
HAL Id: hal-01508128
https://hal.science/hal-01508128v1

Preprint submitted on 13 Apr 2017 (v1), last revised 25 Aug 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

SVC Videoconferencing Call Adaptation and Bandwidth
Usage in SDN Networks

Christelle Al Hasrouty, Cristian Olariu, Vincent Autefage, Damien Magoni,
John Murphy

To cite this version:
Christelle Al Hasrouty, Cristian Olariu, Vincent Autefage, Damien Magoni, John Murphy. SVC
Videoconferencing Call Adaptation and Bandwidth Usage in SDN Networks. 2017. �hal-01508128v1�

https://hal.science/hal-01508128v1
https://hal.archives-ouvertes.fr

SVC Videoconferencing Call Adaptation and
Bandwidth Usage in SDN Networks

Christelle Al Hasrouty∗, Cristian Olariu†, Vincent Autefage∗, Damien Magoni∗, John Murphy†
∗ University of Bordeaux – LaBRI, France

† University College Dublin – School of Computer Science, Ireland
alhasrouty@labri.fr, cristian.olariu@ucd.ie, autefage@labri.fr, magoni@labri.fr, j.murphy@ucd.ie

Abstract—Videoconferencing is a convenient way for meeting
with people while avoiding transportation costs. With cameras
now being a commodity feature on every laptop and smartphone,
videoconferencing can be delivered by many software applica-
tions.However, live video streams have strong latency require-
ments and consume much bandwidth. Furthermore, videocon-
ferencing is not efficiently implemented in current applications
as it often relies on a central server and does not leverage network
layer services. With the advent of Software Defined Networking,
it is now possible to use advanced techniques such as multicasting
and stream layering inside the network for optimizing live video
call transmission. In this paper, we investigate the impact of
these techniques on the bandwidth and latency of Scalable Video
Coding videoconference calls. We also evaluate the call capacity
of software defined networks using such techniques.

I. INTRODUCTION

Videoconferencing enables live video communication be-
tween three or more participants in different locations, each
possibly equipped with different devices. The development of
free applications and low cost devices has popularized the use
of videoconferencing among both individuals and businesses.
However, the widespread use of mobile devices implies wire-
less network constraints, such as bandwidth availability and
latency which makes it harder to maintain a high Quality of
Service (QoS) for all users.

Two general methods exist for connecting all participants to-
gether. In the first one, typically used in standalone conference
systems, a central control device is used to connect multiple
heterogeneous participants in a video-conference call. This
centralized control device, usually called Multipoint Control
Unit (MCU), acts as a bridge for these participants and adapts
their channels. The MCU is located in a premise providing
large and stable network bandwidth. Inside the MCU, a mul-
tipoint media processor is used to re-encode the audio/video
stream in order to match the other participants’ video require-
ments. This operation requires significant processing power.
In the second method, each participant directly connects to
every other participant with a point-to-point connection. Video
adaptation is done in the devices of the participants.

To overcome the re-encoding problem, videoconferencing
systems have started to use Scalable Video Coding [1] (SVC).
SVC is a layer-based video compression technique which
allows a video stream bitrate to be reduced by removing
some layers of it without preventing the stream to be decoded.
Thus, SVC avoids any re-encoding and streams can easily be

degraded to limit bandwidth consumption. While SVC allows
a better control over the stream bitrate, the layers’ selection
is only done at the endpoints or in the MCU and remains
unchanged inside the core of the network. In order to adapt the
streams inside the network, we have defined in this paper an
algorithm leveraging SDN (Software Defined Networking) for
building multicast distribution trees and dropping video layers
at optimal locations. This algorithm is able to define where
inside the network, some video layers should be dropped in
order to adapt the streams to the bandwidth capacities of the
receiving devices.

