4.66 · 109 171
3.07 7.71 · 109 205
2.98 8.02 · 109 205
2.93 4.76 · 109 177
2.95 2.80 · 109 148
3.00 1.64 · 109 124
2.96 9.63 · 108 101
2.97 5.77 · 108 83
2.98 3.47 · 108 68
2.99 4.58 · 109 178
2.98 2.77 · 109 147
3.01 1.65 · 109 122
3.00 9.61 · 108 100
3.03 5.72 · 108 83
3.01 3.56 · 108 66
3.04 2.18 · 108 55

Table 5: Values for the rough plate when using h0 = 4mm high roughness. Small cell.
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Figure 8: Thermal transfer of the rough plate case: Nur normalised by the Grossmann-Lohse model computed
with respect to the experimental Prandtl number as a function of Rah0

. Symbol and color choices are the same as
figure 6
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5 Comparison with other roughness geometry
To compare our results to other, we will focus only on asymmetric cells. Indeed, as already mentionned, recent
PIV measurements have shown that the asymmetry of the cell is also present in the flow characteristic. It is then
reasonnable to think that asymmetric and symmetric cells are not completely similar, even if common properties
exist. P. Wei [2014] and J. Salort [2014] performed experiments in asymmetric cells, we will then use those points
for comparison. The roughness used by Salort were similar to those used by J.-C. Tisserand [2011], square based
roughness, 2 mm high, arranged in the same lattice as the one sketched in figure 2. The cell is a rectangular box with
vertical aspect ratio height/width = 1 and and horizontal aspect ratio depth/width = 1/4. The flow is quasi-2D
in this experiment and exhibits a well-defined mean flow. A very confined geometry can significantly modify the
thermal response of a cell, M. Kaczorowski [2014], including the local thermal transfer properties. The cell of Salort
et al, in smooth/smooth configuration, exhibits a thermal behavior similar to those described in section 3. However,
we cannot exclude that such confinement induces some differencies using roughness. Wei and co-workers performed
experiments in a cylinder of aspect ratio 1. They used pyramidal elements as roughness, sketched in figure 9. The
base length d is equal to 2h0. The surface increase induced was of 41%. As both studies were also underlying an
increase of the thermal transfer when the height of the thermal boundary layer was thinner than the roughness
height, we can compare those points to the present ones in the spirit of section 4.3, see figure 10. Black symbols
are for results of Wei et al, squares for Salort et al, colors correspond to different Prandtl number. The abscissa is
the Rayleigh number based on the height of the roughness times the Prandtl number.

There is a large scattering between all different curves. However, considering that the roughness elements are
different and the shape of the cell (some are cylinders, other rectangular based and quasi-2D), the general collapse
can be considered as fair. We can extract some general thermal properties. Below a certain value, which corresponds
to a thermal layer larger than the roughness height, the thermal transfer of the rough plate is consistent with a
smooth one. Note that Nur/NuGL can be significantly lower than 1 for several experiments, J.-C. Tisserand [2011]
and P. Wei [2014]. This is consistent with an extra thermal resistance induced by locked fluid between the roughness
elements, see J.-C. Tisserand [2011].

At a nearly constant value, Rah0 .P r ≈ 104, a departure from the smooth-like behavior is observed. This part of
the curves is consistent with a larger value of the exponent a of the so-called power law of the plate. The exponent
value seems to be similar for those experiments except the gray squares, this particular point was discussed in
J. Salort [2014]. They argue that the transition is due to a destabilization of the boundary layer induced by the
interaction between layers and roughness elements. The destabilization can be total or partial leading to two
potential behaviors. This destabilization of the boundary layer structure was, recently, confirmed by the work of
O. Liot [2016] where, using PIV measurements in the boundary layer, they have found evidence of a turbulent
velocity profile in that boundary. However, other enhancement mechanisms were also proposed in the past. In
particular, Y.-B. Du [2000] used thermochromic liquid crystals to measure temperature fields close to a rough
plate. Tips of roughness elements seemed to be preferential points of nucleation of thermal plumes. Following this
hypothesis, we can assume that a cube can induce a higher increase of the thermal transfer than a pyramid since a
cube is formed of four singularities interacting with the fluid whereas a pyramid is only exhibiting one singularity.
Looking at figure 10, we note that between abscissa 4.2 and 6, the curves obtained with cubes are almost always
above the ones obtained with pyramids, which is consistent with the previous assumption. Such an assumption
suggests that a kind of density of singularities can be necessary to balance the Nusselt number. However, we have
not found a satisfying criterion which allows a fairest collapse of the curves.

