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Abstract

The vibroacoustic behavior of axisymmetric stiffened shells immersed in water

has been intensively studied in the past. On the contrary, little attention has

been paid to the modeling of these shells coupled to non-axisymmetric internal

frames. Indeed, breaking the axisymmetry couples the circumferential orders of

the Fourier series and considerably increases the computational costs. In order

to tackle this issue, we propose a sub-structuring approach called the Condensed

Transfer Function (CTF) method that will allow assembling a model of axisym-

metric stiffened shell with models of non-axisymmetric internal frames. The

CTF method is developed in the general case of mechanical subsystems coupled

along curves. A set of orthonormal functions called condensation functions,

which depend on the curvilinear abscissa along the coupling line, is considered.

This set is then used as a basis for approximating and decomposing the displace-

ments and the applied forces at the line junctions. Thanks to the definition and
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calculation of condensed transfer functions for each uncoupled subsystem and

by using the superposition principle for passive linear systems, the behavior of

the coupled subsystems can be deduced. A plane plate is considered as a test

case to study the convergence of the method with respect to the type and the

number of condensation functions taken into account. The CTF method is then

applied to couple a submerged non-periodically stiffened shell described using

the Circumferential Admittance Approach (CAA) with internal substructures

described by Finite Element Method (FEM). The influence of non-axisymmetric

internal substructures can finally be studied and it is shown that it tends to in-

crease the radiation efficiency of the shell and can modify the vibrational and

acoustic energy distribution.

Keywords: Admittance, Sub-structuring, Stiffened shell, Vibroacoustics,

Non-axisymmetric, Numerical modeling.

1. Introduction

Modeling the vibroacoustic behavior of submerged stiffened hulls is of pri-

mary importance for several industrial applications. The Circumferential Ad-

mittance Approach (CAA) [1] is well adapted to describe the vibroacoustic

behavior of a submerged shell non periodically stiffened by axisymmetric inter-5

nal frames. The CAA is a substructuring approach based on the admittance

principle for linear systems [2, 3], for which the admittances are defined for each

subsystem and for each circumferential order. A dedicated model of the fluid

loaded cylindrical shell can then be coupled with axisymmetric Finite Element

models of internal frames. It allows modeling the vibroacoustic behavior of the10
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shell with various internal frames (ring stiffeners, axisymmetric bulkheads, end

caps) on a wide frequency range, typically from 100 Hz to 1 kHz. However, this

method is based on the assumption of an axisymmetric system, so that the cir-

cumferential orders can be studied individually. The vibroacoustic behavior of

shells with non-axisymmetric internal structures is nevertheless of great interest15

for naval or aerospace applications. In the present paper, we propose therefore

a method called the condensed transfer function (CTF) method to couple an

axisymmetric submerged stiffened shell with non-axisymmetric internal frames.

This method is based on an extension of the admittance method, allowing to

assemble mechanical structures coupled along lines. As the admittances are20

calculated separately for each subsystem, the CAA model can be used to cal-

culate the admittances of the submerged stiffened shell on one hand. On the

other hand, the Finite Element Method (FEM) can be used to calculate the

admittances of the non-axisymmetric internal frames.

In the past, different models of shell with non-axisymmetric internal struc-25

tures have been proposed. Some of these studies have focused on the vibroa-

coustic behavior of non-axisymmetric cylindrical shells in vacuo [4, 5, 6, 7, 8].

Besides, other studies taking into account heavy fluid loading in the shell model

can be found. Rebillard et al. [9] add a mass-spring system in an immersed

cylinder. They solve analytically the problem from the eigenmodes of the ax-30

isymmetric cylinder in vacuo, include a radiation-impedance term to account

for the fluid, and validate the results experimentally. Achenbach, Bjarnason

and Igusa [10] study the influence of a non-axisymmetric substructure on a
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similar configuration and show that the mass-spring system can heftily modify

the vibroacoustic behavior of the shell. Their method is based on a variational35

formulation and the introduction of Lagrange coefficients to account for the

coupling forces.Depending on the frequency considered, adding such a subsys-

tem can either increase or decrease the amplitude of the radiated sound field

around the cylindrical shell. The same method is used to take into account floors

and stiffeners in a 2-D problem on an infinitely long cylindrical shell [11, 12],40

to highlight the influence of non-axisymmetric excitations [13] and to consider

the example of two longitudinal beams lying on stiffeners [14]. In the general

formulation, the circumferential orders are coupled and it results from the pre-

vious studies show that the coupling cannot be neglected in non-axisymmetric

problems. This idea reinforces the results given by Laulagnet and Guyader [15],45

who break the axisymmetry of an immersed cylinder through partial masking,

namely by overlaying the external surface of the cylinder by an acoustic coating.

Similarly, Cuschieri and Feit [16] study the influence of the masking and notice

that the coupling of the circumferential modes depends on its regularity.

The increasing complexity of the internal structures, including irregular spac-50

ing of stiffeners, non-axisymmetry and the addition of internal degrees of free-

dom changes some resonances, modifies the acoustic field and couples different

modes [17]. To tackle these problems, for which geometry is more complex than

the academic studies cited above, experimental and numerical methods have

been used. Photiadis et al. [18] create an experimental model of an immersed55

stiffened cylinder with numerous mass-spring systems attached on the stiffen-

4



ers, and compare the measurements to a model without the resonators. They

deduce that the internal structures induce several effects on the mono-static

scattering and in particular the attenuation of Bloch-Floquet waves. Bucaro et

al. [19] clarify these results by modifying locally the structure admittance to60

account for the resonators. Because each complexity level tends to increase the

level of the radiated and scattered field, it is advisable for industrial applica-

tions to keep as simple systems as possible and not to break the axisymmetry.