Section II presents a brief state of the art on videoconfer-
encing and SDN technologies. Section III details the model
and assumptions of our proposal and describes an example
scenario. It also provides a thorough description of our algo-
rithm for setting up video-conference calls. Finally, Section IV
details the methodology and parameters used in our simula-
tions and provides results related to the bandwidth usage and
latency values of calls related to parameters such as network
topology type, network size and number of participants. It also
provides results concerning the call capacity of the network.

II. RELATED WORK

In recent years, many efforts have been made on video-
conferencing systems in order to improve the QoS for users
while saving network resources. In order to cope with en-
coding/decoding complexity and network dynamics on video
transmitted over a network, the ITU has defined the Annex
G of the H.264 standard, called Scalable Video Coding [1]
in 2007. SVC allows the bitrate adjustment of video streams
without re-encoding and is currently implemented in many
hardware devices.

Using IP multicast is a logical approach for optimizing IP-
based multiparty calls but network operators have always been
reluctant to deploy it. Only broadcast services, such as IPTV,
have been partially supported by IP multicast on some ISP
networks. Constructing multicast trees for multi-layered video
has been studied as early as 1999 in [2], however, video layers
could only be managed at the endpoints.

In 2000, Wang and Hou have classified multicast routing
problems according to their optimization functions and per-
formance constraints [3]. In their classification, our proposal
targets the ”link and tree constrained tree optimization” prob-

lem aka the ”constrained Steiner tree” problem which has been
proved to be NP-complete.

Zhao et al. have used a multicast approach over a SDN
network [4]. In their proposal, SDN is used to centralize a
full view of the network and to apply an efficient selection
and distribution of video streams. Their solution achieves
higher video stream bitrates with a slight increase on delays.
Unfortunately, this study does not intend to maximize streams
quality since all users receive video flows at the same bitrate.
Moreover, their experimentations do not provide any results
on global bandwidth consumption and only focuses on small-
scale networks (under 150 nodes).

Laga et al. study the benefits of using a SDN/SVC based
solution in order to optimize delivery paths of each SVC
layer [5]. Their approach significantly reduces the amount
of video freezes even in a congested network. Those results
validate the benefit of SDN in the context of a video delivery
system. Nevertheless, their work only focuses on a video deliv-
ery from a single source to a single destination. Furthermore,
they only provide results on video freezes on a small-scale
network (under 10 nodes).

A recent videoconferencing system combining a multicast
distribution, a SDN network and SVC streams has been
proposed [6]. Similarly to our proposal, the SDN controller is
used to manage and adjust the distribution of video layers in
order to both optimize the QoS of each participant and reduce
the network usage compared to a classic MCU approach.
Contrary to our study, their solution primarily focuses on
reducing bandwidth consumption on core network links to the
detriment of the flow quality received by the users. Besides,
participants’ capability relies on the screen size and not on the
network access links properties. Finally, their evaluation has
only been performed on a small-scale grid topology as opposed
to our experiment which relies on realistic large-scale network
topologies.

III. SYSTEM MODEL AND ALGORITHM

In this section, we describe the model of our system as
well as the algorithm for setting up video-conference calls. To
the best of our knowledge, no network operator deploys IP
multicast protocols for video conferences. Thus, using a SDN
network is the only way of duplicating and modifying the
streams inside the network. Application-layer multicast can
only be deployed at endpoints and is not currently leveraged
by video conferencing applications.

A. Videoconferencing Model

When a video-conference is set between a number of users,
these users are called participants. A participant is, at the
same time, a sender of its video stream and a receiver of the
video streams of all other participants. The participants are
placed randomly in the network by being connected to any
node of the network. Many participants can be connected to
the same node. Participants are considered to be connected
wirelessly to their node by a 4G cellular technology such
as LTE. Each node of the network is supposed to provide