At larger Rayleigh number, Rah0
.P r > 106, as already said, the solid circles and triangles are consistent with a

saturation process. Blacks stars and +-circles, results of P. Wei [2014], allow to extrapolate the present results at
larger Rah0 . They suggest that the normalised Nusselt number goes down to the value compatible with a simple
surface increase (41% in that particular case). Note that, here again, the range of Rayleigh number explored is
not sufficient to definitely conclude on that point. Still, this would be consistent with the idea that at a sufficently
high Rayleigh number, the boundary layers are small enough to allow the bulk to interact with the surface as it
would with a smooth one. Moreover, a recent study, S. Toppaladoddi [2017], is focused on the influence of the
density of roughness structures on the thermal transfer. To do so, they performed several 2D numerical simulations
in a Rayleigh-Bénard system with roughness on both plates. They modified their roughness geometry to check the
possible dependence of thermal transfer. Even if, we have excluded symetric systems from our present analysis,
this work has to be mentionned since it provides a possible saturation mechanism. Indeed, the authors define what
they call a ’wavelength’, λ = d

H , associated with roughness horizontal geometry. They report that the exponent of
the Nusselt-Rayleigh relation depends on λ and that it exists an optimal value, λopt, at which a is maximum. Over
λopt, a goes down to the typical value of the smooth case. Moreover, λopt is Rayleigh number dependent. We, then,
can assume that the saturation can be associated with the overpassing of the optimal wavelength. To validate this
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assumption, some experiments involving larger roughness elements would be necessary.

h0

d

d

Figure 9: Sketch of the pyamidal roughness used by P. Wei [2014].
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Figure 10: Same representation as figure 8. Other asymmetrical experiments are added for comparison. Full circles:
LC h0 = 4mm, full triangles: SC h0 = 4mm, open circles: Tisserand et al: LC, open triangles: Tisserand et al:
SC. Black stars: Wei et al h0 = 8mm R/S, black +-circles: Wei et al h0 = 8mm S/R, black x-circles: Wei et al
h0 = 3mm R/S. Squares: Rectangular Cell: Salort et al.

6 Conclusion
We report, in this article, some new thermal transfer measurements in a cylindrical Rayleigh-Bénard cell with square
roughness on the hot/bottom plate for two different cell aspect ratios. We compare obtained results to previous
studies led with different roughness shape and/or dimensions. The well-known Grossmann-Lohse law is used as
a reference for the smooth case thermal transfer. We distinguish three main kinds of thermal transfer behavior
in presence of roughness. The first one, when the thermal boundary layer is thicker than the typical roughness
height, is similar to the thermal transfer with a smooth plate. The efficiency of the thermal transfer can be reduced
compared to the smooth case which can be due to a larger impedence of the boundary layer between the roughness.
When the boundary layer thickness gets down to the roughness height, a second thermal transfer behavior appears.
We observe an increase of the so-called power law describing the relation of the Nusselt versus Rayleigh numbers.
The thermal transfer becomes larger than a simple surface increase due to roughness elements. This is consistent
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with the changes of the thermal and viscous boundary layers structure observed in previous studies (J. Salort [2014],
O. Liot [2016]) which imply an intrinsic thermal flux enhancement. Finally, for larger Rayleigh numbers, a third
behavior is characterized by a reduction of the thermal transfer enhancement. The Nusselt number seems to go
back to the smooth one corrected by the surface increase due to the roughness. To confirm this assumption, some
experiments at higher Rayleigh numbers should be performed.

We have shown that both plates are independent relatively to the thermal transfer. The use of a Rayleigh
number based on the roughness height, instead of the cell one, leads to a fair collapse of the thermal transfer
curves for different roughness shape and/or elements even if a dispersion (possibly due to the shape differences or
the cell aspect ratio) is still present. Some work remains necessary to understand the balance of the two probable
main thermal transfer enhancement processes (boundary layers destabilization and plume emission increase). Other
roughness shapes with more or less geometrical singularities could be interesting. Finally, to propose a better master
curve of the thermal transfer, some additionnal experiments are also required specially to check the influence of the
spatial distribution, or density, of roughness elements.
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