This conclusion is equivalent to say that discontinuities tend to enhance the ra-

diation efficiency of the structures [20]. The pressure radiated by an immersed65

shell with and without point masses is calculated by the Finite Element Method

by Marcus and Houston [21]. For their example, they show that the coupling

of the circumferential modes induces a rise in the radiation level of about 10

dB over a broad frequency range. Studies by coupled FEM-BEM (Finite Ele-

ment Method - Boundary Element Method) give results at low frequency that70

highlight the crucial importance of isolating internal structures through flexible

mounts [22, 23]. Ettouney et al. [24] solve the problem of a submerged ax-

isymmetric shell by using the uncoupled circumferential harmonics. They use a

sub-structuring approach based on the admittances to include three-dimensional

systems in the axisymmetric shell while keeping the circumferential orders un-75

coupled. The system is thus equivalent to an axisymmetric submerged shell

with internal point forces that account for the presence of the internal systems,

but is the method is however limited to point coupling.

In general, the element based methods are well suited for modeling systems
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with high geometry and property complexity. Due to the current computa-80

tional limits, they are however limited to low frequencies when the system to

be described is a submerged shell. On the contrary, semi-analytical models

as described previously are available to analyze the behavior of shells coupled

with particular internal non-axisymmetric structures such as oscillators, beams,

simply supported plates, etc., over a wide frequency range. The limitations of85

these methods lie in general on their low versatility, meaning that a dedicated

model should be developped for each type of internal structure. The method

proposed in this paper consists in benefiting from these different methods, so

that the submerged stiffened shell is modeled by the CAA method whereas the

non-axisymmetric internal structures are modeled by FEM, allowing for flexi-90

bility with their geometry. The junctions between the stiffened shell and the

non-axisymmetric internal frames are supposed to be lines. A set of orthonormal

functions called condensation functions are used as a basis for approximating

the displacements and the forces at the junctions. Condensed transfer functions

are then defined and calculated for each uncoupled subsystem, and the super-95

position principle for passive linear systems leads to the vibroacoustic behavior

of the coupled system. The paper is organized as follow:

• In section 2, the principle of the CTF method is described for the general

case of subsystems coupled along a line. A set of orthonormal functions

called condensation functions is considered to approximate the forces and100

displacements at the line junctions.

• Three different examples of condensation functions are considered to val-
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idate the CTF method on a plane plate case and convergence criteria are

studied in section 3.

• In section 4, the CTF method is applied to add non-axisymmetric in-105

ternal frames to a stiffened shell. An in vacuo case is first defined and

the results are compared with FE calculation to validate the numerical

process. Finally, the radial displacements and the pressure radiated by

a non-axisymmetric stiffened submerged shell are presented and physical

phenomena are discussed.110

2. Principle of the Condensed Transfer Function (CTF) method
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Figure 1: Admittance method extended to line coupling. (a) Subsystems coupled along a line.

(b) Subsystems uncoupled.

Let us consider two mechanical thin structures coupled along a line, as shown

in Fig. 1. Γ represents the coupling line and the curvilinear abscissa s is used

to locate a point on Γ. A set of N orthonormal functions is considered and

are called the condensation functions: {ϕi}1≤i≤N . The type and the number of115

condensation functions N may play a key role in the convergence of the method
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and will be discussed later in this paper. One assumes that the displacements

Uα(s) and the line coupling forces Fα(s) at the junction can be approximated for

each subsystem α as a linear combination of these condensation functions. For

each uncoupled subsystem α ∈ {1, 2}, the condensed transfer function between120

ϕi and ϕj is defined by applying a force Fα = ϕj on Γ :

Y αij =
〈Ūαj , ϕi〉
〈Fα, ϕj〉

= 〈Ūαj , ϕi〉 (1)

where 〈•, •〉 is a scalar product and Ūαj the displacement of the junction Γ when

the subsystem is excited by Fα = ϕj .

Moreover, the free condensed displacement of each uncoupled subsystem α

is defined by:125

ũαi = 〈Ũα, ϕi〉 (2)

where Ũα is the displacement at the junction of the uncoupled subsystem α when

only external loading is applied. As in the example of Fig. 1, the subsystem 2 has

no external load: ũ2
i = 0,∀i ∈ [[1, N ]]. As proposed above, the displacement and

the line force applied on subsystem α can be decomposed using the condensation

functions:130


U1(s) '

∑N
i=1 u

1
iϕi(s)

U2(s) '
∑N
i=1 u

2
iϕi(s)

and


F 1(s) '

∑N
i=1 f

1
i ϕi(s)

F 2(s) '
∑N
i=1 f

2
i ϕi(s)

(3)

where uαi (resp. fαi ) is the displacement amplitude (resp. the force amplitude)

of subsystem α associated to the condensation function ϕi. In response to these
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line coupling forces and the external load, the superposition principle for passive

linear systems enables to write the displacements coefficients uαi as follow:


u1
i = ũ1

i +
∑N
j=1 Y

1
ijf

1
j

u2
i =

∑N
j=1 Y

2
ijf

2
j

,∀s ∈ Γ,∀i ∈ [[1;N ]] (4)

Besides, the displacement continuity and force equilibrium at the junction135

lead to:


U1(s) = U2(s)

F 1(s) + F 2(s) = 0

,∀s ∈ Γ (5)

The set of condensation functions being orthonormal, the projection of Eq. (5)

on a function ϕi yields:


u1
i = u2

i

f1
i = −f2

i

,∀i ∈ [[1;N ]] (6)

Injecting Eq. (4) in Eq. (6) results in a similar formula compared to the

classical admittance method to deduce the coupling forces Fc = F1 = −F2
140

between the subsystems:

(
Y1 + Y2

)
Fc = −Ũ1 (7)

In the general case, for a given subsystem α and a couple of condensation

functions (ϕi, ϕj), the matrix Yα is a square matrix which size depends on

the number of degrees of freedom (generally 6 in 3-D problems), to take into

account all the possible directions of excitations and displacements. Thus, the145
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matrix Yα has 6N × 6N elements. Similarly, Ũα is a 6N elements vector (still

considering having a general 3-D problem) to calculate the response of the edge

in all directions of space to the external load. The size of this system is therefore

equal to the number of transfer functions multiplied by the number of degrees

of freedom.150

To calculate the terms of the admittance matrices in practice, each uncoupled

subsystem is excited by the condensation functions. As the set of condensation

functions is orthonormal, the denominator of the admittance term is in this case

equal to 1, and the admittance is deduced by projecting the displacements on

the condensation functions (compare Eq. (1)).155

Once the coupling forces have been calculated by inverting Eq. (7), one can

deduce the response at given points M1 and M2, respectively on subsystems 1

and 2:


U(M1) = Ũ1(M1) +

∑N
i=1 Y

1
M1i

F ci

U(M2) = −
∑N
i=1 Y

2
M2i

F ci

(8)

where Y αMαi
is the admittance at the point Mα of the uncoupled subsystem α

and is defined as the response at the point Mα when the subsystem is excited160

by ϕi on Γ.