a wireless access function (such as an eNode-B) and an
SDN switching function. As the network is SDN-enabled, we
assume that all nodes within the network contain OpenFlow
switches and can communicate with an SDN controller which
is responsible for the management of the calls. All switches
are supposed to be able to adapt SVC streams by dropping
unused layers on the paths indicated by the controller. In this
work, we have considered that the number of participants in
a call can vary between 3 to 12. For scenarios with larger
values (above 6), we assume that participants have appropriate
devices for conferencing (e.g., large tablets, laptops, mobile
A/V systems). As discussed in the previous section, SVC
streams are structured in layers, all built upon a base layer.
In our case, we consider that the SVC layers consist of a
base layer L1, and three enhanced layers L2, L3, and L4.
In addition, a given layer can be used only if all the lower
layers are also received. Each participant accepts the highest
number of layers allowable by its downlink capacity. With only
the base layer, the participant will receive the lowest video
quality. If the participant’s downlink capacity falls below what
is required to receive the base layer, it can still remain in the
conference if it can at least receive an audio-only stream of
32kbps. If any participant can not receive the audio stream,
the conference call is rejected.

Four SVC profiles and one fallback audio-only profile
are used in the following simulations. The indicated bitrates
include network headers’ overhead and audio streams (for
SVC profiles):

• Audio-only, ~32kbps
• Layer 1: Scalable Constrained Baseline, Level 1, ~90kbps
• Layer 2: Scalable Baseline, Level 1.1, ~250kbps
• Layer 3: Scalable Constrained High, Level 1.2, ~0.5Mbps
• Layer 4: Scalable High, Level 1.3, ~1Mbps

The audio-only profile enables receivers with very low access
link bandwidth to participate in the call.

Access links are wireless, which make them subject to vari-
able communication channel conditions. This randomness in
access bandwidth availability can lead to a large heterogeneity
of bandwidth between the participants. Therefore, during a
video call, each participant sends the maximum bitrate stream
that can be consumed by at least one receiver, and this stream
is then degraded (i.e., higher layers are dropped) to adapt
to the participants with lower downlink bandwidth capacity.
After discovering the network topology and channel conditions
using SDN global view, it is significantly easier to identify the
locations of the switches where it is necessary to degrade SVC
streams.

Figure 1 shows a call scenario example with 6 participants.
The Di values represent the available downlink bandwidth for
each access link of each participant. The uplink bandwidth
of each participant is assumed to be higher than the highest
quality video stream (i.e., above 1Mbps). The di values
indicate the SVC stream bitrate received per participant. Thus,
at any participant i, 5× di < Di. Each video stream harbors
the color of its sender. Each arrow points to the direction
of the video stream and is labeled by the number of layers

Fig. 1. Video-conference example

sent. For instance, an arrow labeled 3 represents a video
stream containing layers 1 to 3. A stream can be degraded by
removing layers at any switch but it can never be upgraded
in quality inside a switch. It must be noted that our solution
does not preclude the use of encrypted datagram connections
(such as DTLS). By sending each layer on a different UDP
destination port, the switches can drop the layers just by
looking at the IP addresses and UDP port numbers, without
the need to decrypt the DTLS payload.

B. Algorithm for Setting up a Videoconference Call

The algorithm, executed in the SDN controller for setting
up a videoconferencing call, builds a multicast tree from each
participant (sender) to all the others (receivers) and relies on
several assumptions:

• For n participants, n source-rooted multicast trees will
be built.

• For optimal synchronization, all SVC layers belonging to
the video stream emitted by one sender, follow the same
paths. There is not one tree per layer but one tree for all
layers of a given video stream. Of course, some branches
of that tree may carry only a subset of the layers.

• Access downlink bandwidth is chosen randomly for each
participant from a range of plausible 4G data rates and
is assumed to not vary over the duration of the call.
However, they do vary for each new call/session. We
plan for future work to execute our algorithm periodically
to adapt the call to the variations of the access links’
characteristics during a call.

TABLE I
ALGORITHM’S VARIABLES

Variable Definition
Bk Bitrate level k ∈ J1,mK
Si Sender i ∈ J1, pK
Ui Uplink bandwidth of Si

ui Uplink bitrate of Si (ui = Bl)
Ti Tree rooted in Si

Fi,k Subtree(s) of Ti where links have bitrate k
Rj Receiver j ∈ J1, pK
Dj Downlink bandwidth of Rj

dj Downlink bitrate of Rj

N SDN Switch
Pj Path from Rj to Si or to Ti

SC SDN Controller

• Core links are supposed to all have the same bandwidth
dedicated for this type of A/V traffic (set between
100Mbps to 1Gbps depending on the scenario). This
means that links may have different bandwidth capacities
but they all reserve the same amount of bandwidth for the
videoconferencing calls. We assume the SDN network to
be WAN-sized (i.e., from 500 to 4000 nodes).

• The SDN controller knows the complete topology of
the network, the available bandwidth on each core link,
the position of the participants as well as their available
uplink and downlink access bandwidth.

• Any SDN switch can degrade (i.e., drop higher quality
layers) any SVC stream.

The optimization goal of our proposed scheme is to mini-
mize the total bandwidth used by a call, while maximizing
the bitrates received by each participant. Furthermore, our
scheme is link constrained (i.e., the sum of the streams on
any link can not exceed its bandwidth capacity), and tree
constrained (i.e., the sum of the delays over any path can
not exceed a given threshold). Thus, for the Wang and Hou
classification [3], our proposed scheme targets the link and
tree constrained tree optimization problem aka the constrained
Steiner tree problem which is NP-complete. The algorithm 1
proposed for constructing the videoconference call is based on
a single source/sender approach. It is a non optimal heuristic
that builds the tree backwards from each receiver to a given
sender and then reiterates the procedure for every sender. It is
composed of four main steps:

1) Collecting the downlink bandwidth for each participant
(line 1).

2) Computing the receiving and sending bitrates for each
participant (lines 2-3).

3) Building a multicast tree from each participant to all the
others if capacity permits (lines 4-25).

4) Checking the latencies over all paths between partici-
pants.

Before launching the algorithm BuildVideoCall, the
network state is backed up by the controller. In step 1, the
controller retrieves the downlink bandwidth value of each
participant by polling its access switch (the one through

which the participant is connected). In step 2, the receiving
bitrate of each participant is calculated by first dividing its
downlink bandwidth by the number of participants excluding
itself, and then by picking the highest bitrate level lower or
equal to this computed value (line 2). This means that any
given receiver will ask the same bitrate to all the senders
(optimizing reception with different bitrates would increase
the algorithm’s complexity and is left for future work). The
sending bitrate is then defined as the maximum received bitrate
level found among all participants, noted Bl (line 3). As the
uplink bandwidth is considered to be always higher than the
highest bitrate level B1, the sending bitrate Bl is thus the same
for each participant. It may be lower than the highest quality
bitrate B1 if no receiver can receive B1.

In step 3, each participant, considered as a sender, builds
a multicast tree to all others (line 4). The bitrate levels are
sorted from the highest B1 to the lowest Bm (line 6). The
receivers Rj are sorted by decreasing downlink bitrates and,
at any given bitrate, by increasing distances (in hops) to the
sender (line 7). For the highest bitrate Bl and the first receiver
nearest to the sender, a shortest path is built to the sender (line
12). Then, for the other receivers at the same bitrate Bl, two
modes are defined for connecting to the sender:

• Minimizing Spanning Tree (MST): a shortest path is
built up to the closest switch belonging to the tree,
thus making a spanning tree which minimizes bandwidth
usage in the network (line 16). It is a heuristic which does
not necessarily provide a mininum spanning tree, hence
the term minimizing.

• Shortest Path Tree (SPT): a shortest path is built up
to the sender, potentially stopping at the first switch
belonging to the tree, thus making a shortest path tree
which minimizes latency between participants (line 20).