The method has been presented in the case of the coupling between only

two subsystems but can easily be extended to more complex systems, with

more than one junction. It is important to note that unlike classical reduction

methods, such as Component Mode Synthesis [25] or branch mode analysis [26],165

the subsystems in the CTF method do not necessarily need to be described by
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Finite Element Method (FEM) or by projections on a modal basis. Indeed, it

is sufficient to be able to evaluate the admittance at the interfaces by any mean

to apply the method. Examples of condensation functions with their associated

scalar product are given in the next section, before being applied to a thin plate170

test case.

3. Numerical study on a basic test case

3.1. Test case parameters

To validate and study the numerical convergence of the CTF approach, let

us consider in this section two rectangular plates made of the same material and175

having the same thickness. The aim is to couple the two plates together along

their longest edge, as shown in Fig. 2. The characteristics and dimensions are

given in Table 1. The plates lie in the z = 0 plane and the boundary conditions

are free on all the edges. Considering the coordinates origin at the bottom left

of plate 1, the system is excited by a transverse harmonic excitation on plate 1180

at the point with the coordinates (0.9, 0.5).

For comparison purposes, a reference calculation is made using the FEM

to model a 1.5 × 2.5 m2 plate. Harmonic responses are calculated for frequen-

cies between 10Hz and 1500Hz, with approximately 400 values logarithmically

spread over the domain. This frequency resolution ensures to properly describe185

the resonance peaks of the system regarding the value of the structural damping

coefficient [27], which is accounted for as a complex factor in the stiffness ma-

trix. One layer of quadrilateral isotropic shell elements of thickness h is chosen
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Fφi

Uφj

Plate 1 Plate 2

Γ

Figure 2: Two rectangular plates coupled along a line. Partition of the coupling line into 10

segments.

Parameter Notation Value Unit

Young modulus E 210 GPa

Poisson coefficient ν 0.3 -

Density ρp 7800 kg.m−3

Structural damping coefficient η 0.02 -

Length of plate 1 & 2 L 1.5 m

Width of plate 1 l1 1.2 m

Width of plate 2 l2 1.3 m

Thickness h 0.017 m

Table 1: Material characteristics and plates dimensions.
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with a linear interpolation function. The Finite Element mesh is fine enough

in order to respect the criterion of 6 elements per bending wavelength which is190

commonly used for such problems.

To apply the CTF approach, the condensed admittances should be calcu-

lated for the two subsystems. As discussed previously, the estimation of the

response of each uncoupled subsystem excited on the junction line by forces

corresponding to condensation functions are needed. FEM calculations and the195

modal superposition including quasi-static residual modes [28] can be used for

this purpose thanks to its good convergence. The principle of this technique is

presented in Appendix A. The modal basis is truncated such that the frequency

of the highest mode is 1.9 times higher than the highest frequency. In the case

of the two plates described previously, the basis for plate 1 counts 116 modes200

(highest eigenfrequency at f = 2848.6 Hz) and 125 modes for plate 2 (highest

eigenfrequency at f = 2839.3 Hz). Three examples of condensation functions

are given in the next subsection before discussing the results for the present test

case.

3.2. Three examples of condensation functions205

3.2.1. Gate functions

The gate functions ϕi, i ∈ [[1, N ]], are defined depending on their length Ls

as follows:

ϕi(s) =


1√
Ls

if (i− 1)Ls ≤ s < iLs

0 elsewhere

(9)

As the junction Γ has a finite length, giving a gate length Ls leads to a
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number N of condensation functions taken into account. The scalar product210

associated with the gate function is defined by:

C0
I × C0

I → C

〈f, g〉 7→
∫

Γ

f(s)g∗(s) ds (10)

where C0
I is the set of piecewise continuous functions on intervals [a, b[⊂ Γ, and ∗

means the complex conjugate. It can be easily verified that the gate functions

form an orthonormal set for this scalar product.

In this case, applying the CTF approach can be seen as dividing the coupling215

line into N segments and calculating the admittances between the segments,

as shown in Fig. 2. The segments are excited one after the other, and the

displacement on each segment allows to obtain the admittance matrix of each

uncoupled subsystem. Each term of the free displacement vector is the result of

the integral of the displacement on one segment due to the external load (only220

for plate 1 in this example).

3.2.2. Exponential functions

Complex exponential functions can be well adapted to describe the flexural

waves at the junction. These exponential functions are defined by:

ϕi(s) =
1√
L

exp

(
j
iπs

L

)
(11)

where L is the length of the junction Γ and j the complex number j2 = −1. The225

associated scalar product is defined as follow, ensuring the set to be orthonormal:

C0 × C0 → C
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〈f, g〉 7→
∫

Γ

f(s)g∗(s) ds (12)

where C0 is the set of continuous function on Γ. The set of condensation func-

tions is characterized by the maximal index imax and all the functions such that

i ∈ [[−imax, imax]] are taken into account.

3.2.3. Chebyshev polynomials230

The Chebyshev polynomials are widely used to interpolate functions and are

thus an interesting alternative for the condensation functions [29]. They can be

defined recursively by the following relations:
T0(X) = 1

T1(X) = X

Tn+2(X) = 2XTn+1(X)− Tn(X)

(13)

The scalar product associated to the Chebyshev polynomials takes into ac-

count the weight function 1√
s(L−s)

:235

C0 × C0 → C

〈f, g〉 7→ L

π

∫
Γ

f(s)g∗(s)
1√

s(L− s)
ds (14)

The weight function ensures the set T0√
2
∪ (Tn)n∈N∗ to be orthonormal in

regards to this scalar product and reduces numerical errors by quadratically

clustering the nodes at the end of the segment.

3.3. Results

The mean (average on surfaces) quadratic transversal velocity on the surface240

of the two plates coupled together is calculated using the CTF method with

15



the 3 different condensation functions presented above and is compared to a

reference solution. The responses and the relative errors are plotted in Fig. 3 as

a function of the frequency. The CTF calculations have been performed taking

3 condensation functions (N = 3), which means:245

• dividing the line junction in 3 segments when the condensation functions

are gates;

• taking imax = 1 for the exponential functions, i.e.:

ϕ(s) ∈ { 1√
L

exp(
−jπs

L
);

1√
L

;
1√
L

exp(
jπs

L
)}

• using the 3 Chebyshev polynomials T0, T1 and T2;
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Figure 3: Spatial averaged quadratic transversal velocity on the two coupled plates and excited

by a point harmonic force. Comparison between the reference and the CTF methods with

N = 3. (a) Narrow band response. (b) Relative error (dB).

One can observe that all the results agree well until around flim ' 150250

Hz. For this test case, some differences up to 1 dB can be seen at the resonance
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frequencies in the case of the gate functions. These differences are due to a slight

frequency shift in the resonance and can be acceptable for practical applications.

Above this frequency, the transfer functions are not able to describe properly the

phenomena. In other terms, the forces and displacements cannot be correctly255

interpolated by the 3 condensation functions at higher frequencies.

3.4. Convergence criteria

Assuming that at least 2 points per wavelength are necessary to sample a

signal (cf. Nyquist-Shannon sampling theorem), one can propose criteria defin-

ing the characteristics of the set of condensation functions (Ls, imax, Nmax) as a260

function of the flexural wavelength λf of the plate at the higher frequency limit

flim:

• for gate functions, two segments are needed to describe a wavelength:

LS ≤
λf
2

(15)

• for exponential functions, noting that the index i can take negative values,

the criterion is:265

imax ≥
Ly
λf
− 1

2
(16)

• for Chebyshev polynomials, the degree of the polynomial must be at least

equal to the number of points that the function needs to interpolate:

Nmax ≥
2Ly
λf
− 1 (17)

These criteria are adapted for each type of condensation function, but give

the same number of transfer functions for a given frequency limit. In the case of

17



a 17 mm thick plate, N = 3 leads to a frequency limit of flim = 168 Hz, which270

fits the observations in Fig. 3.

Applying the criterion for Chebyshev polynomials, the convergence of the

results is ensured up to more than 1500 Hz with N = 10 transfer functions, as

seen in Fig. 4a. For the sake of succinctness, the results of the CTF method

with 10 transfer functions with the gate functions and the complex exponentials275

are not plotted here but shows also good convergence. At this stage of the

study, it cannot be said if one of the three condensation functions perform best.

The gate functions however present the advantages of being easy to implement

and of having a lower condition number, being thus less sensitive to numerical

errors [30]. In Fig. 4b, the amplitude of the transverse force is plotted as a280

function of the frequency and the condensation functions. For each frequency,

the values are normalized with regard to the highest amplitude. Considering

the dispersion relation for a plate, Eq. (17) yields :

Nmax ≥
√

2f

π
Ly

(
Eh2

12(1− ν2)ρp

)1/4

− 1 (18)

Nmax is an integer and rounded toward positive infinity. Nmax is plotted as a

function of the frequency in Fig. 4b using a white line. It clearly shows that285

the higher the frequency, the more Chebychev polynomials play a role in the

method. It also shows that, except for some frequency values below 55 Hz, the

criterion is very well suited to properly approximate the forces at the junction.
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Figure 4: CTF method with N = 10 Chebychev polynomials. (a) Mean quadratic velocity as

a function of the frequency. (b) Normalized amplitude of the transverse force at the junction

projected on the condensation functions as a function of the frequency.

4. Cylindrical shell with non-axisymmetric internal frames

In order to validate the method for our case of interest and to illustrate its290

advantages in coupling different models, it is applied for the case of an axisym-

metric stiffened shell coupled with non-axisymmetric internal structures. First,

the principle of the approach is described for the general case in subsection4.1

before highlighting the procedure to calculate the condensed transfer functions

from a dedicated CAA model [1] in subsection 4.2. Then, for validation pur-295

pose, an in vacuo shell is considered, so that results can be easily compared

with a full FEM calculation. Finally, the method is applied to an example of

submerged stiffened shell with non-axisymmetric internal structures to discuss

the influence of the non-axisymmetric structures on the vibroacoustic behavior.
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4.1. Principle of the CTF approach in the case of a cylindrical shell300

Let us consider a stiffened cylindrical shell with a non-axisymmetric internal

frame, as shown on the sketch in Fig. 5. The junctions between the two sub-

systems are arcs at the ends of the ring stiffeners flange, extending between θ0

and θN+1.

x0

F

non-axisymmetric frameA

A A-A

er

eθ

er

θ0θN+1

(a)

x0

F
er

(b) (c)

Figure 5: Sections of a stiffened cylindrical shell. (a) Including a non-axisymmetric internal

frame. (b) Axisymmetric partition described using CAA. (c) Example of non-axisymmetric

internal frame.

The Condensed Transfer Function method presented in the previous section305

enables to take into account non-axisymmetric internal frames in an immersed

stiffened shell, as shown on the diagram in Fig. 6. On one hand, the admittances

of the axisymmetric submerged stiffened shell are estimated by the CAA. During
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this step, a numerical model of an immersed shell is coupled with Finite Element

models of stiffeners and bulkheads to calculate the admittance terms needed as310

an input of the CTF method. On the other hand, the admittances of the non-

axisymmetric internal frames are calculated by FEM. Finally, Eq. 7 and 8 are

used to deduce the shell displacements and the radiated pressure field.