If no path is found by function BuildShortestPath, due
to saturated links, the call is rejected. The algorithm is stopped
and the controller restores the network state previously backed
up before starting the algorithm. If a path is found, the stream
is then duplicated at the junction switch found by one of the
above methods (line 24). After all the receivers having the
highest bitrate Bl are connected to the sender, they form a
tree Ti = Fi,l. The next highest receiving bitrate Bk is then
chosen and receivers having this bitrate, again sorted by their
closeness to the source, connect to the Ti tree by one of the
two modes described earlier. In step 4, each path is checked
against the maximum acceptable latency. If the latency is
higher, the call is rejected (latencies between participants can
be computed when building the trees). The variables used in
this algorithm are defined in Table I.

C. Computational Complexity

In order to obtain the shortest paths needed by our al-
gorithm, we need to compute the Dijkstra algorithm for all
nodes in the network. The complexity of Dijkstra on a sparse
graph of size n (i.e., the number of edges is in O(n)) is
O(n2 × log n) with a Fibonacci heap implementation. If the
graph is dense (i.e., the number of edges is in O(n2)), the

Algorithm 1: Setup of the Videoconference Call
BuildVideoCall() return Bool

1 SC collects all Di

2 SC computes all di = max
1≤k≤m

(Bk) |Bk ≤ Di/(p− 1)

3 SC computes all ui = max
1≤i≤p

(di) = Bl

4 foreach Si, i ∈ J1, pK do
5 Ti ← {0}
6 foreach Bk, k ∈ Jl,mK | ∀ 0 < k < m,Bk > Bk+1 do
7 foreach Rj , j ∈ J1, pK |Rj 6= Si ∧ dj = Bk

∧ dist(Rj , Si) ≤ dist(Rj′ , Si) ∀ j′ > j do
8 Pj ← {∅}
9 N ← {∅}

10 if Bk = Bl then
11 if j = 1 then
12 Pj ← BuildShortestPath(Rj , Si)
13 if Pj = {∅} then
14 return false

15 else
16 if mode = MST then
17 Pj ← BuildShortestPath(Rj ,

N ∈ Ti)
18 if Pj = {∅} then
19 return false

20 else if mode = SPT then
21 Pj ← BuildShortestPath(Rj , Si)

stopping at N ∈ Ti

22 if Pj = {∅} then
23 return false

24 Set N to duplicate Bl on Pj

25 else
26 if mode = MST then
27 Pj ← BuildShortestPath(Rj ,

N ∈ Fi,k′)
28 if Pj = {∅} then
29 return false

30 else if mode = SPT then
31 Pj ← BuildShortestPath(Rj , Si) stopping

at N ∈ Fi,k′

32 if Pj = {∅} then
33 return false

34 if k < k′ then
35 Set N to drop layers for degrading Bk′ → Bk

on Pj

36 Set N to duplicate Bk on Pj

37 Ti = Ti ∪ Pj

38 foreach Si, i ∈ J1, pK do
39 foreach Rj , j ∈ J1, pK |Rj 6= Si do
40 if latency(Si, Rj) > Maxlatency then
41 return false

42 return true

complexity becomes O(n3). These path computations can be
done upfront and results can be stored in a multidimensional
array.Obtaining a shortest path from this structure takes at most
O(n) steps. If we define p as the number of participants in
the call and k the number of video layers, then the complexity
of our algorithm is O(p2 × k × n). Given that both p and k
are very small and independent of n, the complexity of our
algorithm becomes O(n). The final complexity is thus equal to

the one required by Dijkstra for computing all shortest paths.

IV. EVALUATION

This section presents the evaluation of our videoconfer-
encing call setup algorithm compared to a typical unicast
approach. As said above, we assume the calls to be short so
that network conditions are considered stable for the duration
of the calls. We will deal with long calls, i.e., dynamic recon-
figuration of the connections, in our future work. The results
presented here have been obtained by simulations in order to
study large network topologies. We have developed a static
simulator in Python implementing our algorithm described
earlier. The code is open-source1 and can be easily ported
to a Python SDN controller such as POX or Ryu. We have
not used real SVC streams but have mimicked their bitrate
requirements as indicated in section III-A.