Axisymmetric stiffened 
submerged shell

Non-axisymmetric 
internal frames (FEM)

Shell in heavy fluid Stiffeners (FEM)

Yij
non-axiYij

axi

CAA

Fc

CTF

Shell displacements /
Radiated pressure field

YMi
axi

Figure 6: Sketch of the method to account for non-axisymmetric internal frames in a non

periodically stiffened submerged shell.

4.2. Calculation of the Condensed Transfer Functions of an axisymmetric stiff-

ened shell by the Circumferential Admittance Approach (CAA)315

In this part, the Circumferential Admittance Approach (CAA) [1] is used for

modeling the vibroacoustic behavior of a non periodically stiffened submerged

shell, and to calculate the admittances needed as an input for the CTF approach.
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The CAA consists in partitioning the system and considering the submerged

shell separately from the internal frames (ring stiffeners, bulkheads, end caps).320

Considering cylindrical coordinates (x, r, θ), as shown in Fig. 5, all the physical

variables (i.e. forces, shell displacements, pressure,...) can be written as Fourier

series depending on circumferential orders kθ:

f(θ) =
∑
k∈Z

f̃(kθ)e
jkθθ (19)

where kθ ∈ Z, because the system is 2π-periodic along the circumference, and

with325

f̃(kθ) =
1

2π

∫ π

−π
f(θ)e−jkθθ dθ (20)

In this approach, the shell and the frames are axisymmetric and the fluid

domain is infinite. Under these assumptions, the circumferential orders are

independent from each other [31].

On one hand, the circumferential admittances of the fluid loaded shell are

estimated using the Flügge equations of motions [32, 33] and by solving the330

problem in the wavenumber space. The resolution of these equations are per-

formed using an accelerated spectral approach, as it has proven very good results

in terms of accuracy and calculation costs. On the other hand, different types of

internal frames can be modeled using axisymmetric FEM. The coupling forces

between the shell and the internal frames are then calculated using the circum-335

ferential admittances of the subsystems. The forces are finally injected in the

shell model to deduce the shell displacements and the radiated pressure. Details
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on this method can be found in [1].

In order to use the CTF approach to add a non-axisymmetric internal frame,

two quantities are needed from the CAA: the condensed transfer functions Y axiij340

at the junctions with the non-axisymmetric system, and the transfer function

Y axiMi between a point M and a condensation function ϕi applied on one of the

junctions, in order to use Eq. (8) in the last step of the CTF calculation. If M

is a point on the cylindrical shell surface, the latter transfer function represents

the displacement of the point when the axisymmetric shell is excited by the345

condensation function ϕi. If M is a point in the fluid domain outside the shell,

Y axiMi represents the pressure at the point when the axisymmetric shell is excited

by the condensation function ϕi. As the system is axisymmetric, the response

(displacement or pressure) of any point M with the coordinates (xM , rM , θM )

in response to a point harmonic force on the structure at a point A with the350

coordinates (xA, rA, θA) yields the following admittances:

Y axiMA = Y axiM ′A′ (21)

where M ′ is the point with the coordinates (xM , rM , θM − θA) and A′ is the

point with the coordinates (xA, rA, 0). As the CAA enables to calculate any

Y axiMA, let us then consider for the sake of clarity that θA = 0. In the following,

Y axi is written as a function of θ meaning that it is the value at the point of355

coordinate θ in response to an excitation in θ = 0.

The displacement Ūj(θ) of a point of coordinate θ in response to a condensed

force ϕj is then calculated by convolution:
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Ūj(θ) =

∫ θN+1

θ0

Y axi(θ − α)ϕj(α) dα (22)

The condensed transfer functions are then calculated by:

Y axiij =
〈Ūj(θ), ϕi(θ)〉
〈ϕj(θ), ϕj(θ)〉

= 〈
∫ θN+1

θ0

Y axi(θ − α)ϕj(α) dα,ϕi(θ)〉 (23)

360

Y axiMj =
Ūj(θ)

〈ϕj(θ), ϕj(θ)〉

=

∫ θN+1

θ0

Y axi(θ − α)ϕj(α) dα (24)

These variables can now be used as an input to the CTF method to calcu-

late the coupling forces between the axisymmetric stiffened shell and the non-

axisymmetric internal frames, and to deduce the displacements and pressure for

the coupled system.

4.3. Validation of an in vacuo shell365

4.3.1. Definition of the system

A cylindrical shell of radius R = 5 m, length L = 4 m and thickness e =

30 mm is clamped at both ends. It is stiffened by two identical stiffeners with

T cross-section at x = 1 and x = 2 m from the boundary of the shell. A T-

stiffener consists of two perpendicular parts called the flange and the web, the370

web being the one in the (Oyz) plane (see Fig. 7). The web is characterized by

its height hw and thickness tw and the flange is characterized by its width wf
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and thickness tf . Both the web and the flange are modeled by shell elements.

In this example, the T-stiffeners have the following dimensions: (hw × tw/wf ×

tf ) = (200 × 15/200 × 15 mm). A curved plate with a curvature radius of375

Rint = 4.8 m links the two stiffeners as shown in Fig. 7. The shell along with

the two stiffeners will be referred to as the axisymmetric subsystem, whereas

the plate is the non-axisymmetric subsystem, extending between θ0 and θN+1,

with −θ0 = θN+1 = 0.2083 rad. The dimension of the plate is thus 0.8 × 2 m2

and it is 15 mm thick. An unitary external load is applied at the joint between380

the first stiffener and the plate at θ = 0. The shell is not immersed in heavy

fluid so that a reference calculation can easily be done by FEM.

x
y

z

Fext

(a)

Hull

StiffenerCurved plate

Coupling lines (rigid links)

x

y

Fext

(b)

Figure 7: Cylindrical stiffened shell with a non-axisymmetric internal structure. (a) 3D-view

of a section. (b) Section in the plane θ = 0.