A. Parameters

For evaluating our solution, we need to know the topologies
of some network operators. As this information is difficult
to obtain, we have generated synthetic maps of various sizes
by using the Erdös-Rényi model (ER) [7], as well as our
Magoni-Pansiot model (MP) [8] where the degree distribution
follows a power law (as observed in the Internet and in large
communication networks). This will enable us to assess the
impact of the topology on our solution.

Calls are created by the two modes of our algorithm (SPT
and MST) presented in Section III and by a unicast mode (typ-
ical of most applications), where each participant has unicast
connections to each others (not going through a central server).
In our simulations, the access downlink capacity between a
participant and its access switch is randomly selected from 4
Mbps to 14Mbps and the uplink bandwidth is set to 1.5Mbps,
which are conservative real-life values observed in current 4G
LTE networks [9]. The core links are supposed to all have a
dedicated and limited bandwidth for live A/V communications
such as videoconferencing (the value is indicated in the
captions). Access links delays are set to 30 ms (a typical
average value as shown in [10]) and core link delays are set to
10 ms (as observed in [11]). The maximum latency authorized
over any path is set to 250ms. Most of our results are obtained
by instantiating each network topology type 100 times for
every network size (i.e., thus generating 100 networks for each
size), every time with a different random number generator
seed. On every network and for each number of participants,
we execute 100 randomly placed calls (i.e., for each call, the
position of each participant is randomly picked). Thus, each
point on the following plots is the average of 10000 values.
For some results, this number has been lowered in order to
reduce computation time. In this case, the number of runs is
indicated in the captions.

B. Results

We present here our results that were obtained by our
simulations carried out with the parameters described in the

1http://www.labri.fr/perso/magoni/cemeqacs

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12

A
g

g
re

g
a

te
d

 b
a

n
d

w
id

th
 u

s
e

d
 p

e
r

c
a

ll
(i
n

 M
b

p
s
)

Participants

MP topo, SPT
MP topo, MST

MP topo, unicast
ER topo, SPT
ER topo, MST

ER topo, unicast

Fig. 2. Bandwidth consumption per call vs modes used and participants (2k-
node network size, 1Gbps core links)

previous subsection. Each point in the plots below is the
average of 10000 measured data points (100 calls per network
and 100 networks per topology type). As the relative errors,
measured at 95% confidence level, were always below 5% in
figures 2 to 5, the error bars were not depicted. They are shown
for all other figures.

Figure 2 shows the impact of the number of participants on
the total bandwidth used by a video call. The total bandwidth
is defined as the sum of the call bitrates on every crossed
link. While not meaningful in itself, this value is helpful
for comparing the three approaches. As expected, for both
topologies, the MST mode is the least bandwidth consuming,
closely followed by the SPT mode. They both exhibit a sub-
linear relationship between the number of participants and the
bandwidth consumption. The unicast mode, on the other hand,
exhibits a polynomial relationship and consumes much more
bandwidth. This is due to the redundancy of the streams on
the shared links. With 8 participants, each of the two multicast
modes roughly consumes up to 70% of the bandwidth used
by the unicast mode and at 12 participants, this ratio drops to
40%.

Figure 3 shows the influence of the network topology and
size on the total bandwidth used by a call. The bandwidth
used slowly increases with the network size because average
distances, and thus paths taken by the video streams, do also
marginally increase with the network size. From 500-node to
4k-node sizes, the largest increase is around 25% for unicast
and 30% for SPT. The network size has a significant influence
on the bandwidth used by a call, although smaller than the
number of participants.