4.3.2. CTF calculations

The condensation functions chosen for this example are the gate functions

described in 3.2.1. Indeed, among the three condensation functions tested, the385

gate functions are the easiest to implement. Their length match the criterion

25



proposed in Eq. (15) up to 1 kHz. At this frequency, the flexural wavelength

of a 15 mm thick plate is λf = 0.38 m. As the curvature increases the stiffness

of the plate, the wavelength at a given frequency increases as well, and the

criterion is more restrictive than it could be. The junction is on a circular arc390

of radius 4.8 m. Thus, 10 gates per junction, of angular length θs = 0.0417 rad

(equivalent to a curvilinear length of Ls = 0.2 m) are considered to ensure good

convergence up to 1 kHz.

In this configuration, the gates are functions of θ (ϕi(θ) = 1 between θi1 and

θi2, and 0 elsewhere). Writing the terms Y axi as Fourier series, Eq. (23) leads395

to the admittance Y axiij of the axisymmetric system in the physical space:

Y axiij =
1√

θi2 − θi1

∫ θi2

θi1

 1√
θj2 − θ

j
1

∫ θj2

θj1

∑
kθ

Ỹ axi(kθ)e
jkθ(θ−α) dα

 dθ

=

√
θj2 − θ

j
1

√
θi2 − θi1Ỹ axi(0) (25)

+
1√

θi2 − θi1

1√
θj2 − θ

j
1

∑
kθ 6=0

1

k2
θ

Ỹ axi(kθ)
(

e−jkθθ
j
2 − e−jkθθ

j
1

)(
ejkθθ

i
2 − ejkθθ

i
1

)
with Ỹ axi the projection of the admittance on the circumferential orders. Sim-

ilarly, Eq. (24) yields:

Y axiMj =
1√

θj2 − θ
j
1

∫ θj2

θj1

∑
kθ

Ỹ axi(kθ)e
jkθ(θ−α) dα (26)

=

√
θj2 − θ

j
1Ỹ

axi(0) +
j√

θj2 − θ
j
1

∑
kθ 6=0

1

kθ
Ỹ axi(kθ)

(
e−jkθθ

j
2 − e−jkθθ

j
1

)
ejkθθ

In practice, Eq. (26) and (27) are truncated to a maximal circumferential order

N̄ . This number is defined considering the natural wavenumbers of the shell,400
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the frames and the acoustic fluid, as explained in [1].

On the other hand, the non-axisymmetric plate is modeled by FEM. The

responses are estimated by modal superposition including residual modes (see

Appendix A) and its condensed transfer functions are calculated by projection

on the condensation functions.405

4.3.3. Results

Equation (7) gives the condensed coupling forces Fc between the plate and

the axisymmetric system. According to Eq. (8), the pressure P at a point M1 in

the fluid domain and the displacement U at a point M2 on the shell are finally

given by:410


P (M1) = P̃ (M1) +

∑N
i=1 Y

axi
M1i

F ci

U(M2) = Ũ(M2) +
∑N
i=1 Y

axi
M2i

F ci

(27)

where P̃ (M1) (resp. Ũ(M2)) is the pressure at the point M1 (resp. the displace-

ment at the pointM2) in response to the external point force of the axisymmetric

system (without the plate).

The frequency response of the velocity in the radial direction at the excitation

point and the mean quadratic velocity on the outer surface of the shell are given415

in Fig. 8. They are given as a function of frequency between 100 and 600 Hz

for the reference case of the whole system calculated by FEM and for the CTF

method presented here. The upper frequency limit is set to 600 Hz in order to

calculate the FEM reference solution more easily. The black dotted lines are the

responses of the axisymmetric system (i.e. the stiffened shell without the plate)420
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calculated by FEM. The blue dashed lines are the results of the CTF method

that couples the stiffened shell described by CAA with the plate described by

FEM. They are to compare with the references calculated by FEM and plotted

in red solid lines. For the velocity plotted in Fig. 8a, a gray dotted line with

cross markers represents the results of the CTF method, and when the stiffened425

shell admittances are calculated by FEM. It shows that this curve fits very well

with the reference, whereas some differences can be seen with the CTF method

using CAA. These differences can be explained by the fact that the CAA is,

as all numerical methods, only an approximation of the physical phenomena

and can lead to slight deviations. Different parameters can be tuned to refine430

the results (as for example the maximum number of circumferential orders or

the definition of the longitudinal wavenumber space) in exchange for higher

computational costs. However, these results show that the CTF method is able

to get close to the reference calculation and is thus validated for this case.

4.4. Vibroacoustic behavior of a non-axisymmetric submerged shell435

4.4.1. Description of the system

In this section, the CTF method is applied to a submerged test case. The

case considered is shown in Fig. 9 and consists of a 5 m radius, 42.3 m length

and 30 mm thick cylindrical shell stiffened with 51 stiffeners and 2 spherical

bulkheads (10 mm thick, 30 m curvature radius). There are three different440

types of stiffeners and their spacing varies between 0.6 and 1 m. The whole

system is made of steel (η = 0.02) and is immersed in water. Clamped boundary

conditions are used at the ends of the shell, 2 m away from the first and the last
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Figure 8: (a) Radial velocity amplitude (dB ref 10−6 m.s−1) of the excitation point as a

function of the frequency. (b) Mean quadratic velocity (dB ref 1 m2.s−2) as a function of the

frequency.

stiffeners. Non-axisymmetric internal frames are added between frames 13 and

19. They are composed of 6 identical curved plate, with the same dimensions445

as in section 4.3 (2 m long with a curvature radius of 4.8 m, 0.8 m wide and

15 mm thick). A point force is applied on frame 18 at the junction between the

flange and the web. The plates and the excitation are chosen so that the system

remains symmetric with regard to the plane θ = 0.