Figure 4 shows the impact of the number of participants
on the maximum latency of a call. The maximum latency
of a call is defined as the maximum latency measured over

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5

A
g

g
re

g
a

te
d

 b
a

n
d

w
id

th
 u

s
e

d
 p

e
r

c
a

ll
(i
n

 M
b

p
s
)

Network size (in k)

MP topo, SPT
MP topo, MST

MP topo, unicast
ER topo, SPT
ER topo, MST

ER topo, unicast

Fig. 3. Bandwidth consumption per call vs modes used and network type/size
(6 participants, 1Gbps core links)

all paths between all participant pairs. The latency is exactly
the same for the SPT and unicast modes, as expected, and
increases marginally with the number of participants (e.g.,
+15% between 3 and 12 participants in MP topologies).
The MST mode, however, has an important impact on the
latency which increases with the number of participants (+60%
between 3 and 12 participants in ER topologies). This is
expected as the participants will optimize their paths to the
tree but not to the source thus leading to longer paths.
Latency values remain acceptable however, for live interactive
communications, except for MST mode on ER topologies
which results in latencies above the commonly accepted 250ms
limit.

Figure 5 shows the influence of the network size on the
maximum latency of a call. As with Figure 4, we observe
that the network size has a bigger influence on the latency
in the MST mode. This is expected as this mode is more
likely to select longer alternate paths whose number increases
when the network size increases. SPT and unicast modes are
not much influenced by the network size, especially over MP
topologies. This is also expected as MP topologies are power-
law type graphs whose average distance and diameter does not
increase when the network size increases.

Figure 6 shows the impact of the network size on the
network call capacity. The network call capacity is determined
as follows: calls are randomly generated (i.e., participants’ po-
sition and access bandwith capacity) and added on the network
one after the other. At some point, the BuildVideoCall
function defined in Section III will return false, indicating that
the call could not be setup because one or more links involved
in the call were saturated (i.e., filled at the maximum of their
bandwidth capacity). In this case, the call is rejected and the
network call capacity is considered reached. TAs our algorithm

 100

 150

 200

 250

 300

 2 4 6 8 10 12

M
a

x
im

u
m

 l
a

te
n

c
y
 (

in
 m

s
)

Participants

MP topo, SPT and unicast
MP topo, MST

ER topo, SPT and unicast
ER topo, MST

Fig. 4. Maximum path latency vs modes used and participants (2k-node
network size, 1Gbps core links)

 100

 150

 200

 250

 300

 0 1 2 3 4 5

M
a

x
im

u
m

 l
a

te
n

c
y
 (

in
 m

s
)

Network size (in k)

MP topo, SPT and unicast
MP topo, MST

ER topo, SPT and unicast
ER topo, MST

Fig. 5. Maximum path latency vs modes used and network type/size (6
participants, 1Gbps core link bandwidth)

is a non optimal heuristic, the number of supported calls thus
depends on the sequence of construction of all the calls which
are themselves randomly generated. For each experiment, the
network capacity will thus slightly vary. As the process of
calculating the call capacity is very time consuming, we have
performed only 100 experiments on MP networks only (as
MP topologies are more realistic than ER ones) with core link
bandwidth set to 500Mbps (instead of 1Gbps). On this figure,
as well as on Figure 7, points show the average capacity of
the 100 experiments, while the error bars show the standard
error of the mean. For any mode, the call capacity does not
increase linearly with the network size but flattens when the

 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5

N
e

tw
o

rk
 c

a
p

a
c
it
y
 (

in
 #

 o
f

c
a

lls
)

Network size (in k)

MP topo, SPT
MP topo, MST

MP topo, unicast

Fig. 6. Call capacity vs network size (6 participants, 500Mbps core links)

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000

N
e

tw
o

rk
 c

a
p

a
c
it
y
 (

in
 #

 o
f

c
a

lls
)

Core link bandwidth (in Mbps)

MP topo, SPT
MP topo, MST

MP topo, unicast

Fig. 7. Call capacity vs core link bandwidth (2k-node, 6 participants)

size increases. This is due to the fact that some links are much
more used than others, given their strategic position in the
network (especially in MP power-law type topologies), and
they become bottlenecks. To leverage the network size, bigger
bandwidth shall thus be used in those links if possible. For
4k-node networks, and assuming that each core link of the
network has 500Mbps of dedicated bandwidth for A/V call
traffic, we can see that our MST mode enables more than
1050 simultaneous calls while the standard unicast approach
supports around 730 calls, translating in a 43% improvement.
The gain is smaller for lower network sizes such as 500-node
networks where a 35% is improvement is observed. The MST
mode enables more simultaneous calls than the SPT mode but

the gap is much smaller than compared to unicast.