The only difference with the validation case presented in the previous subsec-450

tion lies in the shell admittance calculation, which accounts, in the submerged

case, for the heavy fluid loading. There are 12 line junctions, which are each

divided in 10 segments, resulting in a set of 120 condensation functions. The

admittances for a radial displacement in response to a radial force projected on

these condensation functions are plotted in Fig. 10 at f = 1000 Hz. In Fig. 10a,455
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Figure 9: Submerged hull. Cylindrical shell: 5 m radius, 42.3 m length, 30 mm thick. Axisym-

metric stiffeners: (α) spacing 0.75 m, T-cross-section (mm): 300 × 60/60 × 300; (β) spacing

1 m, T-cross-section (mm): 200 × 15/15 × 200; (γ) spacing 0.6 m, T-cross-section (mm):

200 × 25/15 × 200. (a) Section in the plane θ = 0. (b) Non-axisymmetric part (without the

cylindrical shell).

the 12 diagonal blocks show the admittance amplitude when the displacements

and forces are on the same junction, and have thus the biggest amplitudes. As

there are 10 gate functions per junction, these blocks have a size of 10×10, and

one of them is circled in black. Every other block of the diagonals above and

below the main one also has an important amplitude, due to the fact that the460

junctions are on the same T-cross-section stiffener. There are 10 of these extra-

diagonal blocks with a higher amplitude and one of them is circled in white. One

can also see that the amplitude decreases with the distance to the excitation

along the shell. In Fig. 10b, it shows that the non-axisymmetric internal frames

are uncoupled one from the other as there are only diagonal blocks linking two465

consecutive junctions.
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(a) (b)

Figure 10: Amplitude of the admittance (Tr, Fr) (dB ref 1) at f = 1000 Hz of the (a) ax-

isymmetric shell (the black circle shows a diagonal block and the white circle shows an extra-

diagonal block) and the (b) non-axisymmetric internal frames.

4.4.2. Results

The mean quadratic velocity averaged on the outer surface of the shell is

plotted as a function of the frequency in Fig. 11a. To describe properly the res-

onance peaks, 400 values are logarithmically spread over the frequency domain470

between 100 and 1000 Hz. It shows that the non-axisymmetric internal frames

have a weak influence on the mean quadratic velocity. Nevertheless, it can be

said that a slight apparent damping effect appears, as predicted by the theory of

fuzzy internals by Soize [34]. The amplitude of the peaks of the mean quadratic

velocity between 350 and 600 Hz is indeed lower in the non-axisymmetric case475

than in the axisymmetric case. The radiation efficiency σ is plotted on Fig. 11b.

It is defined as the ratio between the actual mean far-field radiated power Wa

and the power that would be radiated by a cylindrical shell of the same radiating

31



surface S, having an uniform radial velocity V0:

σ =
Wa

ρeceSV 2
0

(28)

for ρe = 1000 kg.m−3 the fluid density and ce = 1500 m.s−1 the speed of sound480

in water.
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Figure 11: Frequency responses of the system excited by a radial point force, with and without

the non-axisymmetry: (a) Amplitude (dB ref 1) of the mean quadratic velocity on the outer

surface of the shell. (b) Radiation efficiency.

To explain these differences in the radiation efficiency, although the mean

quadratic velocity is only slightly changed, a wavenumber analysis is done [35].

The shell radial acceleration level at f = 1000 Hz is plotted in the wavenumber

space in Fig. 12 for the two configurations (with and without the plates). As the485

problem is symmetrical, the variables are even functions of the circumferential

orders and thus only the positive circumferential orders have been plotted. The

white line shows the radiation circle (elliptical in Fig. 12a and c due to the
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plotting aspect ratio), defined by:(
kθ
R

)2

+ k2
x =

(
2πf

ce

)2

(29)

The radiation circle represents the supersonic acoustic domain, in which the490

components radiate to the far-field for a flat plate. The radiation circle remains

also a good indicator for localizing the radiating waves of a shell having a low

curvature. On the overall plot, it can be seen that adding the plates has little

influence on the highest values of the acceleration spectrum in the wavenumber

space (in red in Fig. 12a,c). This indicates that the most contributing waves495

in terms of the vibration energy propagation on the shell are globally the same

for the two cases. It results in few changes on the mean quadratic velocity,

as shown in Fig. 11a. Nevertheless, when zooming in on the radiation circle,

one can observe that the components (which amplitudes are clearly lower than

the highest values outside the circle) are significantly influenced by the plates500

(see Fig. 12b,d). As these components radiate sound efficiently, it explains the

difference in the radiation efficiency observed in Fig. 11b. In general, an ax-

isymmetric shell is not an efficient radiator, but it can be seen that breaking

the axisymmetry by adding 3D internal structures increases the radiation ef-

ficiency. This trend can be explained by the fact that the non-axisymmetric505

frames couple circumferential orders together. These results are consistent with

the literature [17, 21].

The radial displacements for the submerged stiffened shell, with and with-

out added plates, are presented in Fig. 13. The results are given at 1000 Hz

and the values are normalized to the highest displacement amplitude for each510
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(a) (b)

(c) (d)

Figure 12: Radial acceleration of the shell (dB ref 10−6g) in the wavenumber space under a

radial unitary force excitation at 1000 Hz. (a) Axisymmetric shell. (b) Axisymmetric shell

(zoom on the radiation circle). (c) Non-axisymmetric shell. (d) Non-axisymmetric shell (zoom

on the radiation circle).

plot. In Fig. 13a and Fig. 13c, the excitation is radial while in Fig. 13b and

Fig. 13d the excitation is in the longitudinal direction. One can see that adding

non-axisymmetric internal frames modifies the vibroacoustic behavior of the

stiffened submerged shell. More particularly in this case, the vibrational en-

ergy propagates easily in the longitudinal direction due to the strong stiffness515
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of the plates in-plane motion, and is transmitted to the connected stiffeners.

Thus, the high displacements are spread further from the point load in the

non-axisymmetric cases, especially when the excitation is longitudinal.

(a) (b)

(c) (d)

Figure 13: Radial displacements level (dB ref 10−6g) normed to the maximum value (for each

load case) of the cylinder to a harmonic unitary force excitation at 1000 Hz. (a) Axisymmetric

shell under radial excitation. (b) Axisymmetric shell under longitudinal excitation. (c) Non-

axisymmetric shell under radial excitation. (d) Non-axisymmetric shell under longitudinal

excitation.

In Fig. 14, the far-field sound pressure level at 100 m is plotted at 1000 Hz for

the axisymmetric and non-axisymmetric shell. The same color scale is used for520

the two subplots. The shell is oriented in the same way as in the representation

of the shell displacements in Fig. 13. First, consistently with Fig. 11, it is clear

that the radiated sound level is higher for the non-axisymmetric case. Then,

because of the coupling of different circumferential orders, it can be said that

the non-axisymmetric internal frames alter the directivity pattern by increasing525
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its complexity.

(a) (b)

Figure 14: 3D representation of the far-field sound pressure level at 100 m (dB ref 10−6 Pa) of

the cylinder to a radial harmonic unitary force excitation at f = 1000 Hz. (a) Axisymmetric

shell. (b) Non-axisymmetric shell.

From a computational point of view, adding these non-axisymmetric internal

frames lengthen the calculation by about 60 % in comparison with the axisym-

metric stiffened shell. Assuming that the frames admittances used in CAA were

already stored in a database and did not need to be calculated again, one fre-530

quency for the axisymmetric case was performed in about 75 seconds. Adding

the non-axisymmetric internal frames represents thus a difference of about 45

seconds for each frequency of calculation on the computer used for the tests (24

Gb RAM, 6 core processors at 2.66 GHz). It is worth noting that the calcula-

tion time for the admittances of the non-axisymmetric internal frame is short535

as modal superposition with residual modes is used. It is hard to compare these

results to some other numerical methods, because very few of them are able

to predict the behavior of a submerged hull in the considered frequency range,

but it can be said that the computational time remains acceptable for practical
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applications.540

5. Conclusions

A sub-structuring method has been proposed to couple subsystems along

lines by condensing transfer functions. These transfer functions are calculated

for each uncoupled subsystem separately. Different methods can be used de-

pending on the characteristics of the subsystem, which gives great flexibility of545

the method. Once the condensed transfer functions calculated, a linear system

is solved to deduce the coupling forces at the junctions. Finally, the response

at any point of the considered coupled system can be calculated.

In this paper, three different condensation functions have been presented

and validated on a basic test case made of two coupled plates. Moreover, CTF550

calculations using the gate functions have been used to couple together a nu-

merical model of an in vacuo axisymmetric stiffened shell and finite element

models of the non-axisymmetric internal frames. It has shown good agreement

with FEM results for this complex test case. The proposed method has then

been applied to study the influence of non-axisymmetric internal frames on the555

vibroacoustic behavior of a submerged stiffened shell.

This last example illustrates well the interest of this approach for coupling

different numerical models (i.e. CAA with FEM) and for taking the fluid load-

ing on the cylindrical shell into account easily. From these results, as non-

axisymmetries tend to couple circumferential orders together, it can be said that560

including non-axisymmetric internal frames can alter greatly the vibroacoustic
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behavior of the shell. On the example of plates linking adjacent stiffeners, it is

clear that they play a key role as they tend to increase the radiation efficiency

of the system and can alter the vibrational and acoustic energy distribution.

More generally, the present approach can be used to partition vibroacoustic565

problems into several subsystems coupled along lines, and can be applied to a

wide range of practical problems. Another advantage of this approach is the

ability to quickly reanalyze subsystems for optimization. For instance, if one

of the subsystems properties is modified, it is not necessary to recalculate the

condensed transfer functions of the other subsystems. Computation time can570

thus be saved by reusing a database of condensed transfer functions.

Appendix A. Calculation of condensed transfer functions by FEM

To calculate the condensed transfer functions matrix and the free displace-

ment vectors of the isolated subsystems, the harmonic responses to the force

corresponding to the condensation functions on the coupling junction and to575

external forces must be calculated. When a subsystem is modeled by FEM,

different methods can be used to calculate a frequency response. Three of them

have been tested and are recalled in this section.

Direct calculation: It extracts the mass and stiffness matrices, respectively

M and K, from the FE model and introduces structural damping η580

through a complex stiffness value K∗ = K(1 + η). At a given angu-

lar frequency ω, the displacement amplitude U0 is calculated from the

dynamics equation in the frequency domain :
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U0 = (−ω2M + K∗)−1F0 (A.1)

The direct calculation gives accurate results but is time consuming.

Modal superposition: It solves the eigenvalue problem of the conservative585

dynamic system to build a basis of mode shapes Φn :

ω2
nMΦn = KΦn (A.2)

Physically speaking, ωn represent the eigenfrequencies of the system while

Φn are the associated mode shapes. The basis is theoretically of infinite

dimension but for obvious practical reasons it must be truncated to an

integer Nm. The frequency response is then a linear combination of these590

modes:

U0 =

Nm∑
n=1

anΦn (A.3)

where an is called the modal coefficient and is calculated from the reduced

mass and stiffness matrices, M = ΦTMΦ and K = ΦTKΦ and the

reduced force F = ΦTF:

an = (K∗ − ω2M)−1F (A.4)

The damping can be introduced in the reduced stiffness matrix: K∗ =595

K(1 + η). Comparing to the direct calculation, this method is much

39



faster but has a poor convergence in some frequency bands (i.e. outside

of resonance peaks), because of the basis truncation.

Modal superposition + residual modes: A quasi-static mode shape Ψ (i.e.

a particular response at a very low frequency ω0) is calculated as follow:600

Ψ = (K− ω2
0M)−1F0 (A.5)

It is then added to the modal basis to define a new basis P = {Φn Ψ}

and to compensate the effect of the truncation. It is worth noting that

the basis P is generally not orthogonal and needs to be diagonalized. To

do so, the following eigenvalue problem is solved:

(
K− ω2

nM
)
Q = 0 (A.6)

with M = PTMP and K = PTKP. As
(
K− ω2

nM
)

is a symmetric605

semi-definite matrix, the eigenvectors Q are orthogonal. One defines new

reduced mass and stiffness matrices:


M = QTMQ

K = QTKQ

(A.7)

along with a new reduced force vector F = QTPTF0. Introducing again

damping in the reduced stiffness matrix, one deduces the displacement

through the following equations:610
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U0 =

Nm∑
n=1

an(PQ)n (A.8)

with

an = (K∗ − ω2M)−1F (A.9)

Comparing to the previous alternative, the convergence is greatly in-

creased and the calculation time remains low.
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