V. CONCLUSION

Improving videoconferencing systems can lead to large
bandwidth savings for network operators and can increase their
ability to serve a larger number of customers. In this paper,
we have proposed a videoconferencing system leveraging the
SDN architecture. Our solution provides adaptive SVC layers
to each participant by adapting them inside the network at
the most appropriate place. In addition, it uses multicast
for eliminating stream redundancy. Our results show that a
videoconference call based on our MST mode uses only a
fraction of the bandwidth of a unicast-based videoconference
system (70% at 8 participants and 40% at 12 on a 2k-node
network) while increasing the average path latency by 25% at
12 participants, but still remaining under 150 ms. Regarding
the call capacity of the network, our results show an increase
of 35% to 49% more calls (depending on the network size,
at a given core link bandwidth) for our solution compared
to a typical unicast approach with stream adaptation on the
edge switches. Results also exhibit call capacity gains from
80% to 36% when varying the bandwidth of the core links
in networks of a given size. Thus, our solution enables SDN-
ready telco operators to significantly increase the call capacity
of their networks. Our system is designed to dynamically
adapt to time-evolving user access bandwidth, but we have
not validated this aspect yet. Our future work will consist in
analyzing our system over the duration of a call when time-
varying access bandwidths are experienced, and evaluating
a prototype implementation over a virtual network for re-
assessing our current results obtained by simulations.

REFERENCES

[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the h. 264/avc standard,” IEEE Trans. on circuits
and systems for video technology, vol. 17, no. 9, pp. 1103–1120, 2007.

[2] M. D. de Amorim, O. C. Duarte, and G. Pujolle, “Single-loop packet
merging for receiver-oriented multicast multi-layered video,” in Interna-
tional Conference in Computer and Communication, 1999.

[3] B. Wang and J. C. Hou, “Multicast routing and its qos extension:
problems, algorithms, and protocols,” IEEE Network, vol. 14, no. 1,
pp. 22–36, 2000.

[4] M. Zhao, B. Jia, M. Wu, H. Yu, and Y. Xu, “Software defined network-
enabled multicast for multi-party video conferencing systems,” in IEEE
International Conference on Communications, 2014, pp. 1729–1735.

[5] S. Laga, T. Van Cleemput, F. Van Raemdonck, F. Vanhoutte, N. Bouten,
M. Claeys, and F. De Turck, “Optimizing scalable video delivery
through openflow layer-based routing,” in IEEE Network Operations
and Management Symposium, 2014.

[6] E.-z. Yang, L.-k. Zhang, Z. Yao, and J. Yang, “A video conferencing
system based on sdn-enabled svc multicast,” Frontiers of Information
Technology & Electronic Engineering, vol. 17, no. 7, pp. 672–681, 2016.

[7] P. Erdös and A. Rényi, “On random graphs i.” Publicationes Mathemat-
icae, vol. 6, p. 290–297, 1959.

[8] D. Magoni and J.-J. Pansiot, “Internet topology modeler based on map
sampling,” in Proceedings of the 7th IEEE Symposium on Computers
and Communications, 2002, pp. 1021–1027.

[9] V. Buenestado, J. M. R. Avilés, M. Toril, and A. Mendo, “Analysis of
throughput performance statistics for benchmarking lte networks,” IEEE
Communications Letters, vol. 18, pp. 1607–1610, 2014.

[10] M. Laner, P. Svoboda, and M. Rupp, “Latency analysis of 3g network
components,” in 18th European Wireless Conference, 2012, pp. 1–8.

[11] M. Hoerdt and D. Magoni, “Cartographie distribuée du coeur de
l’internet,” Ann. des Télécom., vol. 60, no. 5-6, pp. 558–587, 2005.

